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1 Introduction

Any square-integrable functional on the Wiener, resp. Poisson space can be expanded

into a series of multiple stochastic integrals with respect to the Wiener, resp. Pois-

son process. This property is known as the Wiener chaos representation property.

On the Wiener space, the chaos expansion of a functional of d independent single

stochastic integrals can be computed using Wiener-Hermite orthogonal expansions.

More generally, the gradient operator on Fock space allows to compute the expansion

of certain square-integrable functionals, cf. [8]. However, on the Poisson space this

gradient is identi�ed to a �nite di�erence operator whose repeated application leads

to complicated expressions. In [7] an induction relation was obtained and used to

compute the expansion of the Poisson process jump times on IR

+

, using the Clark-

Ocone and Stroock formulas associated to di�erent Poisson gradient operators. A

direct calculation using only the formula of [8] and the Fock gradient can be found

in [3], concerning a Poisson process on a bounded interval.

In this paper, these results are extended to general square-integrable functions of

a �nite number of Poisson jump times. This allows in particular to compute the

chaos expansions of solutions of adapted stochastic di�erential equations driven by a
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standard Poisson process, since the value at time t of such solutions can be expressed

as functionals of �nite numbers of jump times. Our proof is elementary in the sense

that is uses only Poisson-Charlier orthogonal expansions instead of the gradient on

Fock space. The results obtained on Poisson space are compared to their counterpart

on the Gaussian space and a class of exponential vectors on Fock space, which are

stable under multiplication on Poisson space, is constructed.

2 Notation

In this section we recall some facts concerning Charlier polynomials, Poisson mul-

tiple stochastic integrals and the Fock space, cf. [9]. Let (N

t

)

t2IR

+

denote a (right-

continuous) standard Poisson process on the real line, with jump times (T

n

)

n�1

. Let

(T

k

)

k�1

denote the increasing family of jump times of (N

t

)

t2IR

+

. The underlying

probability space is denoted by 
, so that L

2

(
) is the space of square-integrable

functionals of (N

t

)

t2IR

+

. For n 2 ZZ and t 2 IR

+

, let

p

t

n

=

�

t

n

n!

e

�t

; if n � 0;

0; if n < 0:

For �xed n � 1, p

n�1

: IR ! IR

+

is the density function of the n-th jump time T

n

of (N

t

)

t2IR

+

. On the other hand, for �xed t 2 IR

+

, p

t

: ZZ ! IR

+

is the discrete

distribution of the random variable N

t

. The Charlier polynomial of order n 2 IN and

parameter t 2 IR

+

is de�ned as

C

t

n

(x) =

(�1)

n

p

t

x

t

n

(�

x

)

n

p

t

x

; x 2 ZZ;

where �

x

is the �nite di�erence operator �

x

f(x) = f(x) � f(x � 1). We have the

relation @p

t

x

= ��

x

p

t

x

, where @ denotes di�erentiation with respect to t, hence we

may also write

C

t

n

(x) =

1

p

t

x

t

n

@

n

p

t

x

; x 2 IR

+

: (1)

For every t 2 IR

+

, the family (C

t

n

)

n2IN

is orthogonal in l

2

(ZZ; p

t

) and the square norm

of C

t

n

is n!t

n

. We denote by L

2

(IR

�n

+

) the space of square-integrable and symmetric

functions on IR

n

, with norm k � k

2

L

2

(IR

+

)

�n

= n! k � k

2

L

2

(IR

n

+

)

, and by f

n

� g

m

the

symmetric tensor product of f

n

2 L

2

(IR

+

)

�n

and g

m

2 L

2

(IR

+

)

�m

. Let 0 � t

1

�

� � � � t

d

and k

1

; : : : ; k

d

2 IN. The multiple Poisson stochastic integral of the function
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1

�k

1

[0;t

1

]

� 1

�k

2

[t

1

;t

2

]

� � � � � 1

�k

d

[t

d�1

;t

d

]

is de�ned as

I

n

�

1

�k

1

[0;t

1

]

� 1

�k

2

[t

1

;t

2

]

� � � � � 1

�k

d

[t

d�1

;;t

d

]

�

= C

t

1

k

1

(N

t

1

)C

t

2

�t

1

k

2

(N

t

2

�N

t

1

) � � �C

t

d

�t

d�1

k

d

(N

t

d

�N

t

d�1

);

(2)

and this expression is extended to symmetric square-integrable functions as

I

n

(f

n

) = n!

