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Abstract. A central limit theorem is stated for a wide class of triangular arrays of non-

linear functionals of the periodogram of a stationary linear sequence. Those functionals may be

singular and not-bounded. The proof of this result is based on Bartlett decomposition and an

existing conterpart result for the periodogram of an i.i.d sequence, here taken to be the driving

noise. The main contribution of this paper is to prove the asymptotic negligiblility of the

remainder term from Bartlett decomposition, feasible under short dependence assumption. As

it is highlighten by applications (to estimation of non-linear functionals of the spectral density,

robust spectral estimation, local polynomial approximation and log-periodogram regression),

this extends many results until then tied to Gaussian assumption.

1. Introduction

There is a wealth of applications in time-series analysis where a quantity of interest depends

on a triangular array of non-linear function of the periodogram. Examples of such situation

include: "direct" estimation of non-linear functions of the spectral density (such as the innovation

variance; see e.g. Chen and Hannan, 1980), parameter estimation by log-periodogram regression

(see e.g. Taniguchi 1979, 1991), non-parametric estimation of the spectral density by robust non-

linear regression of the periodogram (see e.g. Von Sachs, 1994 and Janas and Von Sachs, 1995),

local polynomial regression of the periodogram (see e.g. Kreutzberger and Fan 1998, and Fan

and Gijbels, 1996 , section 6.6), or more recently, the estimation of the memory parameter

for long-range dependent processes based on some form of log-periodogram regression (see e.g.

Robinson 1995, Velasco 1999 and Moulines and Soulier 1997).

Key words and phrases. periodogram, linear process, central limit theorem, non-linear functionals, Bartlett

decomposition.
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Because of the very involved nature this type of statistics, most of the derivations up to now

have been obtained under the additional assumption that the process is Gaussian, being based

on general results on non-linear functional of (possibly) non-stationary Gaussian process (see

e.g. Taqqu (1977), Arcones (1994)). However, these techniques are tailored to the Gaussian

case, and do not extend to a wider setting.

A �rst step to weaken the Gaussian assumption has been taken by Chen and Hannan, which

proved the consistency (but not the asymptotic normality) of the sample average of the log-

periodogram evaluated at the Fourier frequencies of a non-Gaussian linear process. This work

was based on early results on the periodogram of linear processes obtained by Bartlett (1955,

see also Walker, 1965).

Some extensions of these results have been obtained by Von Sachs (1994) and Janas and

Von Sachs (1995), motivated by the limiting theory of a class of "robusti�ed" estimator of the

spectral density, using Huberized regression estimator in the spectral domain. Janas and Von

Sachs (1995) proved the consistency of the estimators of general non-linear functions of the

spectral density for non-Gaussian linear process. Contrary to the work of Chen and Hannan

(1980), the technique used by Janas and Von Sachs (1995) was based on Edgeworth expansion

of triangular array of weakly dependent random variables, using results established earlier by

G�otze and Hipp (1983). Because of the very involved nature of the Edgeworth expansion in the

dependent case, only the �rst and the second order moments can be evaluated; based on these

results, Janas and Von Sachs (1995, section 3.4) proved the mean-square convergence of their

robust spectral estimator. Note that the approach used by these authors is restricted to the

case where the process is strongly mixing with geometrically decaying mixing coe�cients.

The main objective of this paper is to derive the limiting distribution of triangular array

of non-linear function of the periodogram of a linear process under mild technical conditions.

Our approach extends the techniques presented in Chen and Hannan (1980). It is based on the

Bartlett decomposition of the periodogram which relates the periodogram of the observations to

the (�ctitious) periodogram of the "driving" noise. Using this decomposition, the proof is in two

almost independent steps. The �rst step consists in showing a central limit theorem for triangular
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array of non-linear functions of the periodogram of an indenpendent and identically distributed

(i.i.d) sequence of random variables. This �rst step is carried out in a companion paper by Fay

and Soulier (1999). The second step consists in showing that the remainder term in the Bartlett

decomposition does not contribute to the limit. This step, which is essentially independent

from the �rst one, is carried out in this paper under conditions on the �lter coe�cients that

imply short-range dependence, but for non-linear functions which are possibly singular and

non-bounded (such as �(x) = log(x)).

The paper is organized as follow. In section 2, the main assumptions and results are stated. In

section 3, several applications (involving non-linear functions of the periodogram) are outlined

to illustrate our results. Bounds for the remainder terms in the Bartlett decomposition of the

periodogram are presented in section B.

2. Assumptions and main results

De�ne the discrete Fourier transform and the periodogram of a stationary process Y as

d

Y

n

(x) = (2�n)

�1=2

n

X

t=1

Y

t

e

itx

and I

Y

n

(x) = jd

X

n

(x)j

2

:

The discrete Fourier transform and the periodogram are evaluated at the Fourier frequencies

x

k

= 2�k=n, 1 � k � ~n := [(n � 1)=2], where [a] denotes the integer part of a. Let m

be a �xed integer. Following the procedure proposed by Robinson (1995), the frequency axis

is divided in non overlapping segments of size m, and the periodogram is pooled over each

segment. Let K = [(n �m)=2m] (the dependency in n is omitted). For k = 1; � � � ;K, denote

J

k

= fm(k� 1) +1; � � � ;mkg. De�ne the k-th ordinate of the pooled periodogram of Y

1

; : : : ; Y

n

as the sum:

�

I

Y

n;k

=

X

l2J

k

I

Y

n

(x

l

)(1)

Since

P

n

t=1

exp(itx

i

) = 0 for 1 � k < ~n, the pooled periodogram is shift-invariant. Let H

be the space of measurable functions � such that for all u 2 R, E [�

2

(ju�j

2

=2)] < 1, where

� = (�

1

; � � � ; �

2m

) denote a 2m-dimensional Gaussian vector and j:j denotes the Euclidean norm.
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For � 2 H, de�ne



m

(�) = E [�(j� j

2

=2)];(2)



m

(�; u) = E [�(uj� j

2

=2)]:(3)

Many statistical applications require to prove a central limit theorem for weighted sums of

non-linear functionals of the pooled-periodogram ordinates of the form

S

n

(Y; �) =

K

X

k=1

�

n;k

f�(

�

I

Y

n;k

=f

Y

(y

k

))� 

m

(�)g;(4)

~

S

n

(Y; �) =

K

X

k=1

�

n;k

f�(2�

�

I

Y

n;k

)� 

m

(�; f

Y

(y

k

))g;(5)

where f

Y

is the spectral density of the process Y , (�

n;k

) is a triangular array of real numbers

and y

k

, 1 � k � K are frequencies related to the set of frequencies J

k

. For instance, an

often convenient choice is y

k

= (2k � 1)�=2K. Unless otherwise speci�ed, we only assume that

2�m(k � 1)=n � y

k

� 2�mk=n. If Y is a sequence of uncorrelated variables, then S

n

(Y; �) and

~

S

n

(Y; �) coincide. When Y is Gaussian white noise, the variables 2�

�

I

Y

n;k

are independent �(m; 1)

r.v. (i.e. half a central chi-square with 2m degrees of freedom). Thus S

n

(Y; �) converges to a

normal random variable under Lindeberg-Levy's conditions (cf. Petrov, 1995). When Y is not

a Gaussian white noise, the random variables (

�

I

Y

n;k

) are no longer independent, and no general

result is available for non linear functionals of

�

I

Y

n;k

. Recently, Fay and Soulier (1999) have proved

a central limit theorem for S

n

(Y; �) when Y is a (non-Gaussian) white noise, under rather weak

and easily checked conditions on the functional � and the weights (�

n;k

)

1�k�K

. For a general

process X, it seems quite hopeless to prove directly a central limit theorem for S

n

(X;�) (cf. for

instance Janas and Von Sachs (1995) for an attempt in that direction). If X is a linear process,

that is a process which admits a linear representation with respect to a white noise Z :

X

t

=

1

X

j=�1

a

j

Z

t�j

+ �;

X

j

a

2

j

<1; E [Z

0

] = 0; E [Z

2

0

] = 1;(6)

one can hope to prove a central limit theorem for S

n

(X;�) or

~

S

n

(X;�) by resorting to the

so-called Bartlett's decomposition. This decomposition amounts to writing

I

X

n;k

= (2�)f

X

(y

k

)

�

I

Z

n;k

+R

n;k

;(7)
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where f

X

is the spectral density of the process X and R

n;k

is a remainder term. Note that for

a linear process, the spectral density writes

f

X

(x) = (2�)

�1

jA(e

ix

)j

2

= (2�)

�1

j

X

k2Z

a

k

e

�ikx

j

2

:

This decomposition of the periodogram was suggested in Bartlett (1955) and later thoroughly

investigated by many authors (see, e.g. Walker (1965), Chen and Hannan (1980), Brockwell and

Davis (1991) . The leading term in the decomposition (7), 2�f

X

(x)I

Z

n;k

, is sometimes referred

to as the pseudo-periodogram. It should be stressed however that this quantity is purely of

theoretical interest and cannot be estimated explicitly. The Bartlett's decomposition suggests

to relate the limiting distribution of S

n

(X;�) to the limiting distribution of S

n

(Z; �). A central

limit theorem will hold for S

n

(X;�), provided that we show that S

n

(Z; �) � S

n

(X;�) = o

P

(1)

(i.e. converges to zero in probability). This can be achieved (with patience and hard work)

under reasonable regularity assumptions on the functional �, which are not considerably more

stringent than those needed for the derivation of the central limit theorem for S

n

(Z; �). We now

state our assumptions.

