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Abstract

By time changes of L�evy processes we construct two operators on Fock

space whose sum is a second quantized operator, and that complement the

annihilation and creation operators whose probabilistic interpretations use

shifts of trajectories. This results in an analytic construction, for certain non-

Markovian processes, of stochastic calculus including Itô di�erentials, genera-

tors and associated integro-di�erential equations, without using the notion of

�ltration.
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1 Introduction

The stochastic calculus of variations on the Wiener space, cf. [12], allows to construct

an anticipating stochastic calculus for Brownian motion via the Skorohod integral,

cf. e.g. [14], [15]. Extensions of this anticipating stochastic calculus in the jump case

have been considered in [6], [16], [19], however they only concern the Poisson process

on the real line, or time-changed Poisson processes, cf. [20]. The regularity of laws

of solutions of stochastic di�erential equations of jump type have been studied in

[4], [5], [18]. There are well-known links between Fock space and stochastic calculus

that usually involve the annihilation and creation operators and their probabilistic

interpretation by shifts of trajectories of the Wiener and Poisson processes. In this

paper we introduce two operators on Fock space that are interpreted probabilistically

by time changes of the Wiener and Poisson processes. We establish a formula that
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expresses on random variables the in�nitesimal action of time changes performed on

a L�evy process

~

X(dx; dt) with Brownian component B(dt) and compensated Poisson

component

~

N(dx; dt) on M � IR

+

, and study its connections to the Itô formula. For

a su�ciently smooth random variable F ,

�

d

d"

T

"h

F

j"=0

= a

	

h

F +

Z

M�IR

+

h(x; t)

�

1

fx6=0g

r

�

x;t

+

1

2

1

fx=0g

r

�

0;t

r

�

0;t

�

F�(dx)dt:

The operator r

	

is de�ned by means of chaotic decompositions, r

�

is the annihila-

tion operator on Fock space, and T

h

F is de�ned by evaluationg F on time changed

trajectories of the L�evy process. (This time change is governed by the function

h 2 L

1

(IR

+

)). The term a

	

h

F has expectation is zero and is interpreted as a martin-

gale term. The sum of the operator r

	

and its adjoint r

�

gives a second quantized

operator on Fock space close to the number operator. This can be interpreted as

a decomposition of the number operator process (or Poisson process in quantum

probability) into creation and annihilation parts, by analogy with the well-known

decomposition of Gaussian white noise. With help of the operator

A

t

=

Z

M

�

1

fx6=0g

r

�

x;t

+

1

2

1

fx=0g

r

�

0;t

r

�

0;t

�

d�(x); t 2 IR

+

;

we associate a notion of generator and a class of partial di�erential equations that

can have negative second order coe�cient to processes that anticipate the L�evy

�ltration, or are not Markovian. The \Wiener part"

1

2

r

�

0;t

r

�

0;t

of A

t

is identical,

after integration with respect to dt, to the Gross Laplacian on Wiener space, cf. [9],

[10]. The Itô formula is written for non-Markovian processes and we obtain the chaos

expression

r

	

t

f(X

h

t

+

) = f

0

(X

h

t

)@

t

B(t) +

Z

M

(f(X

h

t

+ h(x; t))� f(X

h

t

))@

t

~

N(dx; t); t 2 IR

+

;

of the martingale term in the Itô formula, where (X

h

t

)

t2IR

+

is the uncompensated

process X

h

t

=

R

M

R

t

0

h(x; s)X(dx; ds). (See Prop. 9 for a precise version of this state-

ment). As for many results in anticipating stochastic calculus, the extensions are

obtained provided some regularity assumptions are made on the stochastic processes.

Another goal of this paper is to construct an anticipating stochastic calculus

for L�evy processes. As in the standard Poisson case, cf. [6], [19], we obtain for the

jump part of the L�evy process X two di�erent notions of gradient and Skorohod

integral, depending on the type (space or time) of perturbation chosen.

The organization of this paper is as follows. Sect. 2 contains preliminaries
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on Fock space and L�evy processes. We recall the construction of in�nitely divisible

random variables as operators on Fock space and their application to the represen-

tation of L�evy processes as operator processes. This construction can be found in

the work of quantum probabilists, cf. [2], [3], [17]. Our proof uses the Itô formula

for multiple Poisson-Wiener integrals instead of the quantum probabilistic argument

which is based on the Weyl representation and commutation relations. In Sect. 3

the operators r

	