Z

1

0

Z

t

n

0

� � �

Z

t

2

0

f

n

(t

1

; : : : ; t

n

)d

~

N

t

1

� � �d

~

N

t

n

;

with

~

N

t

= N

t

� t, t 2 IR

+

, cf. [2], [9]. We have the isometry

(I

n

(f

n

); I

m

(g

m

))

L

2

(
)

= 1

fn=mg

(f

n

; g

m

)

L

2

(IR

+

)

�n

; f

n

2 L

2

(IR

+

)

�n

; g

m

2 L

2

(IR

+

)

�m

;

which extends the norm properties of Charlier polynomials. If f

n

2 L

2

(IR

n

+

) is not

symmetric we let I

n

(f

n

) = I

n

(

~

f

n

), where

~

f

n

is the symmetrization of f

n

, de�ned as

~

f

n

(t

1

; : : : ; t

n

) =

1

n!

X

�2�

n

f(t

�(1)

; : : : ; t

�

n

);

where �

n

is the set of all permutations of f1; : : : ; ng. For precision of notation we

will often write explicitly the variables t

1

; : : : ; t

n

in I

n

(f

n

(t

1

; : : : ; t

n

)).

The Fock space

�(L

2

(IR

+

)) =

M

n�0

L

2

(IR

+

)

�n

is identi�ed to L

2

(
) via multiple stochastic integrals of symmetric square-integrable

functions. On �(L

2

(IR

+

)) are de�ned the annihilation and creation operators D :

�(L

2

(IR

+

)) ! �(L

2

(IR

+

)) 
 L

2

(IR

+

) and � : �(L

2

(IR

+

)) 
 L

2

(IR

+

) ! �(L

2

(IR

+

)) by

�(f

�n


 g) = g � f

�n

, f; g 2 L

2

(IR

+

) and Df

�n

= nf 
 f

�(n�1)

. We note that D is

identi�ed to a �nite di�erence operator, cf. [5], [6]. The Wick exponential "(u) is

de�ned as

"(u) =

X

n�0

1

n!

u

�n

:

Let S(IR) denote the Schwartz space of rapidly decreasing C

1

functions.

3 Chaos expansions of jump times functionals

Let

�

n

= f(t

1

; : : : ; t

n

) 2 IR

n

+

: t

1

� � � � � t

n

g; n � 1:

For f 2 C

1

(IR

d

), @

i

f represents the partial derivative of f with respect to its i-th

variable, 1 � i � d. We �rst state a result for smooth functions of a �nite number
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of jump times. As a convention, if k

1

� 0; : : : ; k

d

� 0 satisfy k

1

+ � � �+ k

d

= n, we

de�ne (t

1

1

; : : : ; t

1

k

1

; t

2

1

; : : : ; t

2

k

2

; : : : ; t

d

1

; : : : ; t

d

k

d

) as

(t

1

1

; : : : ; t

1

k

1

; t

2

1

; : : : ; t

2

k

2

; : : : ; t

d

1

; : : : ; t

d

k

d

) = (t

1

; : : : ; t

n

):

Theorem 1 Let n

1

; : : : ; n

d

2 IN with 1 � n

1

< � � � < n

d

, and let f 2 C

d

c

(�

d

). The

chaos expansion of f(T

n

1

; : : : ; T

n

d

) is given as

f(T

n

1

; : : : ; T

n

d

) = (�1)

d

1

X

n=0

I

n

(1

�

n

h

n

);

where

h

n

(t

1

; : : : ; t

n

) = (3)

X

k

1

+ � � �+ k

d

= n

k

1

� 0; : : : ; k

d

� 0

n!

k

1

! � � �k

d

!