(A1) (�

n;k

)

1�k�K

is a triangular array of real numbers such that

P

K

k=1

�

2

n;k

= 1 and

lim

n!1

max

1�k�K

j�

n;k

j = 0:

(A2) For all � > 0, max

1�k�K

j�

n;k

j = O(�

�1=2+�

n

), where �

n

:= # fk : 1 � k � K;�

n;k

6= 0g.

Assumption (A2) means that �

n

(max

1�k�K

j�

n;k

j)

2

is bounded by a slowly varying function of

�

n

. It holds in particular when

�

n;k

:=

 

K

X

k=1

g

2

(y

k

)

!

�1=2

g(y

k

)

under mild technical condition on function g. Note that, for functions of bounded variations on

[��; �], max

k2f1;��� ;Kg

j�

n;k

j = O(n

�1=2

). Assumption (A2) may however hold even when g is

not of bounded variation.
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(A3) There exists a real �

m

such that

lim

n!1

n

�1

X

1�k 6=l�K

�

n;k

�

n;l

= �

m

:

For any function � 2 H and any real u, de�ne

�

2

m

(�; u) = E [(�(uj� j

2

=2)� 

m

(�; u))

2

];(8)

C

m

(�; u) = E [(�

2

1

� 1)�(uj�j

2

=2)]; C

m

(�) := C

m

(�; 1):(9)

(A4) There exists a real �

2

m

(�; f) such that

lim

n!1

K

X

k=1

�

2

n;k

�

2

m

(�; f(y

k

)) = �

2

m

(�; f):

(A5) There exists a real �

m

(�; f) such that

lim

n!1

n

�1

X

1�k 6=l�K

�

n;k

�

n;l

C

m

(�; f(y

k

))C

m

(�; f(y

l

)) = �

m

(�; f):

To deal with functions � singular at zero (such as log(x)), an additional technical assumption

on the probability distribution of Z

0

is required.

(A6) There exists a real r � 1 such that

R

+1

�1

jE (e

itZ

0

)j

r

dt <1.

Assumption (A6) ensures that n

�1=2

P

n

t=1

Z

t

has a density q

n

for all su�ciently large n (n � p)

and that this density converges uniformly to the standardized Gaussian distribution (see, for

example, Bhattacharya and Rao (1976) [3], Theorem 19.1,p.189).

(A7) There exists a real � > 3=4 such that

P

j2Z

jjj

�

ja

j

j < 1 and A(z) =

P

1

j2Z

a

j

z

j

6= 0 for

jzj = 1.

Under this assumption, the process is short-range dependent and (perhaps non-causally) invert-

ible.

Theorem 1. Let (Z

t

)

t2Z

be a sequence of i.i.d centered random variables with unit variance and

with �nite moment of order � � 4, and let �

4

= E [Z

4

]� 3(E [Z

2

])

2

be the fourth-order cumulant
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of Z

0

. Let X be a linear process which admits the linear representation (6) with respect to Z

and such that (A7) holds. Assume either

� (S1) � is twice di�erentiable and there exists an integer � such that

max

x2R

j�(x)j + j�

0

(x)j + j�

00

(x)j

1 + jxj

�

<1;

and � � 8� _ 4.

� (S2) Assumption (A6) holds, � is twice di�erentiable on (0;1) and there exist integers,

�

0

� 3, �

1

� 4, �

2

� 3 and �

3

� 3, reals � and � such that m > � and

Z

R

2m

�

2

(jxj

2

=2)(1 + jxj)

��

0

dx <1(10)

Z

R

4m

�(jxj

2

=2)�(jyj

2

=2)(1 + jxj+ jyj)

��

1

dx dy <1(11)

Z

R

2m

[�

0

(jxj

2

=2)]

4

(1 + jxj)

��

2

dx <1;(12)

Z

R

4m

j�

0

(jxj

2

=2)jjxjj�

0

(jyj

2

=2)jjyj(1 + jxj+ jyj)

��

3

dx dy <1;(13)

j�

00

(x)j � C(x

�

1

fx�1g

+ x

��

1

fx�1g

);(14)

and � � maxf8; 4�; [2(m � �)] + 1; �

0

; �

1

; �

2

; �

3

+ 2g.

Let (�

n;k

)

1�k�K

be a triangular array satisfying assumptions (A1) and (A2).

� If (A3) holds then S

n

(X;�) is asymptotically centered Gaussian with variance �

2

m

(�) +

�

m

m

2

C

2

m

(�)�

4

.

� If (A4) and (A5) hold then

~

S

n

(X;�) is asymptotically centered Gaussian with variance

�

2

m

(�; f) + �

m

(�; f)m

2

�

4

.

Remarks.

� In the case of Assumption (S1), the assumptions needed to prove a central limit theorem

for S

n

(Z; �) are su�cient to prove that S

n

(Z; �) � S

n

(X;�) = o

P

(1). In the case of
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assumption (S2), (10) and (11) alone imply the central limit theorem for S

n

(Z; �), while

(12), (13) and (14) are needed to prove that S

n

(Z; �) � S

n

(X;�) = o

P

(1).

� We will only prove the theorem for S

n

(X;�). Setting �

n;k

(y) = �(f(y

k

)z), we get

~

S

n

(X;�) =

K

X

k=1

�

n;k

f�

n;k

(

�

I

X

n;k

=f(y

k

))� 

m

(�

n;k

)g:

Since we consider only short-range dependent processes with spectral density bounded

above and away from zero, Assumptions (S1) and (S2) hold uniformly for the functions

�

n;k

for all n and k � K whenever they hold for �. This would not be the case if long-

range dependent processes were considered. In that case, it is well known that S

n

(X;�)

and

~

S

n

(X;�) may not have the same asymptotic distribution. In the case of a linear

functional, i.e. �(x) = x,

~

S

n

(X;�) may even have a non Gaussian asymptotic distribution

with a suitable normalization, while S

n

(X;�) is asymptotically Gaussian (cf. Fox and

Taqqu, 1983, 1987).

� If �

4

= 0 then Assumptions (A3) and (A5) are not necessary.

� If �

n

= o(n

2=3

) then Assumption (A2) is not necessary and Assumptions (A3) and (A5)

hold with �

m

= �

m

(�; f) = 0.

� If C

m

(�; u) = 0 for all u 2 R

+

, then Assumptions (A2), (A3) and (A5) are not necessary.

Thus the central limit theorem holds under the same assumption on the weights �

n;k

as in

the Gaussian case and with the same asymptotic variance.

3. Applications

3.1. Estimation of functional of the spectral density. Many problems in time series analy-

sis require the evaluation of a non-linear functional of the spectral density

�(f) =

Z

�

0

w(x)G(f(x))dx;(15)

either as a goal or as an intermediate step in an inference procedure. The linear case, G(x) = x,

is well-understood (cf. Brockwell and Davis, 1991). The estimation of non-linear functional has

been scarcely considered in the literature, despite the number of potential applications.
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In this section, we study a class of estimators based on the pooled periodogram. For any

positive integer m, denote g

m

(t) := t

m�1

e

�t

=(m� 1)!, t � 0, the probability density function of

a Gamma(m; 1) random variable. For � a real-valued function such that

R

1

0

j�(xt)jg

m

(t)dt <1

for all x > 0, de�ne

T

m

[�](x) :=

Z

1

0

�(xt)g

m

(t)dt

In order to de�ne an estimator of �(f), we need the following assumption.

(NLF) There exists a function �

m

such that, for almost every x > 0,

T

m

[�

m

](x) = G(x):(16)

When G(u) = u

�

, with � + m > 0, (NLF) holds with �

m

(x) = �(� + m) x

�

. When

G(u) = log(u), (NLF) holds with �

m

(x) = log(x)� (m), where  (m) is the digamma function.

Assumption (NLF) implies that 8x 2 [0; �]; E [�

m

((f(x)j�j

2

=2))] = G(f(x)). De�ne

^

�

n

= (2�=K)

K

X

k=1

w(y

k

)�

m

(

�

I

X

n;k

)(17)

This construction di�ers from the estimators considered in Taniguchi (1991) or Mokkadem

(1996): these authors suggest to plug in Eq.(15), a consistent estimator of the spectral den-

sity.

Theorem 2. Assume that w is a function of bounded variation. Assume in addition that, for

some positive integer m, (16) has a solution denoted �

m

, satisfying either assumption (S1) or

(S2) of Theorem 1. Then

p

n(

^

�

n

��(f)) converges weakly to a zero-mean Gaussian distribution.

The expression of the limiting distribution can be deduced from Theorem 1. In general, the

limiting variance depends upon the spectral density f

X

(x) of the process X.

Functionals of the log-spectral density are of particular interest. In such case, G(x) = log(x),

and �

m

(x) = log(x) �  (m). The function �

m

is singular at x = 0, and so we must verify

assumption (S2) of Theorem 1. This assumption requires that (A6) be veri�ed. It is easily

checked that (10)-(14) are satis�ed by taking m � 5 and EjZj

�

< 1, for � � 2m + 1. The
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condition on the pooling size m is imposed by (12), which guarantees that E (�

0

m

(

�

I

Z

n;k

))

4

=

E (

�

I

Z

n;k

)

�8

<1. The limiting distribution then is

m 

0

(m)

�

Z

�

0

w

2

(y)dy +

�

4

4�

�

Z

�

0

w(y)dy

�

2

;(18)

where  

0

(m) is the trigamma function. Note that, not surprisingly, the limiting variance in such

case does not depend on f

X

(x).

