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Abstract

An asset is considered whose logarithmic price is the sum of a drift

term, a Brownian motion and jumps of a Poisson process. The optimal

attainable wealth of both informed and uninformed agents are compared.

Various items of future information about the price process are considered

available to the informed agent. Detailed analysis is made of the case where

the informed agent knows the total number of jumps.
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1 The model

We study a market where are traded

� a riskless asset

� a risky asset.

We assume that the riskless asset has a zero return rate so S

0

t

= 1; 8t � 0. The

dynamics of the risky asset are given by the equation

dS

t

= S

t�

(�dt+ �dW

t

+ �dM

t

) (1.1)

Here W = (W

t

; t � 0) is a Brownian motion and (M

t

; t � 0) is the compensated

martingale of a Poisson process, i.e., M

t

= N

t

� �t where the intensity of the

�
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Poisson process N is assumed to be a constant � > 0. We recall that M and

W are independent, as are any pair of BM and PP on the same �ltered space.

The coe�cients �; �; � are constants and � > �1 in order that the price remains

non-negative.

The solution of (1.1) is

S

t

= S

0

exp(�t) exp(�W

t

�

�

2

2

t+N

t

ln(1 + �)� ��t) : (1.2)

This market is incomplete and, in general, the uninformed agent must consider

a range of viable prices for any non-hedgeable contingent claim �, i.e., consider

all the set of expectations E

Q

(�) of the terminal payo� under any equivalent

martingale measure Q. This set is an interval and is is quite large in general. For

example, denoting by BS(t; x) the Black and Scholes function

BS(t; x)

def

= E((X

T

�K)

+

jX

t

= x)

where dX

t

= X

t

�dW

t

, it is proved in [1] that, for a European option, the range of

viable prices is the open interval ]BS(t; S

t

); S

t

[.

Write (F

t

; 0 � t � T ) for the complete, right continuous �ltration generated by

S; this is the same as the �ltration generated by W and M .

Let us now consider, as in [4] [6] [9] among others, an informed agent who,

from time 0, knows, for example, any one of the following pieces of information :

1. The number of jumps over the interval [0; T ], i.e., N

T

;

2. The times when the jumps occur, i.e., (N

s

; s � T );

3. The path trajectory of the B.M., i.e., (W

s

; s � T );

4. The terminal value of the Brownian motion W , i.e., W

T

;

5. The terminal value of the underlying asset, i.e., S

T

;

6. Any F

T

random variable �.

We do not claim that this model is a "real world" model. We just try to under-

stand better the nature of inside information, modeled as an enlarged �ltration.

As was noted in [4] [6] [9], in an incomplete market, when the informed agent

knows any hedgeable F

T

random variable, there does not exist an equivalent prob-

ability measure for the informed agent. From a �nancial point of view, this is

obvious; the informed agent knows the price of the hedgeable � contingent claim

and he immediately obtains an arbitrage opportunity. This arbitrage opportunity

is revealed only at maturity, in the case where � is not included in F

t

for t < T

(for example � = S

T

). Therefore, the optimization problem for such an informed

agent has no solution.

In [6], the authors study a smaller enlargement of the �ltration, as the market

is driven by two Brownian noises, and the informed agent knows only the terminal
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value of one of the BM. More precisely, they assume that the dynamics of the price

are given by :

dS

t

= S

t

(�

t

dt+ �

1

(t)dW

1

(t) + �

2

(t)dW

2

(t))

and the informed agent knows W

1

(T ), which is not hedgeable. The �ltration is

the �ltration generated by the two BM. They conclude that, if �

i

; i = 1; 2 are

deterministic functions, the non-informed agent and the informed one assign the

same price to contingent claims of the form h(S

T

), which are hedgeable for any h.