Z

1

t

d

k

d

� � �

Z

t

i+1

1

t

i

k

i

� � �

Z

t

2

1

t

1

k

1

@

1

� � �@

d

f(s

1

; : : : ; s

d

)K

k

1

;:::;k

d

s

1

;:::;s

d

ds

1

� � �ds

d

;

with, for 0 � s

1

� � � � � s

d

and k

1

� 0; : : : ; k

d

� 0:

K

k

1

;:::;k

d

s

1

;:::;s

d

=

X

m

1

� n

1

; : : : ;m

d

� n

d

m

1

� � � � � m

d

@

k

1

p

s

1

�s

0

m

1

�m

0

� � �@

k

d

p

s

d

�s

d�1

m

d

�m

d�1

; m

0

= 0; s

0

= 0:

We make the following remarks.

� The support of the function f can be taken in �

d

since almost surely, T

n

i

�

T

n

i+1

, i = 1; : : : ; d� 1.

� Th. 1 is stated for smooth functions, but by integration by parts it extends

easily to square-integrable functionals. For simplicity of notation it is easier in

the general case to understand the expression of Th. 1 in distribution sense.

� Th. 1 allows to compute the expansion of a square-integrable random variable

which is approximated in L

2

(
) by a sequence of functions of �nite numbers

of Poisson jump times.

Before proving Th. 1 we show how it can be derived in the case d = 1. We have the

orthogonal expansion

1

fN

t

�N

s

=ng

=

X

k�0

1

k!(t� s)

k

(1

fng

; C

t�s

k

)

l

2

(ZZ;p

t�s

)

C

t�s

k

(N

t

�N

s

); 0 � s � t; n 2 IN;
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hence from (1):

1

fN

t

�N

s

=ng

=

X

k�0

1

k!

@

k

p

t�s

n

I

k

(1

�k

[s;t]

); 0 � s � t; n 2 IN: (4)

From this we obtain for s = 0 and n � 1:

1

[T

n

;1[

(t) = 1

fN

t

�ng

=

X

k�0

X

l�n

1

k!

@

k

p

t

l

I

k

(1

�k

[0;t]

) =

X

k�0

1

k!

@

k

P

n

(t)I

k

(1

�k

[0;t]

); (5)

where P

n

(t) =

R

t

0

p

s

n�1

ds is the distribution function of T

n

. We deduce

f(T

n

) = �

Z

1

0

f

0

(s)1

[T

n

;1[

(s)ds

= �

Z

1

0

f

0

(s)

X

k�0

1

k!

@

k

P

n

(s)I

k

(1

�k

[0;s]

)ds

= �

X

k�0

1

k!

Z

1

0

f

0

(s)@

k

P

n

(s)I

k

(1

�k

[0;s]

)ds

= �

X

k�0

Z

1

0

f

0

(s)@

k

P

n

(s)

Z

s

0

Z

t

k

0

� � �

Z

t

2

0

d

~

N

t

1

� � �d

~

N

t

k

ds

= �

X

k�0

Z

1

0

f

0

(s)@

k

P

n

(s)

Z

1

0

Z

t

k

0

� � �

Z

t

2

0

1

[0;s]

(t

1

_ � � � _ t

k

)d

~

N

t

1

� � �d

~

N

t

k

ds

= �

X

k�0

Z

1

0

Z

1

t

k

f

0

(s)@

k

P

n

(s)ds

Z

t

k

0

� � �

Z

t

2

0

d

~

N

t

1

� � �d

~

N

t

k

;

hence

f(T

n

) = �

X

k�0

1

k!

I

k

�

Z

1

t

1

_���_t

k

f

0

(s)@

k

P

n

(s)ds

�

;

which can be rewritten after integration by parts on IR

+

as

f(T

n

) =

X

k�0

1

k!

I

k

�

f(t

1

_ � � � _ t

k

)@

k+1

P

n

(t

1

_ � � � _ t

k

) +

Z

1

t

1

_���_t

k

f(s)@

k+1

P

n

(s)ds

�

:

(6)

Proof of Th. 1. We deal with the case d � 2. Let 0 = s

0

� s

1

� � � � � s

d

, and

n

1

; : : : ; n

d

2 IN. We have from (4) and (2):

i=d

Y

i=1

1

fN

s

i

�N

s

i�1

=n

i

g

=

1

X

n=0

X

k

1

+ � � � + k

d

= n

k

1

� 0; : : : ; k

d

� 0

n!