A direct application of the above result is the estimation of the innovation variance. Following

the suggestion of Davis and Jones (1968) (see also Hannan and Nichols (1977)), an estimate of

the innovation variance may be obtained by computing

�̂

2

n

= exp((2�K)

�1

K

X

k=1

(log(

�

I

X

n;k

)�  (m))):(19)

These estimators are based on the Kolmogorov formula, which relates the innovation variance

to the integral of the log-spectral density, �

2

= exp(

R

2�

0

log f(w)dw=2�). The estimator (19)

has been shown to be consistent by Chen and Hannan (1980). Although hinting that the

limiting distribution would involve the fourth order cumulant of Z, these authors failed to prove

asymptotic normality in the non-Gaussian case.

It follows from the discussion above that

p

n(�̂

2

n

� �

2

) is asymptotically zero-mean Gaussian

with variance (2m 

0

(m) + �

4

)�

4

, for m � 5 and EjZj

�

< 1 for � � 2m + 1. The recurrence

relation  

0

(m + 1) =  

0

(m) �m

�2

indicates that the function m 

0

(m) decreases in m, taking

values 1:289 at m = 2 and 1:185 at m = 3, and tending to 1 as m ! 1. There is thus always

some advantages to "pool" the periodogram ordinates prior to compute logged variables. The

same comments hold for most applications considered in the sequel (see Taniguchi (1991) chapter

1, for related result).

3.2. Log-Periodogram Regression. Log-periodogram regression have been considered by

several authors as an alternative to maximum likelihood or the method of moments for pa-

rameter estimation (cf. Taniguchi, 1987). For C < 1 and � > 0, de�ne F(C; �) the space of
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spectral density de�ned by

F(C; �) :=

�

g; g(x) =

�

2

2�

�

�

�

�

�

�

1

X

j=0

a

j

e

�ijx

�

�

�

�

�

�

2

;

1

X

j=0

(1 + j)ja

j

j < C; and

�

�

�

�

�

�

1

X

j=0

a

j

z

j

�

�

�

�

�

�

� �; for all jzj � 1

�

We propose to �t some parametric family P := ff

�

; f

�

2 F ; � 2 � � R

p

g to the true spectral

density f

X

(x)(x) = f(x; �

0

), �

0

2 int(�), of the process by solving the following non-linear

least-square criterion

S

n

(�) :=

K

n

X

i=1

�

log(

�

I

X

n;k

)�  (m)� l(y

k

; �)

�

2

(20)

where l(y; �) := log f(y; �). Any vector

^

�

n

in � which minimizes the residual sum of squares

(Eq. 20) will be called a least-square log-periodogram regression estimate of �

0

. Based on the

results derived above, the theory of log-periodogram estimate parallels the theory of non-linear

least-squares estimate, as developed in Jennrich (1969) or Wu (1981) . Denote D

n

(�; �

0

) :=

P

n

i=1

(l(y

i

; �)� l(y

i

; �

0

))

2

and

l

0

(y; �) :=

�

@

@�

j

l(y; �)

�

j

; l

00

(y; �) :=

�

@

2

@�

j

@�

k

l(y; �)

�

j;k

; j; k 2 f1; � � � ; pg:

We will consider the following assumptions

� (LPR1) n

�1

D

n

(�; �

0

) converges uniformly for (�; �

0

) 2 � � � to a continuous function

D(�; �

0

), and D(�; �

0

) has a unique minimum at � = �

0

.

� (LPR2) l

0

(y; �) and l

00

(y; �) exist and are bounded for all � near �

0

; the true parameter �

0

is in the interior of � and

I(�

0

) :=

1

2�

Z

�

��

l

0

(y; �

0

)l

0

(y; �

0

)

T

dy

is positive de�nite.

Note that I(�

0

) is the Fisher information matrix for Gaussian process. Assumption (LPR1)

is the Jennrich's classical assumption, allowing to show (in the standard non-linear regression

model with i.i.d errors with �nite second-order moments) that the non-linear least-square esti-

mator

^

�

n

is strongly consistent. It follows from Theorem 1 that the same assumption may be,

in our context, used to show that

^

�

n

is weakly consistent (the proof is by a direct adaptation
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of Theorem 6 in Jennrich (1969); this assumption can be relaxed; see Wu (1981)). Assumption

(LPR2) is adapted from Jennrich (1969) to prove the asymptotic normality.

Theorem 3. Assume (A6), (A7) and ((LPR1)-(LPR2)). Assume in addition that m � 5

and EjZj

�

< 1, for � � 2m + 1. Then,

^

�

n

is P

�

0

-weakly consistent and

p

n(

^

�

n

� �

0

) is P

�

0

-

asymptotically zero-mean Gaussian with covariance matrix

m 

0

(m)I

�1

(�

0

) + �

4

=4I(�

0

)

�1=2

J(�

0

)I(�

0

)

�1=2

;

J(�

0

) = (2�)

�2

�

Z

�

��

l

0

(y; �)dy

��

Z

�

��

l

0

(y; �)dy

�

T

The proof is a straightforward application of Jennrich (1969), Theorem 7, and is omitted for

brevity. Note that when Z

1

is Gaussian, the least-square log-periodogram regression estimator

is quasi-e�cient, since m 

0

(m)! 1 very quickly with m.

Taniguchi (1987) suggest to use, instead of the pooled periodogram, a sequence of mean-square

consistent estimator of the spectral density in the non-linear least square regression equation

20. When Z

1

is Gaussian, this approach is, from the asymptotical point of view, better than

the one outlined here, even though the loss in e�ciency is a constant factor m 

0

(m) which is

very close to one even for moderate values of m.

In practice of course, there is always a substantial ambiguity to select an appropriate way

to construct a preliminary estimate of the spectral density. One can for instance let m tend

to in�nity and set

^

f(y

k

) = m

�1

�

I

n;k

. This will yield an asymptotically e�cient estimator. In

practice, the values of m will always be rather small (such as m = 3 or 4) and m

�1

�

I

n;k

can

hardly be considered as a consistent estimator. The type of asymptotics adopted here (�xed

block size) seems more sensible to derive meaningful con�dence interval, since those derived from

the postulated limiting distribution of the Taniguchi's estimator are likely to be underestimated

for moderate sample sizes.

3.3. Non-parametric Robust spectral estimation. The robusti�cation of the usual kernel

estimator by means of M-estimation in frequency domain was suggested by Von Sachs (1994)
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and Janas and Von Sachs (1995) . The procedure, motivated by the robust regression technique

(see H�ardle and Gasser, 1984), consists in solving in s the estimation equation

^

�

n;x

(s) = K

�1

K

X

k=�K

W

b

n

(x� y

k

)�

 

�

I

X

n;k

ms

� 1

!

;(21)

where for any functionW and a positive real h, W

h

(x) = h

�1

W (h

�1

x). To study this estimator,

the following assumptions are introduced.

� (VS1) W is a Lipschitz symmetric probability density function with compact support

included in [��; �].

� (VS2) � is three times continuously di�erentiable on ]� 1;1[, monotone increasing and ,

Z

1

0

�(

x

m

� 1)g

m

(x)dx = 0;

max

x2R

j�(x)j+ j�

0

(x)j+ j�

00

(x)j+ j�

000

(x)j

1 + jxj

�

<1:

� (VS3) (b

n

)

n�0

is a decreasing sequence of positive numbers such that lim

n!1

nb

3

n

= 1

and lim

n!1

nb

5

n

= 0.

To keep the derivations simple, these assumptions are stronger than really needed (in particular,

the strict monotonicity can be replaced by a weaker form of local monotonicity; see Von Sachs,

1994). The choice �(x) = x leads to the classical (non-robust) "kernel" estimator. The implicit

de�nition of f

n

(x) as the root of

^

�

n;x

(f

n

(x)) = 0, can be considered as a variant of an M-

estimation procedure. It is shown in Von Sachs (1994) and Janas and Von Sachs (1995) that the

robusti�cation improves the estimate of the spectral density, in presence of contamination by

periodic components (which can be seen as outliers in the frequency domain). The consistency

of this estimator is established for linear processes with exponentially decaying �lter coe�cients

(a

j

= O(�

jjj

), � < 1) in Janas and Von Sachs (1995). The asymptotic normality of the estimator

is obtained only for Gaussian processes (Theorem 3.2, Von Sachs 1994). We will briey sketch

how to exploit Theorem 1 to extend those results to non-necessarily Gaussian linear processes.



14 GILLES FAY, ERIC MOULINES, AND PHILIPPE SOULIER

De�ne

�

2

m

=

Z

1

0

�

2

(

x

m

� 1)g

m

(x)dx;

�

m

=

Z

1

0

x

m

�

0

(

x

m

� 1)g

m

(x)dx;

�

2

W

= (2�)

�1

Z

�

��

W

2

(x)dx:

Proposition 1. Assume (VS1)-(VS3). Assume in addition that

X

j

j

2

ja

j

j <1; jA(e

i!

)j 6= 0; for ! 2 [��; �]

and EjZj

�

<1, with � = 8� _ 8. Then,

p

Kb

n

�

^

f

n

(x)� f

X

(x)

�

L

=)

n!1

N (0; �

2

W

�

2

m

�

�2

m

f

2

X

(x)):

An outline of the proof is given in appendix D. The rate of asymptotic normality is the same

as in the robust case for the usual kernel estimator. Only the constant in the asymptotic variance

will be increased by a factor �

m

=�

2

m

� 1, accounting for the asymptotic loss of e�ciency due to

robusti�cation. Along the same lines, one may generalize the results of Von Sachs (1994) on the

bias and the variance of the estimator.