This is obvious if one notes that for the uninformed agent

dS

t

= S

t

[�

t

dt+ �

1

(t)dW

1

(t) + �

2

(t)dW

2

(t)] = S

t

[�

t

dt + �

3

(t)dW

3

(t)]

where W

3

is a F

t

-Brownian motion. Therefore, the market is complete if we con-

sider only contingent claims measurable with respect to �(S

t

; t � T ). Moreover,

in the �ltration F

�

t

def

= F

t

_ �(W

1

(T )), the process

W

�

1

(t)

def

= W

1

(t)�

Z

t

0

W

1

(T )�W

1

(s)

T � s

ds

def

= W

1

(t)�

Z

t

0

�

s

ds

is a Brownian motion. For the informed agent

dS

t

= S

t

[(�

t

+ �

1

(t)�

t

)dt+ �

1

(t)dW

�

1

(t) + �

2

(t)dW

2

(t)]

= S

t

[ (�

t

+ �

1

(t)�

t

)dt+ �

3

(t)dW

�

3

(t)] :

Therefore, under the risk neutral probability for the uninformed agent dS

t

=

S

t

�

3

(t)d

~

W

t

and for the informed agent, under the appropriate risk neutral proba-

bility, which is proved to exist, dS

t

= S

t

�

3

(t)d

~

W

�

t

. The dynamics of the price are

the same, and the prices are equal. This does not remain true if the coe�cients �

are stochastic, except in the case where they are of the form �

t

= �(t; S

t

).

1.1 Some particular cases

In this section, we assume that � 6= 0 and � 6= 0.

� In case 2, for the informed agent, the value of the underlying risky asset is log-

normal with known jumps at known times. These jumps a�ect the return of the

risky asset. If F

2

t

def

= �(W

s

; s � t; N

s

; s � T ), any (F

2

t

) martingale is a stochas-

tic integral with respect to the Brownian motion W and is continuous; since S

is discontinuous, there does not exist an equivalent martingale measure. This is

obvious from a �nancial point of view: the arbitrage opportunity comes from the

knowledge of the times of jumps, and from the fact that the agent knows if the

jump is a positive or a negative one. In the case of positive jumps, the agent

can buy low before and sell high after the jump. In the particular case N

T

= 0,
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we are reduced to the study of case 1, which will be discussed in sections 2, 3 and 4.

� In case 3, let F

4

t

def

= �(W

s

; s � T;N

s

; s � t). If there were an equivalent

martingale measure for the informed agent, the dynamics of the price would be

of the form dS

t

= S

t�

�d

f

M

�

(t), where

f

M

�

(t) is a compensated martingale. Under

the historical probability the drift part would be a �nite variation process, which

is not the case. In the case of positive jumps, the informed agent would be able

to know the in�mum m of S

0

exp(�t) exp(�W

t

�

�

2

2

t� ��t). Therefore, he knows

that S

t

� m(1 + �)

N

t

and he can buy at the last lowest price before T and sell at

a high.

Similarly, in case �1 < � < 0, the informed agent knows the supremum M of

S

0

exp(�t) exp(�W

t

�

�

2

2

t���t). Suppose this occurs at t

�

. Then, for t

�

< t < T ,

S

t

�M(1 + �)

N

t

� S

t

�

(1 + �)

N

t

�N

t

�

� S

t

�

:

Therefore, the informed agent knows he should sell at time t

�

and buy at any later

time.

� In case 4 we suppose the informed agent knowsW

T

. WriteK = S

0

e

�T

exp(�W

T

�

�

2

2

T � ��T ). Then S

T

= K(1 + �)

N

T

. Suppose � > 0, then S

T

� K. Write

A = f! : inf

0�t�T

S

t

(!) < Kg. Then P (A) > 0. If ! 2 A and S

t

�

(!) < K,

the informed agent would buy at time t

�

and sell at T ; consequently, there is an

arbitrage opportunity.

Suppose � < 0, then S

T

� K. Write B = f! : sup

0�t�T

S

t

(!) > Kg. Then

P (B) > 0. If ! 2 B and S

t

�

> K, the informed agent would sell the asset at time

t

�

and buy at T ; again there is an arbitrage opportunity.

� In case 5, there is obviously an arbitrage opportunity on the interval [0; T ], but

there are no arbitrage opportunities on [0; t] with t < T . This case is studied in

[4], as well as case 6.