(k

1

! � � �k

d

!)

2

@

k

1

p

s

1

�s

0

n

1

� � �@

k

d

p

s

d

�s

d�1

n

d

I

k

1

(1

�k

1

[s

0

;s

1

]

) � � � I

k

d

(1

�k

d

[s

d�1

;s

d

]

)

=

1

X

n=0

X

k

1

+ � � � + k

d

= n

k

1

� 0; : : : ; k

d

� 0

n!

(k

1

! � � �k

d

!)

2

@

k

1

p

s

1

�s

0

n

1

� � �@

k

d

p

s

d

�s

d�1

n

d

I

n

(1

�k

1

[s

0

;s

1

]

� � � � � 1

�k

d

[s

d�1

;s

d

]

);
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where the last equality used the assumption s

1

� � � � � s

d

. Now, with 0 � m

1

�

� � � � m

d

,

1

[T

m

1

;T

m

1

+1

[

(s

1

) � � � 1

[T

m

d

;T

m

d

+1

[

(s

d

) = 1

fN

s

1

=m

1

g

� � � 1

fN

s

d

=m

d

g

= 1

fN

s

1

�N

s

0

=m

1

�m

0

g

� � � 1

fN

s

d

�N

s

d�1

=m

d

�m

d�1

g

(m

0

= 0)

=

1

X

n=0

X

k

1

+ � � � + k

d

= n

k

1

� 0; : : : ; k

d

� 0

n!

(k

1

! � � �k

d

!)

2

@

k

1

p

s

1

�s

0

m

1

�m

0

� � �@

k

d

p

s

d

�s

d�1

m

d

�m

d�1

I

n

(1

�k

1

[s

0

;s

1

]

� � � � � 1

�k

d

[s

d�1

;s

d

]

):

Given that s

1

� � � � � s

d

, for any i < j the conditions s

i

2 [T

m

i

; T

m

i+1

[ and s

j

2

[T

m

j

; T

m

j+1

[ imply m

i

� m

j

, hence

i=d

Y

i=1

1

[T

n

i

;1[

(s

i

) =

X

m

1

� n

1

; : : : ; m

d

� n

d

m

1

� � � � � m

d

1

[T

m

1

;T

m

1

+1

[

(s

1

) � � �1

[T

m

d

;T

m

d

+1

[

(s

d

)

=

X

m

1

� n

1

; : : : ; m

d

� n

d

m

1

� � � � � m

d

1

fN

s

1

=m

1

g

� � � 1

fN

s

d

=m

d

g

=

X

m

1

� n

1

; : : : ; m

d

� n

d

m

1

� � � � � m

d

1

fN

s

1

�N

s

0

=m

1

�m

0

g

� � � 1

fN

s

d

�N

s

d�1

=m

d

�m

d�1

g

=

1

X

n=0

X

k

1

+ � � �+ k

d

= n

k

1

� 0; : : : ; k

d

� 0

n!

(k

1

! � � �k

d

!)

2

X

m

1

� n

1

; : : : ; m

d

� n

d

m

1

� � � � � m

d

@

k

1

p

s

1

�s

0

m

1

�m

0

� � �@

k

d

p

s

d

�s

d�1

m

d

�m

d�1

I

n

(1

�k

1

[s

0

;s

1

]

� � � � � 1

�k

d

[s

d�1

;s

d

]

)

=

1

X

n=0

X

k

1

+ � � �+ k

d

= n

k

1

� 0; : : : ; k

d

� 0

n!

(k

1

! � � �k

d

!)