3.4. Local Polynomial Approximation. The decomposition

�

I

X

n;k

= f(y

k

)

�

I

Z

n;k

+

�

R

n;k

suggests

to smooth the periodogram using a least-square method (see Fan and Gijbels, 1996). The log-

pooled-periodogram admits the following regression model

Y

X

n;k

:= log(

�

I

X

n;k

)�  (m) = l(y

k

) + �

n;k

+ r

n;k

where l(y

k

) := log(f(y

k

)) and �

n;k

:= log(

�

I

Z

n;k

) �  (m) and r

n;k

:= log(1 +

�

R

n;k

=f(y

k

)

�

I

Z

n;k

) is

an asymptotically negligible remainder term. In the local polynomial regression approach, the

unknown regression function l is locally approximated by a polynomial of order p (assuming

that the regression function is (p+ 1)-th times di�erntiable at x). We consider for simplicity a

linear �t. For a given x, approximate l(y) locally by l(y) = a+ b(y�x)+O((y�x)

2

). The local
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regression estimator may be expressed as

^

l

n

(x) =

K

n

X

k=1

~

W

n

((x� y

k

)=b

n

)Y

n;k

;

K

n

(y) =

1

b

n

S

n;2

� b

n

yS

n;1

S

n;0

S

n;2

� S

2

n;1

W (y)

with S

n;j

:=

P

K

n

i=1

W

b

n

(y

k

� x)(y

k

� x)

j

, where W

b

n

is de�ned as in the previous section. This

estimator has been suggested (with m = 1, i.e. without pooling) in an unpublished report by

Fan and Kreutzberger (1995) (see also Fan and Gijbels, 1996, section 6.4.1). It is assumed in

the sequel that

(LPA1)

P

j

j

2

ja

j

j <1 and jA(e

ix

)j 6= 0, for x 2 [��; �],

(LPA2) W is a twice continuously di�erentiable symmetric probability density function and has a

compact support,

(LPA3) nb

n

!1 and b

n

! 0.

Using the results derived above, we may now generalize Theorem 6.4 in Fan and Gijbels (1996).

Proposition 2. Assume (A6), (LPA1-LPA3) and EjZj

�

<1, for � � 2m + 1 and m � 5.

Let b

n

be a sequence such that lim

n!1

nb

5

n

= 0. Then, for each x, 0 < x < �,

p

nb

n

�

^

l

n

(x)� l(x)

�

!

L

N (0;m 

0

(m)�

0

(W )�)(22)

where �

j

=

R

1

�1

t

j

W (t)dt,

�

2

(W ) =

�

2

2

� �

1

�

3

�

0

�

2

� �

2

1

; �

0

(W ) =

R

1

�1

(�

2

� �

1

t)

2

W

2

(t)dt

(�

0

�

2

� �

2

1

)

2

:

Recall that  is the digamma function and note that  

0

(1) = �

2

=6 and (22) in such case

corresponds exactly to the statement of Theorem 6.4 in Fan and Gijbels (1996) (formulated

by these authors only in the Gaussian case). Since m 

0

(m) ! 1, for m large enough, local

polynomial regressor estimator is asymptotically equivalent to the local likelihood smoothed

periodogram estimator, advocated by Fan and Kreutzberger (1995) (see section 6.4.2 in Fan and

Gijbels (1996)), the loss in e�ciency being equal to m 

0

(m). Once again, the pooling has a

positive e�ect on the asymptotic distribution of the estimator.
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4. Proof of Theorem 1

As mentioned after Theorem 1, we only prove the asymptotic normality of S

n

(X;�), which

will follow from the proof of the asymptotic normality of S

n

(Z; �) and from the proof that

T

n

:= S

n

(X;�)�S

n

(Z; �) = o

P

(1). The asymptotic normality is a consequence of Theorem 2 in

Fay and Soulier (1999). We now prove that T

n

= o

P

(1). Denote T

n;k

= �(

�

I

X

n;k

=f(y

k

))��(2�

�

I

Z

n;k

).

A tractable expression for T

n;k

is naturally obtained by a second order Taylor expansion :

�(

�

I

X

n;k

=f

X

(y

k

)) = �(2�

�

I

Z

n;k

) + �

0

(2�

�

I

Z

n;k

)

�

R

n;k

+

1

2

�

00

(2�

�

I

Z

n;k

+ �

n;k

�

R

n;k

)

�

R

2

n;k

where 0 � �

n;k

� 1 and

�

R

n;k

=

�

I

X

n;k

f

X

(y

k

)

� 2�

�

I

Z

n;k

:(23)

Thus we only need to prove the following two lemmas.

Lemma 1. Assume (A1), (A7) and either (S1) or (A6)-(12)-(13) and E [jZ

t

j

�

] < 1 with

� � �

2

_ (�

3

+ 2) _ 8. Then,

E

�

�

�

�

�

K

X

k=1

�

n;k

�

0

(2�

�

I

Z

n;k

)

�

R

n;k

�

�

�

�

�

= o(1):(24)

Lemma 2. Assume (A1),(A7) and either (S1) or (A6), (14) with m > � and E [jZ

t

j

�

] < 1

with � � 6 _ 4� _ ([2m� 2�] + 1). Then,

K

X

k=1

�

n;k

�

00

�

2�

�

I

Z

n;k

+ �

n;k

�

R

n;k

�

�

R

2

n;k

= o

P

(1):(25)

An important tool in proving these lemmas is the following bound for

�

R

n;k

, proved in appendix

B.

Lemma 3. Under Assumption (A7), for any integer p, if E [Z

2p

0

] <1,

max

1�k�K

E [j

�

R

n;k

j

p

] = O(n

�p=2

):(26)
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Unfortunately, this bound cannot be improved, even by strengthening assumption (A7), and

is not su�cient to prove Lemma 1, even if for instance �

0

is bounded. In this case, we have

E

�

�

�

K

X

k=1

�

n;k

�

0

(2�

�

I

Z

n;k

)R

n;k

�

�

�

�

K

X

k=1

j�

n;k

jE [jR

n;k

j] = O(n

�1=2

)

K

X

k=1

j�

n;k

j = O(1);

since

P

K

k=1

�

2

n;k

= 1 implies that

P

K

k=1

j�

n;k

j = O(n

1=2

). This latter bound cannot generally be

improved as shown by the trivial example �

n;k

= K

�1=2

for all 1 � k � K. The proof of Lemma

1 is very involved and is postponed to Appendix C.

The proof of Lemma 2 is much simpler. Under assumption (S1), it is straightforward if � = 0.

If � > 0, applying Lemma 3 and H�older inequality, we get

E [j

K

X

k=1

�

n;k

�

00

(2�

�

I

Z

n;k

+ �

n;k

�

R

n;k

)

�

R

2

n;k

j] �

p

K max

1�k�K

�

E

1=2

[ (2�

�

I

Z

n;k

)

2�

]E

1=2

[

�

R

4

n;k

] + E [j

�

R

n;k

j

�+2

]

�

= O(n

�1

);

provided Z

0

has �nite moments up to the order 4� _ 8.

Under assumption (S2), � might be singular at zero, and this induces some more technicalities

and necessitates Assumption (A6). Under assumptions (A7) and (A6), for all n � 2r (where

r is de�ned in assumption (A6)), it holds that P(

�

I

Z

n;k

> 0) = P(

�

I

X

n;k

> 0) = 1. Thus

�

U

n;k

=

�

R

n;k

=(2�

�

I

Z

n;k

) is well de�ned and we have the following lemma, proved in appendix B.

Lemma 4. Assume (A7), (A6), E [Z

6

0

] <1 and m � 1. Then,

max

1�k�K

j

�

U

n;k

j = o

P

(1):

Denote 


n

= fmax

1�k�K

j

�

U

n;k

j � 1=2g. Lemma 4 implies that P(


n

) = 1, thus it is su�cient

to prove Lemma 1 on 


n

. On that event, it holds that

2�

�

I

Z

n;k

=2 � 2�

�

I

Z

n;k

+ �

n;k

�

R

n;k

� 6�

�

I

Z

n;k

=2:
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Applying (14), we get

j�

00

(2�

�

I

Z

n;k

+ �

n;k

�

R

n;k

)j1




n

� C(j

�

I

Z

n;k

j

�

+ j

�

I

Z

n;k

j

��

);

�

�

E

�

K

X

k=1

�

n;k

�

00

(2�

�

I

Z

n;k

+ �

n;k

�

R

n;k

)

�

R

2

n;k

1




n

�

�

�

� C

p

n max

1�k�K

E

1=2

[

�

R

4

n;k

]E

1=2

[(

�

I

Z

n;k

)

2�

+ (

�

I

Z

n;k

)

�2�

]:

Provided E [jZ

0

j

4�

< 1, E [(

�

I

Z

n;k

)

2�

] is uniformly bounded. To conclude, we must prove that

E [(

�

I

Z

n;k

)

�2�

] is also uniformly bounded. The following Lemma is a consequence of Lemma 7 in

appendix A.

Lemma 5. Let  > 0 and let m and � be two integers such that m >  and � > 2m � 2.

Under Assumption (A6), if E [jZj

�

] <1, then there exists an integer n

0

� 2m, which depends

only on the distribution of Z

0

such that

max

n�n

0

max

1�k�K

E [(

�

I

Z

n;k

)

�

] <1

Applying Lemmas 3 and 5 yields

E

�

K

X

k=1

�

n;k

�

00

(2�

�

I

Z

n;k

+ �

n;k

�

R

n;k

)

�

R

2

n;k

1




n

�

= O(n

�1=2

):

This concludes the proof of Lemma 2 and Theorem 1.

Appendix A. Edgeworth expansions

The Lemmas needed to prove Theorem 1 make use of the technique of Edgeworth expansions.

In this section, we briey sketched the main notations and results that are required in the sequel.