2 Poisson bridge

In the remaining sections of the paper we restrict attention to case 1, that is we

suppose the informed agent knows N

T

from time 0. Denote by (F

t

) the �ltration

generated by the price of the risky asset

F

t

def

= �(S

s

; s � t) = �(W

s

;M

s

; s � t) :

The uninformed agent can use only portfolios which are measurable with respect

to (F

t

). The informed agent will use the enlarged �ltration

F

�

t

def

= F

t

_ �(N

T

) :
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As in [8], [7] we can establish that

M

�

t

def

= N

t

�

Z

t

0

N

T

�N

s

T � s

ds

is an F

�

t

-martingale. Therefore, for the informed agent, the process N is a point

process with the stochastic (F

�

t

)-predictable intensity

�

s

def

=

N

T

�N

s�

T � s

:

This intensity is zero after the (F

�

t

)-stopping time �

�

def

= inffs � T : N

s

= N

T

g.

Therefore

Z

T

0

N

T

�N

s

T � s

ds =

Z

�

�

0

N

T

�N

s

T � s

ds <1; a:s:

Note that, for the informed agent, the jumps occur with a hypergeometric

distribution. For example, if the agent knows that N

T

= 1, the single jump occurs

with a uniform law on [0; T ]. Furthermore, if the agent knows that N

T

= n, as

soon as he (or she) observes the occurence of the nth jump, he (or she) knows

that there are no remaining jumps and the market is complete for him or her.

Consequently, for the informed agent, the dynamics of the price are

dS

t

= S

t�

[�dt+ �(�

t

� �)dt+ �dW

t

+ �dM

�

t

] ;

where

dM

�

t

def

= dM

t

� (�

t

� �)dt = dN

t

� �

t

dt :

3 The set of equivalent martingale measures

3.1 The uninformed agent

It was proved, in [1] and [2] for example, that the set of equivalent martingale

measures is Q = fP




j

dP




dP

j

F

t

= L




t

g where L




t

= L




t�

( 

t

dW

t

+ 


t

dM

t

). In these

formulae, the two predictable processes  and 
 are related by

�+ � 

t

+ ��


t

= 0 ; dP 
 dt:p:s: (3.1)

and the process 
 must satisfy (1 + 


t

) > 0. Note that in the case � = 0, the

existence of 
 requires that

�

��

< 1. In fact, if � > 0 and

�

��

� 1, the risky asset

has a return rate � � �� � 0 = r and the jumps increase the value of this asset.

The arbitrage opportunity is obvious. In what follows, we assume that ���� 6= 0

if � = 0.
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Under P




,

W




(t)

def

= W (t)�

Z

t

0

 

s

ds

is a Brownian motion and

M




(t)

def

= M(t) �

Z

t

0

�


s

ds = N

t

�

Z

t

0

�(1 + 


s

)ds

is a martingale. The dynamics of S, in terms of W




and M




are given by

dS

t

= S

t�

(�dW




t

+ �dM




t

) ;

so

S

t

= S

0

E(�W




)

t

E(�M




)

t

:

Here E(�W




) (resp. E(�M




)) is the Dol�eans-Dade exponential, i.e., the solution

of dX

t

= X

t

�dW




t

; X

0

= 1 (resp. dX

t

= X

t�

�dM




t

; X

0

= 1).

The range of European option prices is the open interval ]BS(t; S

t

); S

t

[.

3.2 The informed agent

3.2.1 Equivalent martingale measures for the informed agent

Recall that for the informed agent,

dS

t

= S

t�

[�dt+ �(�

t

� �)dt+ �dW

t

+ �dM

�

t

]

The pair (W;M

�

) has the predictable representation property. Therefore, if P

�


is

any equivalent martingale measure for the informed agent, the Radon-Nykodym

density of P

�


with respect to P is a P martingale L

�


which admits a represen-

tation of the form

dL

�


t

= L

�


t�

( 

�

t

dW

t

+ 


�

t

dM

�

t

)

The process S is a P

�


-(F

�

t

)-martingale if and only if (SL

�


) is a P -(F

�

t

)-martingale,

which is equivalent to

�+ � 

�

t

� ��+ ��

t

(1 + 


�

t

) = 0 ; dP 
 dt:p:s: (3.2)

Under P

�


, the process (W

�


t

def

= W

t

�

Z

t

0

 

�

s

ds; t � 0) is a Brownian motion and

(M

�


t

= N

t

�

Z

t

0

�

s

(


�

s

+1) ds; t � 0) is a martingale. Unfortunately, the indepen-

dence of these processes is lost under P

�

because  

�

depends on N .