2

K

k

1

;:::;k

d

s

1

;:::;s

d

I

n

(1

�k

1

[s

0

;s

1

]

� � � � � 1

�k

d

[s

d�1

;s

d

]

):

Using the identity

f(T

n

1

; : : : ; T

n

d

)

= (�1)

d

Z

1

0

� � �

Z

1

0

1

[T

n

1

;1[

(s

1

) � � � 1

[T

n

d

;1[

(s

d

)@

1

� � �@

d

f(s

1

; : : : ; s

d

)ds

1

� � �ds

d

= (�1)

d

Z

�

d

1

[T

n

1

;1[

(s

1

) � � �1

[T

n

d

;1[

(s

d

)@

1

� � �@

d

f(s

1

; : : : ; s

d

)ds

1

� � �ds

d

; f 2 C

d

c

(�

d

);

we get

f(T

n

1

; : : : ; T

n

d

) = (�1)

d

1

X

n=0

X

k

1

+ � � �+ k

d

= n

k

1

� 0; : : : ; k

d

� 0

n!

(k

1

! � � �k

d

!)

2

Z

�

d

@

1

� � �@

d

f(s

1

; : : : ; s

d

)K

k

1

;:::;k

d

s

1

;:::;s

d

I

n

(1

�k

1

[s

0

;s

1

]

� � � � � 1

�k

d

[s

d�1

;s

d

]

)ds

1

� � �ds

d

:

6



From (2), we have for s

1

� � � � � s

d

and k

1

� 0; : : : ; k

d

� 0:

I

n

�

1

�k

1

[s

0

;s

1

]

� � � � � 1

�k

d

[s

d�1

;s

d

]

�

= k

1

! � � �k

d

!

Z

1

0

Z

t

d

k

d

0

� � �

Z

t

1

2

0

1

�2

[s

0

;s

1

]

(t

1

1

; t

1

k

1

) � � � 1

�2

[s

d�1

;s

d

]

(t

d

1

; t

d

k

d

)d

~

N

t

1

1

� � �d

~

N

t

d

k

d

;

hence exchanging the stochastic integrals and the integrals with respect to ds

1

� � �ds

d

,

we obtain

f(T

n

1

; : : : ; T

n

d

) = (�1)

d

1

X

n=0

X

k

1

+ � � � + k

d

= n

k

1

� 0; : : : ; k

d

� 0

n!

k

1

! � � �k

d

!

I

n

 

1

�

n

Z

1

t

d

k

d

Z

t

d

1

t

d�1

k

d�1

� � �

Z

t

3

1

t

2

k

2

Z

t

2

1

t

1

k

1

@

1

� � �@

d

f(s

1

; : : : ; s

d

)K

k

1

;:::;k

d

s

1

;:::;s

d

ds

1

� � �ds

d

!

: 2

Th. 1 can be compared to its Gaussian counterpart in the following way. For u 2

L

2

(IR

+

), let J

1

(u) denote the Itô-Wiener integral J

1

(u) =

R

1

0

u(s)dB

s

with respect

to the Brownian motion (B

s

)

s2IR

+

de�ned on the Wiener space W . Then,

f(J

1

(u

1

); : : : ; J

1

(u

d

)) (7)

=

1

X

n=0

X

k

1

+ � � �+ k

d

= n

k

1

� 0; : : : ; k

d

� 0

n!

(k

1

! � � �k

d

!)

2

(f; @

k

1

1

� � �@

k

d

d

p)

L

2

(IR

d

)

J

n

(u

�k

1

1

� � � � � u

�k

d

d

);

where fu

1

; : : : ; u

d

g is an orthonormal family in L

2

(IR

+

) and p(s

1

; : : : ; s

d

) is the stan-

dard Gaussian density function of the vector (J

1

(u

1

); : : : ; J

1

(u

d

)). The multiple

Wiener integral

J

n

(u

�k

1

1

� � � � � u

�k

d

d

) = H

k

1

(J

1

(u

1

)) � � �H

k

d

(J

1

(u

d

)) (8)

n = k

1

+ � � �+ k

d

, being de�ned with help of the Hermite polynomials (H

m

)

m�0

with

H

k

1

(s

1

) � � �H

k

d

(s

d

) =

(�1)

k

1

+���+k

d

p(s

1

; : : : s

d

)

@

k

1

s

1

� � �@

k

d

s

d

p(s

1

; : : : ; s

d

):

4 A multiplicative exponential on Poisson space

Given the role played by the iterated derivatives of the Poisson and Gaussian laws

in the chaos expansions of f(T

1

; : : : ; T

d

) and f(I

1

(u

1

); : : : ; I

d

(u

d

)), it is natural to

determine all random variables whose development is determined in such a way by

their density function. For this we will de�ne exponential vectors on Fock space that

di�er from Wick exponentials. For g 2 S(IR) and t 2 IR

+

such that

1

X

n=0

t

n

n!

j @

n

G(t) j

2

<1;

7



let E

g

(t) be de�ned in L

2

(
) by

E

g

(t) =

X

n�0

1

n!