We follow Battacharya and Rao (1976) and G�otze and Hipp (1978).

De�ne, for any q-tuple k = (k(1); � � � ; k(q)), k(i) 2 f1; � � � ;Kg, k(i) 6= k(j) for all i; j 2

f1; � � � ; qg,

W

n

(k) = (2=n)

1=2

n

X

j=1

Z

j

[cos(x

k(1)

j); sin(x

k(1)

j); � � � ; cos(x

k(q)

j); sin(x

k(q)

j)]

T

:(27)
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Let �

r

denote the cumulant of order r of Z

1

. For any 2q-uplet of non-negative integers

� := (�(1); �(2); � � � ; �(2q)), let j�j :=

P

2q

i=1

�(i) and �! = �(1)! � � � �(2q)!. De�ne the average

cumulant of order � as

�

n;�

(k) := 2

j�j=2

n

�1

cum(

n

X

t=1

Z

t

cos(x

k(1)

t)

| {z }

�(1)times

; � � � ;

n

X

t=1

Z

t

sin(x

k(q)

t)

| {z }

�(2q)

times);

= 2

j�j=2

�

j�j

n

�1

n

X

t=1

cos

�(1)

(x

k(1)

t) sin

�(2)

(x

k(1)

t) � � � sin

�(2q�1)

(x

k(q)

t) cos

�(2q)

(x

k(q)

t):

It is important to note that �

n;�

(k) is bounded uniformly with respect to k. For all k, the latter

equation implies that j�

n;�

(k)j � 2

�=2

�

j

�j. Denote �

n

(k) := (�

n;�

(k))

�2N

2q
and

P

r

(x; �

n

(k)) =

r

X

u=1

1

u!

X

�

u;r

�

n;�

1

(k) � � ��

n;�

u

(k)

�

1

! � � � �

u

!

H

�

1

+���+�

u

(x)(28)

where

P

�

u;r

extends over all u-uplets (�

1

; : : : ;�

u

) of (2q)-uplets �

i

, 1 � i � u verifying the two

properties

3 � j�

i

j and

u

X

k=1

(j�

k

j � 2) = r:

and for any 2q-uplets of integers � = (�(1); � � � ; �(2q)), H

�

is the multi-dimensional Hermite

polynomial of order �, de�ned as

H

�

(x) = H

�(1)

(x

1

) � � �H

�(2q)

(x

2q

);

H

i

denoting the i-th scalar Hermite polynomial.

Let d be a positive integer, and let (k

1

; � � � ; k

d

) be a d-tuple of pairwise distinct integers

(k

i

2 f1; � � � ;Kg, k

i

6= k

j

, for all i; j 2 f1; � � � ; dg). Denote

k := [m(k

1

� 1) + 1; � � � ;mk

1

; � � � ;m(k

d

� 1) + 1; � � � ;mk

d

]:(29)
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Let � denote a standard 2dm-dimensional Gaussian vector. For a function � : R

2dm

! C such

that E [�

2

(�)] <1, de�ne, for r; u 2 N,

E

r;k

(�) = E [P

r

(�; �

n

(k))�(�)];(30)

Q

u;k

(�) =

u

X

r=0

n

�r=2

E

r;k

(�):(31)

Q

u;k

(�) is the u-th order Edgeworth expansion of the moment E [W

n

(k)]. Since �

n

(k) is bounded

with respect to k, we also have the following uniform bound for E

r;k

.

jE

r;k

(�)j � C

r

E

1=2

[�

2

(�)]:(32)

In order to obtain conditions upon which the error E [�(W

n

(k)]�Q

u;k

(�) is controlled, we need

to de�ne some functional spaces. Denote C

q

(R

a

) the set of all functions on R

a

with continuous

derivative of order q. For an a-tuple of integers � = (�(1); � � � ; �(a)), denoteD

�

= @

�(1)

x

1

� � � @

�(a)

x

a

.

For � 2 N, and any measurable function  on R

a

, de�ne

N

a;�

( ) =

Z

R

a

j (x)j(1 + jxj)

��

dx;

M

a;�

( ) = sup

x2R

a

j (x)j

1 + jxj

�

:

Finally, for �; r 2 N, let S

r

�

(R

a

) be the subspace of C

r

(R

a

) such that for all d-tuples of integers

that satisfy �(1) + � � � + �(a) � r, M

a;�

(D

�

 ) <1, for  2 S

r

�

(R

a

), de�ne

~

M

a;�;r

( ) = max

�(1)+���+�(a)�r

M

a;�

(D

�

 ):

Lemma 6. (BR) If (A6) holds and if there exists u 2 N

�

such that N

2md;u+2

(�) < 1 and

E [jZ

0

j

u+2

] <1, then

max

1�k�K

jE [�(W

n

(k)] �Q

u;k

(�)j � n

�u=2

�

n

N

2md;u+2

(�);(33)

(GH) If there exist positive integers u; p such that E [jZ

0

j

u+2

] <1, � 2 S

r

�

(R

2dm

), then

max

1�k�K

jE [�(W

n

(k)]�Q

u;k

(�)j � n

�u=2

�

n

~

M

2md;�;r

(�) + C

~

M

2md;�;r

(�)n

�(r+2dm+1)=2

;(34)

where, in both cases, (�

n

)

n2N

is a sequence (depending only on the distribution of Z

0

, d and m)

such that lim

n!1

�

n

= 0.
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Remarks.

� (BR) is a consequence of Theorem 19.7 of Battacharya and Rao (1976). (GH) is implied

by Theorem 3.17 of Gotze and Hipp (1978). In that case, (A6) is not required, thus the

result applies even when the probability distribution of Z

0

has a discrete support.

� As noted by Chen and Hannan (1980), Theorem 19.7 of Bhattacharya and Rao (1976)

applies for normalized sums of i.i.d sequences, but not for triangular arrays. However, they

proved for their Lemma 1 that the conclusion of Theorem 19.7 in Bhattacharya and Rao

(1976) still holds in our case, upon replacing the cumulants by the averaged cumulants.

We now derive some consequences of Lemma 6. In the case of a Gaussian white noise, since the

sequence 2�

�

I

Z

n;k

, 1 � k � K is i.i.d. �(m; 1), a positive fonction � satis�es either E [�(2�

�

I

Z

n;k

)] =

1 or E [�(2�

�

I

Z

n;k

)] is uniformly bounded with respect to n and k. In the non Gaussian case,

if � is polynomially bounded, then E [�(2�

�

I

Z

n;k

)] is uniformly bounded with respect to n and k

under a relevant moment condition on Z

0

. If � has singularity, then nothing can be said in full

generality, and for a given n and k, E [�(2�

�

I

Z

n;k

)] may not even exist. Under assumption (A6),

and under an integrability condition such as (10), E [�(2�

�

I

Z

n;k

)] can be proved to be �nite and

uniformly bounded, for large enough n.

Lemma 7. Let m � 1 and s � 3 be integers and let � be a function such that (10) holds

i.e.

R

R

2m

j�(jxj

2

)j(1 + jxj)

�s

dx <1. Under assumption (A6), if E [jZ

0

j

s

] <1, then there exists

an integer n

0

� 2m which depends only on the distribution of Z

0

, m and s such that for all

n � n

0

,

max

1�k�K

E [j�(

�

I

Z

n;k

)j] � C

�

E

1=2

[�

2

(j�j

2

=2)] +N

2m;s

(�)

�

;(35)

max

1�k�K

�

�

E [�(

�

I

Z

n;k

)]� E [�(�)]

�

�

� O(n

�1

)E

1=2

[�

2

(j�j

2

=2)] + o(n

(s�2)=2

)N

2m;s

(�);(36)

where the constant C and the terms O(n

�1

) and o(n

(s�2)=2

) depend only on the distribution of

Z

0

, m and s but not on �.
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Lemma 7 is a straightforward consequence of Lemma 6 (BR) and of the bound (32). Lemma

7 implies Lemma 5 in section 4 and the following Lemma which is used in the proof of Lemma

4 in section B.

Lemma 8. Assume (A6) and E [Z

6

0

] <1. Then, for all � 2 [0; 1],

max

1�j�K

P(

�

I

Z

n;j

� �) �

�

m

m!

+O(n

�2

);

where the term O(n

�1

) depends only on m and on the distribution of Z

0

, and is uniform with

respect to � in [0; 1].

Lemma 9. Let p, q, s be positive integers with s � 3 and let T : R

2q

! R be a measurable

function. Assume that E [jZ

0

j

s+p

] <1 and that one of the following assumptions hold.

� (BR) (A6) holds and N

2q;s

(T ) <1.

� (GH) There exists an integer r � 2 such that T 2 S

r

s

(R

2q

).

Then, max

k

max

t

jE [T (W

n

(k))Z

t

]� E [T (�)] E [Z

t

]j = O(n

�1=2

),

where max

k

is the maximum over all the q-uplets k = (k

1

; : : : ; k

q

) of pairwise distinct integers

in f1; : : : ;Kg, max

t

is the maximum over all p-uplets of (not necessarily distinct) integers

t = (t

1

; � � � ; t

p

), 1 � t

i

� n and Z

t

:= Z

t

1

� � �Z

t

p

and, as usual, � denotes a 2q dimensional

standard Gaussian vector.