Note that when � = 0 there does not exist a process 
 such that (3.2) is sat-

is�ed, as for t > �

�

, �

t

= 0 and (3.2) reduces to � � �� = 0. We have studied

this case in the previous section, proving that there is an arbitrage. In the case

� � �� 6= 0 we can easily check that there is an arbitrage opportunity: as soon
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as the informed agent knows that there will be no more jumps, the risky asset

is riskless with return rate � � ��. If this return di�ers from the return of the

riskless asset, clearly there is an arbitrage opportunity.

For the informed agent, the price of the underlying asset is, in the general case

dS

t

= S

t�

(�dW

�


t

+ �dM

�


t

) ;

and

S

t

= S

0

E(�W

�


)

t

E(�M

�


)

t

:

3.2.2 Range of prices for the informed agent

De�nition : In the case r = 0, we de�ne the Black-Scholes function BS(t; x) by

BS(t; x) = E( (X

T

�K)

+

jX

t

= x) ; BS(T; x) = (x�K)

+

when the dynamics of X are given by

dX

t

= X

t

� dW

t

; (3.3)

i.e. BS(t; x) = E[(x exp[�

p

T � t U �

1

2

�

2

(T � t)] �K)

+

] where U is a standard

normal random variable.

As in [1], it is easy to establish that the price of a European claim is bounded be-

low by the Black-Scholes function evaluated at the value of the asset, i.e. BS(t; S

t

):

Itô's formula and the PDE satis�ed by BS yield

BS(t; S

t

) = BS(0; S

0

) +

Z

t

0

�

�BS(s; S

s

)�

s

(1 + 


�

s

)

�

ds+ Z

t

:

Here �BS(t; x) = BS(t; x(1 + �))�BS(t; x)� �x

@BS

@x

(t; x) and Z is an F

�

t

mar-

tingale. From the convexity of the Black-Scholes function, E

�


((S

T

� K)

+

) �

BS(0; S

0

). The Black and Scholes price is the lower bound of the range of prices,

as can be seen when 
 goes to �1. As soon as t > �

�

, the range interval is reduced

to the Black-Scholes price, because we have noticed that, after the last jump, the

market is complete for the informed agent.

Before the last jump, the upper bound is equal to the value of the underlying

asset, as shown in [5].

4 Optimisation

4.1 A toy market

We restrict our attention to the simple case of a complete market where

dS

t

= S

t�

[�dt+ �dM

t

]
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and r = 0. We study only the case of the optimisation problem for the uninformed

agent, since the informed agent has an arbitrage opportunity after time �

�

. The

non-arbitrage condition is equivalent to the existence of 
 such that 
 > �1 and

� + ��
 = 0. This implies that

��� �

��

> 0. The unique equivalent martingale

measure Q is de�ned by

dQ

dP

j

F

t

= L

t

where L is the strictly positive martingale

L

t

=

�

��� �

��

�

N

t

exp(t�=�)

which satis�es dL

t

= �L

t�

�

��

dM

t

. Under the measure Q,

~

M

t

def

= M

t

+ t�=� is a

martingale. Suppose �

t

and �

t

are predictable processes representing the portfolio

of the uninformed agent. That is, �

t

is the amount of riskless asset owned at time t

and �

t

is the number of units of S held at time t. The wealth of the investor is then

X

t

= �

t

+ �

t

S

t

. If c

t

� 0 is an adapted process representing the consumption, X

satis�es the self-�nancing condition dX

t

= �

t

dS

t

�c

t

dt = �

t

X

t�

(�dt+�dM

t

)�c

t

dt,

where �

t

= �

t

S

t

=X

t

is the proportion of the wealth invested in S at time t. The

process

(

Z

t

0

c

s

L

s

ds+X

t

L

t

; t � T )

is a local martingale under the historical measure. Suppose the investor wishes to

maximize the expectation

E(

Z

T

0

u(c

s

)ds+ g(X

T

))