@

n

G(t)I

n

(1

�n

[0;t]

);

where G(t) =

R

t

0

g(s)ds, t 2 IR

+

. From the expression of I

n

(1

�n

[0;t]

) in terms of Charlier

polynomials, E

g

(t) is of the form E

g

(t) = h(N

t

; t). For f 2 S(IR), let

E

g

(f) = �

Z

1

0

f

0

(s)E

g

(s)ds:

Since E

p

k

(t) is identi�ed to 1

[T

k+1

;1[

(t), from (5) this means that E

p

k

(f) = f(T

k+1

),

k 2 IN. The following lemma gives the product rule for E

g

(t). We note that DE

g

(t) =

1

[0;t]

E

@g

(t). We use the convention @

�1

f(t) =

R

t

0

f(s)ds.

Lemma 1 Let t 2 IR

+

. Let f; g 2 S(IR) such that for any t 2 IR

+

there exists A

t

� 1,

with j @

i

f(t) j� (A

t

)

i+1

and j @

i

g(t) j� (A

t

)

i+1

, i � �1. Then E

f

(t)E

g

(t) 2 L

2

(
)

and its chaos expansion is given by

E

f

(t)E

g

(t) = E

h

(t);

where the function h is de�ned as

h(s) =

d

ds

(E

f

(s); E

g

(s))

L

2

(
)

; s 2 IR

+

:

Proof. We use the formula F = E[F ] +

P

n�1

1

n!

I

n

(E[D

n

F ]) of [8], cf. also [1], and

an induction argument on n to show that

E[D

n

(E

f

(t)E

g

(t))] =

�

1

[0;t]

�

�n

@

n

 

X

i2IN

t

i

i!

@

i�1

f(t)@

i�1

g(t)

!

; n 2 IN; t 2 IR

+

:

The result is clear for n = 0. Since D is a �nite di�erence operator, we have by

induction

E[D

n+1

(E

f

(t)E

g

(t))]

= E[D

n

(E

f

(t)DE

g

(t) + E

g

(t)DE

f

(t) +DE

f

(t)DE

g

(t))]

= 1

[0;t]

E[D

n

(E

f

(t)E

@g

(t) + E

g

(t)E

@f

(t) + E

@f

(t)E

@g

(t))]

= 1

�(n+1)

[0;t]

@

n

 

X

i�0

t

i

i!

@

i�1

f(t)@

i

g(t) +

X

i�0

t

i

i!

@

i�1

g(t)@

i

f(t) +

X

i�0

t

i

i!

@

i

g(t)@

i

f(t)

!

= 1

�(n+1)

[0;t]

@

n+1

X

i�0

t

i

i!

@

i�1

g(t)@

i�1

f(t); n � 0:

8



Moreover, the growth conditions imposed on the derivatives of f et g imply that

j @

n

h(t) j �

X

i�0

t

i

i!

j=n+1

X

j=0

�

n+ 1

j

�

j @

i+j�1

g(t)@

i+n�j

f(t) j

� 2

n+1

X

i�0

t

i

i!

(A

t

)

2i+n+1

� 2

n+1

(A

t

)

n+1

e

t(A

t

)

2

;

hence

E[E

h

(t)

2

] =

1

X

n=0

t

n

n!

j @

n�1

h(t) j

2

� exp

�

6t(A

t

)

2

�

<1; t 2 IR

+

: 2

Note that p

t

n

satis�es the hypothesis of the above Lemma, with A

t

= 2(t_1), t 2 IR

+

.