Proof of Lemma 9. Write W

n

(k) =

~

W

n

(k) + Y

n

(k) with

~

W

n

(k) = (2�n)

�1=2

X

t2f1;��� ;Kgnft

1

;��� ;t

p

g

Z

t

[cos(x

k

1

t); sin(x

k

1

t); : : : ; cos(x

k

q

t); sin(x

q

t)]

T

Y

n

(k) = (2�n)

�1=2

X

t2ft

1

;��� ;t

p

g

Z

t

[cos(x

k

1

t); sin(x

k

1

t); : : : ; cos(x

k

q

t); sin(x

k

q

t)]

T

:

De�ne  (x) = E [T (x + �)] and G

n

(x) = E [T (x +

~

W

n

(k))] �  (x). Under the assumptions of

Lemma 9,  and G

n

are well de�ned and E [j (Y

n

(k))Z

t

j] < 1 and E [jG

n

(Y

n

(k))Z

t

j] < 1.
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Moreover, with these notations, E [T (�)] E [Z

t

] =  (0)E [Z

t

]. Thus, we get

E [T (W

n

(k)Z

t

] = E [E [T (W

n

(k))jZ

t

]Z

t

] = E [ (Y

n

(k))Z

t

] + E [G

n

(Y

n

(k))Z

t

]

=  (0) E [Z

t

] + E [f (Y

n

(k))�  (0)gZ

t

] + E [G

n

(Y

n

(k))Z

t

]:

The assumptions of Lemma 9 also imply that  is continuously di�erentiable and there exists a

constant C(T ) such that j (x)j+j 

0

(x)j � C(T )(1+jxj)

s

. In order to avoid assuming unnecessary

moment condition on Z

0

, we use the following trick. Note that for all u,

j (u) �  (0)j = j (u)�  (0)j1

fjuj�1g

+ j (u) �  (0)j1

fjuj�1g

� C(T )(1 + juj)

s

juj1

fjuj�1g

+ 2C(T )(1 + juj)

s

1

fjuj�1g

� 2

s+1

C(T )(juj+ juj

s

):

Using brutally the mean value theorem yields the bound C(T )juj(1+ juj)

s

, which would increase

the required number of moments for Z

0

. We now trivially have

jE [( (Y

n

(k))�  (0))Z

t

]j � CE [(jY

n

(k)j + jY

n

(k)j

s

)jZ

t

j] = O(n

�1=2

);

provided Z

0

has s+ p moments.

To bound E [G

n

(Y

n

(k))Z

t

], we must �rst check the validity of an Edgeworth expansion of

G

n

(x) = E [T (x +

~

W

n

(k))] :

G

n

(x) =

s�2

X

r=0

n

�r=2

~

E

r;k

[T (x+ :)] + o(n

�(s�2)=2

)R

s;T

(x):

Two problem arise. The �rst problem is that the validity of an Edgeworth expansion has been

proved only for W

n

(k) and not for

~

W

n

(k). Nevertheless, the arguments of Chen and Hannan

(1980) still apply. It is also necessary to obtain a bound for the terms

~

E

r;k

. The di�erence

between W

n

(k) and

~

W

n

(k) is that the covariance matrix, say

~

�

n

, of

~

W

n

(k) is not the identity

matrix. Instead, it writes

~

�

n

= J

2q

+�

n

, where the entries of �

n

are uniformly O(n

1

). Since

q is �xed, it is then easily seen that for any function � that satis�es assumption (BR) or (GH)

�

�
~

E

r;k

[�]

�

�

� C(�) where C(�) is the relevant norm for �. The second one, which is easily solved,

is to give a bound for the remainder term R

s;T

(x). Under the assumptions of lemma 9, it is

easily checked that jR

s;T

(x)j � C(T )(1+ jxj)

s

. Thus, we get, noting moreover that by de�nition
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of T , E

0;k

[T (x+ :)] = 0,

E [G

n

(Y

n

(k))Z

t

] =

s�2

X

r=1

n

�r=2

E [E

r;k

[T (Y

n

(k) + :)]Z

t

] + o(n

�(s�2)=2

)E [R

s;T

(Y

n

(k)Z

t

]:

Under the assumptions of lemma 9, it is also easily checked that for any polynomial P : R

2q

! R,

E

0

[P (�)T (x+ �)] � C(P )(1 + jxj)

s

. Thus

�

�

E

r;k

[T (Y

n

(k) + :)]Z

t

]

�

�

� CE [(1 + jY

n

(k)j)

s

Z

t

] <1;

�

�

E [R

s;T

(Y

n

(k)Z

t

]

�

�

� E [(1 + jY

n

(k)j)

s

Z

t

] <1:

provided E [jZ

0

j

p+s

] < 1, and the bounds are uniform with respect to n and k � K. This

concludes the proof of Lemma 9.

Appendix B. Bounds related to the Bartlett decomposition

In this section, we bound the error incurred by the approximation of the periodogram of a

linear process by the pseudo-periodogram. Most of the material in this section is standard (cf.

Walker, 1965).

Denote r

n

(x) := d

X

n

(x) � A(e

ix

)d

Z

n

(x). Following Walker (1965), r

n

(x) may be expressed as

r

n

(x) = r

(1)

n

(x) + r

(2)

n

(x), with for l = 1; 2,

r

(l)

n

(x) := (�1)

l

(2�n)

�1=2

1

X

u=�1

a

u

e

�iux

Z

(l)

n;u

(x)(37)

where

Z

(l)

n;u

(x) =

X

v2I

(l)

n;u

Z

v

e

�ivx

;(38)

I

(1)

n;u

:= f(1 � u); � � � ; (n� u)g \ f1; � � � ; ng

c

:(39)

I

(2)

n;u

:= f1; � � � ; ng n (f(1 � u); � � � ; (n� u)g \ f1; � � � ; ng):(40)

Note that I

(1)

n;u

� f1; � � � ; ng and I

(2)

n;u

� f1; � � � ; ng

c

, and #[I

(1)

n;u

] = #[I

(2)

n;u

] = min(n; juj). The

following result is a straightforward adaptation of Theorems 2 and 2a in Walker (1965).
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Lemma 10. Assume

P

j

jjj

1=2

ja

j

j <1 and E jZj

p

<1 for some p � 2. Then,

max

0�x�2�

E [jd

Z

n

(x)j

p

] = O(1);(41)

max

0�x�2�

E [jr

(l)

n

(x)j

p

] = O(n

�p=2

); l = 1; 2(42)

Assume

P

j

jjj

1=4+�

ja

j

j <1, for some � > 0. Then,

E [ max

1�k�n

jr

(l)

n

(x

k

)j] = O(n

��

); l = 1; 2:(43)

Proof Lemma 10. Eq. (41) is a direct consequence of Rosenthal inequality (see, e.g. , Petrov,

1985, Theorem 2.9). This inequality also implies

max

x2[0;�]

E jZ

(l)

n;u

(x)j

p

� c(p)min(n; juj)

p=2

:

Minkowski inequality yields, for l = 1; 2,

max

x2[0;�]

(E jr

(l)

n

(x)j

p

)

1=p

� cn

�1=2

1

X

u=�1

ja

u

jmin(n; juj)

1=2

= O(n

�1=2

):

which proves (42). Let u < v, u; v 2 N. We have

�

�

�

v

X

t=u+1

Z

t

e

�ikx

�

�

�

2

=

(v�u)�1

X

�=�(v�u)+1

e

�i�x

v�j� j

X

t=u

Z

t

Z

t+j� j

�

(v�u)�1

X

�=�(v�u)+1

�

�

�

v�j� j

X

t=u+1

Z

t

Z

t+j� j

�

�

�

;

E

h

max

1�k�n

�

�

�

v

X

t=u+1

Z

t

e

�ikx

�

�

�

2

i

� E

h

v

X

t=u+1

Z

2

t

i

+ 2

(v�u)�1

X

�=1

E

h�

v�j� j

X

t=u

Z

t

Z

t+j� j

�

2

i

1=2

� c(v � u)

3=2

:

This yields E [max

1�k�n

j

P

v

t=u+1

Z

t

e

�ikx

j] � c(v � u)

3=4

and

E [ max

1�k�n

jZ

(l)

n;u

(x

k

)] � cmin(n; juj)

3=4

; l = 1; 2:

Plugging this expression in (37) �nally gives

E [ max

1�k�n

jr

(l)

n

(x

k

)j] � cn

�1=2

X

juj�n

juj

3=4

ja

u

j+ n

1=4

X

juj>n

ja

u

j;

� cn

��

X

u

juj

1=4+�

ja

u

j:

which concludes the proof of (43).
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De�ne R

n

(x) := I

X

n

(x)� jA(e

ix

)j

2

I

Z

n

(x) and

�

R

n;k

:=

P

l2J

k

R

n

(x

l

)=(2�f

X

(y

k

)). We have

R

n

(x) = 2Re

�

A(e

ix

)d

Z

n

(x)r

n

(x)

�

+ jr

n

(x)j

2

;

�

R

n;k

=

1

2�f

X

(y

k

)

X

l2J

k

R

n;l

+

X

l2J

k

f

X

(x

k

)� f

X

(y

k

)

f

X

(y

k

)

I

Z

n;k

:

Decompose

�

R

n;k

=

P

4

j=1

�

R

(j)

n;k

, with

�

R

(l)

n;k

= 2

X

l2J

k

Re

�

d

Z

n;l

r

(j)

n;l

A(e

ix

l

)

�

=(2�f

X

(y

k

)); l = 1; 2:(44)

�

R

(3)

n;k

=

X

l2J

k

jr

n;l

j

2

=(2�f

X

(y

k

));(45)

�

R

(4)

n;k

=

X

l2J

k

f

�1

X

(y

k

)(f

X

(x

l

)� f

X

(y

k

))

�

I

Z

n;l

:(46)

Lemma 11. Assume (A7) and EZ

2p

<1 that

max

1�k�K

E [j

�

R

(l)

n;k

j

p

] = O(n

�p=2

); j = 1; 2;(47)

max

1�k�K

E [j

�

R

(3)

n;k

j

p

] = O(n

�p

);(48)

max

1�k�K

E [j

�

R

(4)

n;k

j

p

] = O(n

�p(�^1)

):(49)

The proof of (47) and (48) is a straightforward application of Lemma 10 and do not need

assumption (A7) in its full strength. To prove, (49), note that, under (A7), it holds that

jf

X

(x)� f

X

(y)j � Cjx� yj

�^1

for all x; y and thus

max

1�k�K

max

l2J

k

jf

X

(x

l

)� f

X

(y

k

)j=f

X

(y

k

) = O(n

��^1

):(50)

Since E [(

�

I

Z

n;k

)

p

] is uniformly bounded provided E [Z

2p

0

] <1, (49) holds.