Here u and g are appropriate utility functions, ~u and ~g will denote their con-

jugate functions. Write X

0

= x for the initial wealth. Then the Lagrangian is

E(

Z

T

0

u(c

s

)ds+ g(X

T

)� �(L

T

X

T

+

Z

T

0

L

s

c

s

ds� x)). The optimal pair is given by

e

c

t

= �~u

0

(

e

�L

t

); X

�

T

= �~g

0

(

e

�L

T

)

with

e

� such that the following budget constraint holds : E

�

L

T

f

X

T

+

Z

T

0

L

s

e

c

s

ds

�

=

x. Using the fact that for any � the process (L

t

)

�

exp(��(�)t) is a martingale,

where

�(�) = �[(1�

�

��

)

�

� 1 +

��

��

] ;

we are able to make explicit the computations in some cases:
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� Log utilities.

- In the particular case u(x) = g(x) = lnx, we obtain

e

� =

1 + T

x

;

f

X

T

=

x

(1 + T )L

T

;

e

c

t

=

x

(1 + T )L

t

:

The current optimal wealth is

f

X

t

=

x

L

t

(1 �

t

1 + T

) and the optimal portfolio is

e

�

t

=

�

�(��� �)

.

- In the case u(x) = 0; g(x) = ln(x), we obtain

f

X

t

= x(L

t

)

�1

and the same optimal

portfolio.

� Power utility functions.

Consider the case u(x) = g(x) = x

�

, with 0 < � < 1. The optimal consumption

is

e

c

t

=

�

�L

t

�

�

�

where � =

1

�� 1

and

1

�

�

=

1

x�

�

[e

�(�+1)T

+

1

�(� + 1)

(e

�(�+1)T

� 1)]

The current optimal wealth is

f

X

t

=

x�(T � t)

�(T )

L

�

t

where �(�) = �(�+1) exp[�(�+1)� ] + exp[�(�+1)� ]� 1. The optimal portfolio

is

e

� =

1

�

[(1�

�

��

)

�

� 1]

These quantities

f

X

T

and consumption strategy

e

c give the maximum expected

utility for the uninformed agent. We have seen that, if the informed investor knows

N

T

, he (or she) has an arbitrage opportunity and so his (or her) expected potential

wealth can be in�nite.

4.2 General case

4.2.1 The un-informed agent

We suppose now that the risky asset has dynamics

dS

t

= S

t�

(�dt+ �dW

t

+ �dM

t

)

Let (X

t

; t � 0) be the wealth of an agent whose portfolio is again described by

(�

t

), the proportion of wealth invested in the asset S at time t. Then

dX

t

= �

t

X

t�

(�dt+ �dW

t

+ �dM

t

)� c

t

dt (4.1)
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The market is now incomplete. There are various ways to solve the problem.

One is to complete the market with a second asset, solve the optimization problem

in the complete market and adjust the parameters of the �ctitious asset such that

the optimal portfolio has a zero component in this asset.

A second is to solve directly the problem in the incomplete market by means of

the dynamic programming method. Let

V (t; x) = sup

c;x

E

"

Z

T

t

u(c

s

)ds+ g(X

x;�;c

T

)jX

t

= x

#

be the value function for this optimal control problem, representing the maximum

attainable expected utility. The process V (t; X

t

)+

Z

t

0

u(c

s

)ds is a supermartingale

and a martingale for optimal wealth. Therefore, the value function V is a solution

of the HJB equation

V (T; x) = g(x)

0 =

@V

@t

(t; x) + sup

�;c

fu(c) +

@V

@x

(t; x)(�x�� c) +

1

2

�

2

�

2

x

2

@

2

V

@x

2

(t; x)

+ �[V (t; x(1 + ��))� V (t; x)� �x�

@V

@x

(t; x)]g

This problem can be solved explicitly for some particular cases.

4.2.2 Logarithmic utilities

� Case: g(x) = ln(x); u(x) = 0

A solution of the HJB equation is of the form V (t; x) = p(t) lnx + q(t) with

p

0

(t) = 0; p(T ) = 1; q

0

(t)+ pm = 0; q(T ) = 0 where m = sup

�

��+�[ln(1+��)�

��]�

1

2

�

2

�

2

, the supremum being reached for ~� satisfying ����

2

[

~�

1 + ~��

]�~��

2

= 0

and 1 + ~�� > �1.