The following result shows that E

p

�

(t) has a Bernoulli distribution with parameter

P

�

(t), t 2 IR

+

only for integer values of �, and gives a probabilistic solution of a

di�erential equation.

Proposition 1 Let g 2 S(IR), with G(t) =

R

t

0

g(s)ds, t 2 IR

+

, and such that for

any t 2 IR

+

there exists A

t

> 1, with j @

i

f(t) j� (A

t

)

i+1

, i � �1. The following

statements are equivalent.

(i) The function g is written as

g = �

X

k2IN

�

k

@p

k

= �

0

p

0

+

X

k�1

�

k

(p

k

� p

k�1

); (�

n

)

n2IN

� f0; 1g;

(ii) The random variable E

g

(t) is an indicator function, 8t 2 IR

+

,

(iii) G solves the nonlinear equation

G(t) =

X

n�0

t

n

n!

(@

n

G(t))

2

; t 2 IR

+

;

Proof. The implication (i)) (ii) is follows from the identity

E

g

(t) =

X

k2IN

�

k

1

fN

t

=kg

;

cf. (4). If (ii) is satis�ed, then E

g

(t)E

g

(t) = E

g

(t), hence from Lemma 1 (iii) holds.

Conversely, (iii) can be stated as G(t) = E[E

g

(t)E

g

(t)], which implies E

g

(t)E

g

(t) =

E

g

(t) from Lemma 1, i.e. E

g

(t) is an indicator function. This proves (ii) , (iii). If

(ii) is satis�ed, then E

g

(t) is of the form

E

g

(t) =

X

n2IN

�

n

(t)1

fN

t

=ng

;

9



with �

n

(t) 2 f0; 1g, n 2 IN, t 2 IR

+

, and

E

g

(t) = �

0

(t)(1� E

p

1

(t)) +

X

n�1

�

n

(t)(E

p

n

(t)� E

p

n�1

(t)):

Identifying the �rst chaos terms we have

g(t) = �

0

(t)p

0

(t) +

X

n�1

�

n

(t)(p

n

(t)� p

n�1

(t)):

Since g is continuous, �

n

is continuous in t, hence constant, which implies (i).

2

5 The Gaussian case

In this section we compare the notions introduced above with their analogs on the

Wiener space. For u 2 L

2

(IR

+

) with k u k

L

2

(IR

+

)

= 1, and g 2 S(IR) such that

1

X

k=0

1

k!

j @

k

G(t) j

2

<1;

let

E

g

(t) =

X

k�0

@

k

G(t)

k!

J

k

(u

�k

);

where J

k

(u) is the multiple Wiener integral de�ned in (8). If g is a Gaussian density

function with variance 1 and mean a, then from (7),

E

g

(t) = 1

]�1;t�a]

(J

1

(u)):

The product rule for E

g

(t) on the Wiener space is the same as on the Poisson space.

Lemma 2 Let t 2 IR

+

and f; g 2 S(IR) such that for any t 2 IR

+

there exists A

t

� 1,

with j @

i

f(t) j� (A

t

)

i+1

and j @

i

g(t) j� (A

t

)

i+1

, i � �1. Then E

f

(t)E

g

(t) 2 L

2

(
)

and its chaos expansion is given by

E

f

(t)E

g

(t) = E

h

(t);

where the function h is de�ned as

h(s) =

d

ds

(E

f

(s); E

g

(s))

L

2

(W )

; s 2 IR

+

:

10



Proof. The the formula F = E[F ] +

P

n�1

1

n!

J

n

(E[D

n

F ]) is still valid on Wiener

space and as in Lemma. 1 we show by induction that

E[D

n

(E

f

(t)E

g

(t))] =

�

1

[0;t]

�

�n

@

n

 

X

i2IN

1

i!

@

i�1

f(t)@

i�1

g(t)

!

; n 2 IN:

Since D is identi�ed to a derivation operator, cf. [4], we have

E[D

n+1

(E

f

(t)E

g

(t))] = E[D

n

(E

f

(t)DE

g

(t) + E

g

(t)DE

f

(t))]

= 1

[0;t]

E[D

n

(E

f

(t)E

@g

(t) + E

g

(t)E

@f

(t))]

= 1

�(n+1)

[0;t]

@

n

 

X

i�0

1

i!