Proof of Lemma 4. Write U

n;k

= U

(1)

n;k

+ U

(2)

n;k

with

U

(1)

n;k

=

P

l2J

k

2Re

�

d

Z

n

(x

l

)A(e

ix

l

)r

n

(x

l

)

�

+ jr

n

(x

l

)j

2

(2�)f

X

(y

k

)

�

I

Z

n;k

U

(2)

n;k

=

1

f

X

(y

k

)

X

l2J

k

I

Z

n;l

�

I

Z

n;k

(f

X

(x

l

)� f

X

(y

k

))
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Under (A7), A(e

ix

) (and f

X

(x)) are bounded and bounded away from zero. Applying Cauchy-

Schwarz inequality, we get,

�

�

�

U

(1)

n;k

�

�

�

� C(

n;k

+ 

2

n;k

);with 

n;k

=

�

�

I

Z

n;k

�

�1=2

max

1�l�n

jr

n

(x

l

)j:(51)

Let (M

n

)

n2N

be an arbitrary sequence of positive numbers. We have

P( max

1�k�K

j

n;k

j � �) � P

�

min

1�k�K

�

I

Z

n;k

�

M

2

n

�

2

�

+ P( max

1�l�n

jr

n

(x

l

)j �M

n

);

�

K

X

k=1

P(

�

I

Z

n;k

�

M

2

n

�

2

) + P( max

1�l�n

jr

n

(x

l

)j �M

n

):

Under Assumption (A7), Lemma 10 Eq. (43) yields E [max

1�l�n

jr

n

(x

l

)j] = O(n

�1=2��

). Lemma

8 and Markov inequality yield

P( max

1�k�K

j

n;k

j � �) � c

n

nM

2m

n

�

�2m

+O(n

�1

) +M

�1

n

n

�1=2��

o

Setting M

n

= n

�1=2��

yields, for all m � 1, lim

n!1

P(max

1�k�K

j

n;k

j � �) = 0. (51) �nally

implies that max

1�k�K

jU

(1)

n;k

j = o

P

(1). U

(2)

n;j

is a convex combination of (f

X

(x

l

)�f

X

(y

k

))=f

X

(y

k

)

(l 2 J

k

) with non-negative weights I

Z

n;l

, thus, (50) yields

max

1�k�K

jU

(2)

n;k

j � max

1�k�K

max

l2J

k

jf

X

(x

l

)� f

X

(y

k

)j=f

X

(y

k

) = O(n

��^1

);

which implies that P(max

1�k�K

U

(2)

n;k

� �) = 0 for all su�ciently large n. This concludes the

proof of Lemma 4.

Appendix C. Proof of Lemma 1

Set �

n;k

:= �

0

(

�

I

Z

n;k

). Under assumption (S1) or assumption (A6), (12) and E [jZ

0

j

�

] < 1

with � � �

2

, there exists a constant C such that, for all su�ciently large n,

max

1�k�K

E

�

�

4

n;k

�

� C:(52)

Recall that

�

R

n;k

=

P

4

j=1

�

R

(j)

n;k

and that under (A7), E [j

�

R

(j)

n;k

j] = o(n

�1=2

), j = 3; 4. Thus for

any reals �

n;k

such that

P

K

k=1

�

2

n;k

= 1, applying H�older inequality, we have

E

�

�

�

�

�

K

X

k=1

�

n;k

�

n;k

(

�

R

(3)

n;k

+

�

R

(4)

n;k

)

�

�

�

�

�

= o(1):
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To bound the terms involving

�

R

(j)

n;k

for j = 1; 2, we must compute E

��

P

K

k=1

�

n;k

�

n;k

(

�

R

(1)

n;k

+

�

R

(2)

n;k

)

�

2

�

. The diagonal terms in the expansion of the square are easily bounded using Lemma

11, (48) and (49)

K

X

k=1

�

2

n;k

E

�

�

2

n;k

(

�

R

(1)

n;k

+

�

R

(2)

n;k

)

2

�

�

K

X

k=1

�

2

n;k

�

E j�

n;k

j

4

�

1=2

�

E j

�

R

(1)

n;k

+

�

R

(2)

n;k

j

4

�

1=2

= O(n

�1

):

Consider now the sum over non-diagonal entries

V

n

=

X

1�k<k

0

�K

�

n;k

�

n;k

0

E

�

�

n;k

�

n;k

0

(

�

R

(1)

n;k

+

�

R

(2)

n;k

)(

�

R

(1)

n;k

0

+

�

R

(2)

n;k

0

)

�

:

If

P

K

k=1

�

2

= 1, then

P

k 6=k

0

�

�

�

n;k

�

n;k

0

�

�

= O(n). Thus, to prove that V

n

= o

P

(1), it is su�cient

to prove that for (i; j) 2 f1; 2g � f1; 2g,

max

1�k 6=k

0

�K

E

�

�

n;k

�

n;k

0

�

R

(i)

n;k

�

R

(j)

n;k

0

�

= o(n

�1

):(53)

Using the expression (44) of

�

R

(j)

n;k

in terms of r

(j)

n;l

, each term

�

R

(i)

n;k

�

R

(j)

n;k

0

writes as the sum of 4m

2

terms typi�ed by

d

Z

n;l

r

(i)

n;l

d

Z

n;l

0

r

(j)

n;l

0

A(e

ix

l

)A(e

ix

l

0

)f

�1

(y

k

)f

�1

(y

k

0

):

Since A and f are bounded and bounded away from zero under (A7) (and are deterministic

functions), (53) will follow from

max

1�k 6=k

0

�K

max

l2J

k

;l

0

2J

k

0

�

�

�

E

�

�

n;k

�

n;k

0

d

Z

n;l

r

(i)

n;l

d

Z

n;l

0

r

(j)

n;l

0

�

�

�

�

= o(n

�1

)(54)

for (i; j) = (1; 2); (1; 1) and (2; 2).

Note that E(r

(1)

n;l

) = 0 and r

(1)

n;l

is independent from �

n;k

; �

n;k

0

; d

Z

n;l

; d

Z

n;l

0

and r

(2)

n;l

0

. Hence, for

all 1 � k < k

0

� K, l 2 J

k

, l

0

2 J

k

0

,

E [�

n;k

�

n;k

0

d

Z

n;l

r

(1)

n;l

d

Z

n;l

0

r

(2)

n;l

0

] = 0;(55)

E [�

n;k

�

n;k

0

d

Z

n;l

r

(1)

n;l

d

Z

n;l

0

r

(1)

n;l

0

] = E [�

n;k

�

n;k

0

d

Z

n;l

d

Z

n;l

0

]E [r

(1)

n;l

r

(1)

n;l

0

]:(56)

(56) and Lemma 10 yield

jE [�

n;k

�

n;k

0

d

Z

n;l

r

(1)

n;l

d

Z

n;l

0

r

(1)

n;l

0

]j � cn

�1

jE [�

n;k

�

n;k

0

d

Z

n;l

d

Z

n;l

0

]j(57)
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This bound is not su�cient to conclude the proof of Lemma 1. We must still prove that

E [�

n;k

�

n;k

0

d

Z

n;l

d

Z

n;l

0

] = o(1), uniformly with respect to k � K.

De�ne, for w = (w

1

; : : : ; w

4m

) 2 R

4m

,

 (w) := �

0

(jw

1

j

2

=2)�

0

(jw

2

j

2

=2)(w

2m

1

�1

+ iw

2m

1

)(w

2m

2

�1

+ iw

2m

2

):(58)

where w

1

= (w

1

; � � � ; w

2m

), w

2

= (w

2m+1

; � � � ; w

4m

), m

1

= l � (k � 1)m, m

2

= l

0

� (k

0

� 2)m.

Set k = [k(m� 1) + 1; � � � ; km; k

0

(m� 1) + 1; k

0

m]. The de�nitions above imply that

 (W

n

(k)) = �

n;k

�

n;k

0

d

Z

n;l

d

Z

n;l

0

:

We now check the validity of an Edgeworth expansion of E [ (W

n

(k)].

� Under (S1), j (w)j � C(1 + jwj

4�+2

). Since E [jZj

4�+2

] < 1, Lemma 6 implies that

Edgeworth expansion of E [ (W

n

(k)] is valid up to order 4�, with a remainder term of

order o(n

�2�

) +O(n

�(2+4m+1)=2

) = o(n

�1=2

).

� Under assumption (13),

R

R

4m

j (w)j(1 + jwj)

��

3

dw < 1. Since E [jZj

�

3

] < 1, Lemma

6 shows that the Edgeworth expansion of E [ (W

n

(k)] is valid up to order �

3

, with a

remainder term of order o(n

�(�

3

�2)=2

) = o(n

�1=2

).