Then V (t; x) = lnx+m(T � t). In particular,

V (0; x) = E(ln(

f

X

T

)) = lnx +

1

2

�

2

e

�

2

T + � ln(1 + �

e

�)T + �(

1

1 + �

e

�

� 1)T :

This gives the maximum expected utility which can be attained by the uninformed

agent.

For this case, there is in fact a third way to solve the problem: determineE(ln(X

T

))

using Itô's formula. This leads to

E[ln(X

T

)] = ln(x) +

Z

T

0

E(��

s

�

1

2

�

2

�

2

s

+ �(ln(1 + ��

s

)� ��

s

)dsj; :
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We theen maximize the quantity under the integral sign for each s and !.

Any of the methods leads to

~� =

1

2�

2

�

�

��� �

2

�� �

2

�

q

(��� �

2

�� �

2

)

2

+ 4�

2

��

�

;

where the quantity under the square root is equal to (����

2

�+�

2

)

2

+4�

2

�

2

� and,

therefore, is non-negative. The sign to be used depends on the sign of quantities

related to the parameters. The optimal

e

� is the only one such that 1+�� > 0. Solv-

ing the equation (4.1), it can be proved that the optimal wealth is

f

X

t

= x(

e

L

t

)

�1

where d

e

L

t

=

e

L

t�

(��

e

�dW

t

+ (

1

1 + �

e

�

� 1)dM

t

) is a Radon Nykodym density of

an equivalent martingale measure. In this incomplete market, we thus obtain the

utility equivalent martingale measure de�ned by Davis [3].

� Case u(x) = lnx ; g(x) = lnx. A solution of the HJB equation is of the form

V (t; x) = p(t) lnx + q(t) where p(t) = 1 + T � t and q

0

(t)� ln p(t)� 1 +mp(t) =

0; q(T ) = 0 so that

q(t) =

m

2

(T � t)

2

+m(T � t)� (1 + T � t) ln(1 + T � t)

The optimal portfolio is the same as in the previous case, the optimal wealth

is

f

X

t

=

x

~

L

t

(1 �

t

1 + T

), with the same

e

L and the optimal consumption is

e

c

t

=

f

X

t

1 + T � t

.

4.2.3 Power utilities

� Case g(x) = x

�

; u(x) = 0; 0 < � < 1. A solution is of the form V (t; x) = p(t)x

�

with p(T ) = 1; p

0

(t)+Mp(t) = 0 where M = sup

�

f���+�[(1+��)

�

�1����]+

1

2

�

2

�

2

�(��1)g, the supremum being reached for

e

� satisfying �+��[(1+

e

��)

��1

�

1] + (�� 1)

e

��

2

= 0 and 1 +

e

�� > �1. Then, V (t; x) = e

�M(t�T )

x

�

. The optimal

wealth is

f

X

t

= x�(t)

h

e

L




t

i

�

, with � = 1=(�� 1), 
 = (1 + �

e

�)

��1

� 1 and

�(t) = expAt; A =

e

�

2

�

2

(1�

1

2

�) + �(1 +

e

��)

��1

((�� 1)�+ 1) +

�

�� 1

:

� Case u(x) = x

�

= g(x). A solution is of the form V (t; x) = p(t)x

�

, so

e

c =

x[p(t)]

�

where � = 1=(� � 1) and p(t) =

 

M

(�� 1)(1� k exp (�Mt))

!

��1

where

k = (1�

M

�� 1

) exp(��MT ).
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4.2.4 The informed agent

As we are considering case 1, the informed agent knows N

T

from time 0. Therefore,

his wealth evolves according to the dynamics

dX

�

t

= �

t

X

�

t�

[(�+ �(�

t

� �)]dt+ �dW

t

+ �dM

�

t

]

Exactly the same computations as above can be carried out. In fact these result

in changing � to (�+ �(�

t

� �) and the intensity of the jumps from � to �

t

.