@

i�1

f(t)@

i

g(t) +

X

i�0

1

i!

@

i�1

g(t)@

i

f(t)

!

= 1

�(n+1)

[0;t]

@

n+1

X

i�0

1

i!

@

i�1

g(t)@

i�1

f(t); n � 0:

It follows as in the proof of Lemma 1 that E

f

(t)E

g

(t) belongs to L

2

(
).

2

Proposition 2 Let g 2 S(IR) , with G(t) =

R

t

0

g(s)ds, t 2 IR

+

, such that for any

t 2 IR

+

there exists A

t

� 1, with j @

i

f(t) j� (A

t

)

i+1

and j @

i

g(t) j� (A

t

)

i+1

, i � �1.

The following statements are equivalent.

(i) The random variable E

g

(t) is an indicator function, 8t 2 IR

+

,

(ii) G solves the nonlinear equation

G(t) =

X

n�0

1

n!

(@

n

G(t))

2

; t 2 IR

+

:

Moreover, these statements hold if

(iii) the function g is a Gaussian density function with variance one.

Proof. The implication (iii)) (i) holds because in this case, E

g

(t) = 1

]�1;a(t)]

(J

1

(u))

for some a(t) 2 IR, and (i), (ii) follows from Lemma 2.

2

The exponential vector e

1

2

kuk

2

"(u) on Wiener space is obtained as

e

1

2

kuk

2

"(u) = �

Z

1

0

e

s

E

p

(s)ds = e

J

1

(u)

;

and satis�es the product identity

"(u)"(v) = "(u+ v) exp((u; v)

L

2

(IR

+

)

):

11



On the Poisson space, however, this multiplicative property disappears because the

Wick exponential is interpreted as a discrete product given as a solution of a stochas-

tic di�erential equation. A family of exponential vectors with multiplicative property

can be de�ned on Poisson space as

~"

k

(u) = �

Z

1

0

u

0

(s)e

u(s)

E

p

k

(s)ds = e

u(T

k

)

; k � 1:

Acknowledgement. I thank J. Vives for his comments on a �rst version of this paper.

References

[1] Y. Ito. Generalized Poisson functionals. Probab. Theory Related Fields, 77:1{28, 1988.

[2] Y.M. Kabanov. On extended stochastic integrals. Theory of Probability and its Appli-

cations, XX(4):710{722, 1975.

[3] J. Le�on and C. Tudor. The chaos decomposition of the jump times for the Poisson

process over a compact time interval. In L.G. Gorostiza, J.A. Le�on, and J.A. L�opez-

Mimbela, editors, IV Simposio de Probabilidad y Procesos Estoc�asticos, volume 12 of

Aportaciones Matem�aticas, pages 137{146, Guanajuato, 1996. Sociedad Matem�atica

Mexicana.

[4] D. Nualart. The Malliavin Calculus and Related Topics. Probability and its Applica-

tions. Springer-Verlag, Berlin/New York, 1995.

[5] D. Nualart and J. Vives. Anticipative calculus for the Poisson process based on the

Fock space. In J. Az�ema, P.A. Meyer, and M. Yor, editors, S�eminaire de Probabilit�es

XXIV, volume 1426 of Lecture Notes in Mathematics, pages 154{165. Springer Verlag,

1990.

[6] J. Picard. Formules de dualit�e sur l'espace de Poisson. Ann. Inst. H. Poincar�e Probab.

Statist., 32(4):509{548, 1996.

[7] N. Privault. Chaotic and variational calculus in discrete and continuous time for the

Poisson process. Stochastics and Stochastics Reports, 51:83{109, 1994.

[8] D. Stroock. Homogeneous chaos revisited. In S�eminaire de Probabilit�es XXI, volume

1247 of Lecture Notes in Mathematics. Springer Verlag, 1987.

[9] D. Surgailis. On multiple Poisson stochastic integrals and associated Markov semi-

groups. Probability and Mathematical Statistics, 3:217{239, 1984.

12