With the notations of Lemma 6, we can thus write, with ~� = 4�+2 under assumption (S1) and

~� = �

3

under assumption (13),

E [ (W

n

(k)] =

~�

X

r=0

E

r;k

( ) + o(n

�1=2

):

It is easily seen that for all r � ~�, max

1�k;k

0

�K

E

r;k

( ) <1, and that

E

0;k

( ) = E

�

�

0

(j�j

2

=2)(�

2m

1

�1

+ i�

2m

1

)

�

E

�

�

0

(j�j

2

=2)(�

2m

2

�1

+ i�

2m

2

)

�

= 0:

Hence, uniformly in k; k

0

2 f1; � � � ;Kg and l; l

0

2 J

k

� J

k

0

,

�

�

E

�

�

n;k

�

n;k

0

d

Z

n;l

d

Z

n;l

0

�

�

�

= O(n

�1=2

):

This �nally implies that E

�

�

n;k

�

n;k

0

d

Z

n;l

0

r

(1)

n;l

d

Z

n;k

0

r

(1)

n;l

0

�

= O(n

�3=2

).
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There now remains to bound the terms E [�

n;k

�

n;l

d

Z

n;l

d

Z

n;l

0

r

(2)

n;l

r

(2)

n;l

0

]. From (40),

E

�

�

n;k

�

n;k

0

d

Z

n;l

r

(2)

n;l

d

Z

n;l

0

r

(2)

n;l

0

�

=

1

2�n

X

u;u

0

a

u

a

v

X

v2I

(2)

n;u

;v

0

2I

(2)

n;u

0

E

�

�

n;k

�

n;k

0

d

Z

n;l

d

Z

n;l

0

Z

v

Z

v

0

�

Applying Lemma 9 with q = 2m, t = (t

1

; t

2

), k = [(k�1)m+1; : : : ; km; (k

0

�1)m+1; : : : ; k

0

m],

 de�ned in (58), r = 2 and s = �

3

, we have,

max

1�k;k

0

�K

max

l2J

k

;l

0

2J

k

0

jE

�

�

n;k

�

n;k

0

d

Z

n;l

d

Z

n;l

0

Z

t

1

Z

t

2

�

� E

0

�

�

n;k

�

n;k

0

d

Z

n;l

d

Z

n;l

0

�

E(Z

t

1

Z

t

2

)j = O(n

�1=2

)

Since E

0

�

�

n;k

�

n;k

0

d

Z

n;l

d

Z

n;l

0

�

= 0, and #[I

(2)

n;u

] = n ^ juj, we get,

X

v2I

(2)

n;u

;v

0

2I

(2)

n;u

E

�

�

n;k

�

n;k

0

d

Z

n;l

d

Z

n;l

0

Z

v

Z

v

0

�

� cn

�1=2

(n ^ juj)(n ^ ju

0

j)

Therefore, under (A7),

�

�

�

E [�

n;k

�

n;k

0

d

Z

n;l

r

(2)

n;l

d

Z

n;l

0

r

(2)

n;l

0

]

�

�

�

� cn

�1

X

u;v

ja

u

jja

v

j

X

v2I

(2)

n;u

;v

0

2I

(2)

n;u

0

�

�

E [�

n;k

�

n;k

0

d

Z

n;l

d

Z

n;l

0

Z

v

Z

v

0

]

�

�

� cn

1=2�2�

X

u2Z

juj

�

ja

u

j = o(n

�1

):

This concludes the proof of Lemma 1.

Appendix D. Proof of Proposition 1

We present an outline of the proof of Proposition 1, which is adapted from Von Sachs (1994)

and Janas and Von Sachs (1995). De�ne �

m;s

(z) = �(z=ms� 1) and

^

�

n;x

(s) =

2�

K

K

X

k=�K

W

b

n

(x� y

k

)�

m;s

(

�

I

X

n;k

);

�

�

n;x

(s) =

2�

K

K

X

k=�K

W

b

n

(x� y

k

)

m

(�

m;s

; f

X

(y

k

));

�

�

x

(s) = 

m

(�

m;s

; f

X

(x))

where



m

(�

m;s

; u) =

Z

�(uz=ms� 1)g

m

(z)dz:
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Note that, under (VS2),

^

�

n;x

(s),

�

�

n;x

(s),

�

�

x

(s) are monotone decreasing. In addition

�

�

x

(f

X

(x)) =

0, i.e. f

X

(x) is a root of the equation

�

�

x

(s) = 0.

The following lemma is repeatedly used in the sequel. The proof is straightforward and is

omitted for brevity.

Lemma 12.

2�

K

K

X

j=0

W

p

b

n

(x� y

j

) = b

�(p�1)

n

Z

R

W

p

(v)dv(1 + o(1)):

If v is twice continuously di�erentiable,

2�

K

K

X

j=0

W

b

n

(x� y

j

)v(y

j

) =

Z

R

W

b

n

(x� y)v(y)dy +O((nb

2

n

)

�1

);

Z

W

b

n

(x� y)v(y)dy � v(x) = O(b

2

n

)

Lemma 13. Assume (VS1)-(VS3) and EjZj

�

< 1, with � = 8� _ 4. Then, for all s 2

(��; �) n f0g,

p

Kb

n

(

^

�

n;x

(s)�

�

�

x

(s)

L

=)

n!1

N

�

0; �

2

W

�

2

m

(�

m;s

; f

X

(x))

�

;(59)

p

Kb

n

(

�

�

n;x

(s)�

�

�

x

(s)) = o(1):(60)

Proof of Lemma 13. : Set �

n;k

:=

�

P

W

2

b

n

(x� y

k

)

�

�1=2

W

b

n

(x� y

k

). It is easily shown that

2�

K

X

k

W

2

b

n

(x� y

k

) = b

�1

n

Z

W

2

(v)dv(1 + o(1)):

Hence, max

k

j�

n;k

j = O((Kb

n

)

�1=2

) = O(�

�1=2

n

), where �

n

= #fk : �

n;k

6= 0g (note that

�

n

' Kb

n

); it follows that assumptions (A1) and (A2) are satis�ed. These results also imply

that

n

�1

X

j�

n;k

�

n;l

j = O(b

n

)

Since, sup

minf

X

(y)�u�max f

X

(y)

C

m

(�

m;s

; u) < 1, assumption (A3) holds. Finally, under the

stated assumptions, y ! �

2

m

(�

m;s

; f

X

(y)) is twice continuously di�erentiable. Lemma 12 implies
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that

K

X

k=0

�

2

n;k

�

2

m

(�

m;s

; f

X

(y

k

)) = �

2

m

(�

m;s

; f

X

(x)) +O(b

2

n

):

and thus assumption (A4) is satis�ed. We may thus apply Theorem 1 to show that

K

X

k=0

�

n;k

�

m;s

(

�

I

X

n;k

)� 

m

(�

m;s

; f

X

(y

k

))

converges in distribution to a zero-mean Gaussian variable with covariance �

2

m

(�

m;s

; f

X

(x)),

showing (59). Eq. (60) is a direct consequence of Lemma 12.

This lemma has the following important corollary

Corollary 1. Assume (VS1)-(VS3). Then,

p

Kb

n

^

�

n;x

(f

X

(x))

L

=)

n!1

N

�

0; �

2

W

�

2

m

�

:(61)

where �

2

m

=

R

�

2

(z=m� 1)g

m

(z)dz.

Since

�

�

x

(s) is monotone decreasing and

�

�

x

(f

X

(x)) = 0,

�

�

x

(s) is strictly positive/negative

for values of s which are strictly smaller/larger than f

X

(x). By Lemma 13, for any 0 < � <

min f

X

(x), we have

^

�

n;x

(f

X

(x)� �)!

P

�

�

x

(f

X

(x)� �) > 0;

^

�

n;x

(f

X

(x) + �)!

P

�

�

x

(f

X

(x) + �) < 0;

Since

^

�

n;x

(s) is continuous

lim

n!1

P (9

^

f

n;X

(x) 2 [f

X

(x)� �; f

X

(x) + �];

^

�

n;x

(

^

f

n;X

(x)) = 0) = 1:

Since

^

�

n;x

(s) is monotone decreasing this root (when it exists) is unique. We may thus conclude

from this discussion that the equation

^

�

n;x

(s) = 0 has, with a probability tending to 1 as n!1

a solution denoted

^

f

n;X

(x), and that these solutions (for di�erent values n) form a consistent

sequence of estimators of the spectral density f

X

(x). To prove that these estimators (properly
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normalized) have a limiting distribution, we follow the classical pattern of proof, consisting in

linearizing the estimation equation around f

X

(x). By the mean value theorem, we have

0 =

^

�

n;x

(

^

f

n;X

(x)) =

^

�

n;x

(f

X

(x)) ��

n;x

(

^

f

n;X

(x)� f

X

(x))(62)

where

�

n;x

= (2�=K)

K

X

j=0

W

b

n

(x� y

j

)�

0

 

�

I

n;j

mf

�

j

� 1

!

�

I

n;j

mf

�

j

2

where f

�

j

= f

X

(x) + �

j

�

^

f

n;X

(x)� f

X

(x)

�

; �

j

2 [0; 1]. The weak consistency of

^

f

n;X

(x) implies

that sup

j

�

�

�

f

�

j

� f

X

(x)

�

�

�

= o

P

(1). Using Theorem 1 with  

m;s

(x) = x�

0

(x=s� 1) implies

�

n;x

=

�

m

f

X

(x)

+ o

P

(1):(63)

Proposition 1 follows from Eq. (62), and (63).

Remark: It is suggested in Von Sachs (1994) that a use of a data taper may be bene�cial. The

results in Theorem 1 can be adapted to cover that case, under basically the same assumptions

(on the data taper) needed to prove Theorem 3.2 (Von Sachs, 1994).
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