� Case g(x) = ln(x); u(x) = 0

The optimal portfolio �

�

is now such that �� ��+ ��

s

[

1

1 + �

�

�

]� �

�

�

2

= 0 and

is given by

�

�

s

=

1

2�

2

�

�

��� �

2

�� �

2

�

q

(��� �

2

�+ �

2

)

2

+ 4�

2

�

2

�

s

�

;

The optimal wealth is X

�

t

= x(L

�

t

)

�1

where

dL

�

t

= L

�

t�

(���

�

s

dW

t

+ (

1

1 + ��

�

s

� 1)dM

�

t

)

Whereas the optimal portfolio of the uninformed agent is a constant one the op-

timal portfolio of the informed agent is time-varying and has a jump as soon as a

jump occurs for the prices.

The maximum attainable wealth for the uninformed agent is obtained using the

constant strategy ~� for which

~��+ �[ln(1 + ~��)� ~��]�

1

2

~�

2

�

2

= sup

�

[��+ �[ln(1 + ��)� ��]�

1

2

�

2

�

2

]

In contrast, the informed agent must maximize at each (s; !) the quantity

��+ �

s

(!) ln(1 + ��)� ����

1

2

�

2

�

2

Consequently,

sup

�

��+ �

s

ln(1 + ��)� ����

1

2

�

2

�

2

� ~��+ �

s

ln(1 + ~��)� �~���

1

2

~�

2

�

2

Now, E[�

s

] = �, so

sup

�

E(lnX

�

T

) = lnx + sup

�

Z

T

0

E(��+ �

s

ln(1 + ��)� ����

1

2

�

2

�

2

)ds

� lnx +

Z

T

0

~�(�+ � ln(1 + ~��)� �~���

1

2

~�

2

�

2

)ds = E(ln

f

X

T

)
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Therefore, the maximum expected wealth for the informed agent is greater than

that of the uninformed agent. This is obvious because the informed agent can use

any strategy available to the uninformed agent.

� case u(x) = 0 ; g(x) = x

�

The optimal portfolio �

�

of the informed agent is now given by � + �[�(1 +

�

�

�)

��1

� �] + (� � 1)�

�

�

2

= 0, and the optimal wealth is X

�

t

= x�

�

(t)[L

�


t

]

�

,

with � = 1=(�� 1); 


s

= (1 + ��

�

s

)

��1

� 1 and

�(t) = exp

Z

t

0

A

�

s

ds; A

�

s

= [�

�

s

]

2

�

2

(1�

1

2

�)+�

s

(1+�

�

s

�)

��1

[(�� 1)�+1]+

�

s

�� 1

5 Signalling

In this section we discuss what the uninformed agent might detect from the actions

and investment strategy of the informed agent.

In general banks do not disclose the amounts customers hold in savings. Conse-

quently, although the price process S and the number of shares � of S are observed

variables, the total wealth and the proportion � of wealth invested in S are not.

Of course � =

�X

S

or � = �

S

X

.

In the models of section 4, with utility functions lnx or x

�

, the optimal

e

� for

the uninformed agent is constant. However, the optimal � is not constant. If t

is a jump time of the risky asset, X

t

= X

t�

(1 +

e

��) and S

t

= S

t�

(1 + �), so

�

t

S

t

�

t�

= (1 + �

e

�). Consequently, the value of the

e

� being used is revealed at jump

times. Similarly, for the informed agent, the optimal �

�

is not constant but it

is continuous between jump times. At a jump time t, the uninformed agent will

observe the quantities �

�

t�

S

t�

and �

�

t

S

t

of the informed agent. If the informed

agent is using this optimal �

�

�

�

t

S

t

�

�

t�

= (1 + �

�

t�

�)

�

�

t

�

�

t�

which can be written (1 + �

t�

�) for some �

t�

. Consequently, after one jump

the uninformed agent might conclude the informed agent is using the strategy �.

However, after observing the action of the informed agent at two jump times two

di�erent values of � will be detected. This may signal to the uninformed agent

that the informed agent does have some extra knowledge. If the informed agent

knows N

T

the number of jumps, a strategy which would avoid disclosing inside

knowledge might be for him to use

e

� until the time of the last jump and then to

use an optimal �

�

over the remaining period to T .
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6 Conclusion

We have studied various situations in which an informed agent knows future infor-

mation when a risky asset has dynamics involving both a Brownian motion and a

Poisson process. The most interesting cases are those in which the informed agent

knows only the �nal number of jumps of the Poisson process. The maximal at-

tainable wealth for both informed and uninformed agents has then been explicitly

calculated.
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