, a

	

h

and their adjoints are de�ned. Sect. 4 presents the di�er-

ent ways to perturb the L�evy process by perturbation of space or time, and gives

the interpretation of these perturbations with r

�

, r

	

in terms of Fock space. In

Sect. 5 we state the extension of the Itô formula and give the chaos expansion of

its \martingale term". In the general form of this result, some smoothness must be

imposed on the considered functionals, i.e. the formula may hold only in distribution

sense. In Sect. 6 we study the connection between our form of the Itô formula and

its associated integro-di�erential equations, with di�erent examples. We also discuss

possible directions for the extension of our construction. In Sect. 7 two di�erent Sko-

rohod integrals are constructed depending on the type of perturbation chosen (times

changes or shifts of trajectories). Their properties as extensions of the stochastic

integral are stated given a natural de�nition of adaptedness, unifying the di�erent

notions of gradient and Skorohod integral on the Wiener and Poisson spaces, cf. [6],

[8], [16]. Sect. 8 deals with the Clark formula for L�evy processes.

2 Representation of L�evy processes as operator

processes on Fock space

This section consists essentially in de�nitions. Its main result is Prop. 1 which gives

the action on the Fock space of the multiplication operator by a single stochastic

integral.

2.1 Creation and annihilation on Fock space

The Fock space �(H) on a Hilbert space H is de�ned as the direct sum

�(H) =

M

n�0

H

�n

;

where the symmetric tensor product H

�n

is endowed with the norm

k � k

2

H

�n

= n! k � k

2

H


n

; n 2 IN:
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Here, \
" denotes the completed tensor product and \�" denotes its symmetrization.

The annihilation and creation operators r

�

: �(H) �! �(H)
H and r

+

: �(H)


H �! �(H) are densely de�ned as

r

�

h

�n

= nh

�n�1


 h; r

+

(h

�n


 g) = h

�n

� g; n 2 IN; (1)

by linearity and polarization. They are closable, of domainsDom(r

�

) andDom(r

+

).

Let E denote the dense set of elements of �(H) that have a �nite chaotic develop-

ment. Given h 2 H, the closable operators a

�

h

, a

+

h

of quantum probability, cf. [13],

[17], are densely de�ned as

a

�

h

F = (r

�

F; h)

H

; a

+

h

F = r

+

(F 
 h); F 2 E : (2)

If A is an operator on H, the di�erential second quantization of A is the linear

operator d�(A) de�ned by

d�(A) (h

1

� � � � � h

n

) =

k=n

X

k=1

h

1

� � � � � Ah

i

� � � � � h

n

;

h

1

; : : : ; h

n

2 Dom(A), i.e. d�(A)F = r

+

(Ar

�

F ), and d�(I

d

) is the number opera-

tor.

2.2 L�evy processes and stochastic integrals

Let M be a metric space with Borel �-algebraM. We only assume that M contains

an element denoted by 0, with j x j= d(x; 0), so that M can be a manifold, and let

M

�

=M n f0g. Let � be a �-�nite Radon measure on (M;M) such that

Z

M

jx j

2

^1�(dx) <1;

with �(f0g) = 1. Consider a L�evy process of the form

~

X(dx; dt) = X(dx; dt)� �(dx)dt = dB

t

+N(dx; dt)� �(dx)dt;

where

~

N(dx; dt) = N(dx; dt) � �(dx)dt is a compensated Poisson random measure

on M

�

� IR

+

of intensity �(dx)dt, and (B

t

)

t2IR

+

is a standard Brownian motion

independent of N(dx; ds). The underlying probability space is denoted by (
;F ; P ),

where F is generated by X. As a convention we set L

2

(M) = L

2

(M;�), L

2

(M �

IR

+

) = L

2

(M � IR

+

; �(dx)dt), and L

2

(
) = L

2

(
; P ). We de�ne the �ltration

(F

t

)

t2IR

+

as F

t

= �(X(dx; ds) : x 2M; s � t). A process u 2 L

2

(
)
 L

2

(M � IR

+

)
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is said to be F

t

-adapted if (

R

M

h(x)u(x; t)d�(x))

t2IR

+

is adapted for any h 2 C

c

(M).

The integral of a square-integrable (F

t

)

t2IR

+

-adapted process u 2 L

2

(
)
L

2

(M�IR

+

)

with respect to

~

X(dx; dt) is written as

Z

M�IR

+

u(x; t)

~

X(dx; dt);

with the isometry

E

"

�

Z

M�IR

+

u(x; t)

~

X(dx; dt)

�

2

#

= E

�

Z

M�IR

+

u

2

(x; t)�(dx)dt

�

; (3)

and the multiple stochastic integral I

n

(h

n

) of h

n

2 L

2

(M � IR

+

)

�n

can be de�ned by

induction with

I

n

(h

n

) = n

Z

M�IR

+

I

n�1

(�

n

x;t

h

n

)

~

X(dx; dt);

where

�

n

x;t

: L

2

(M � IR

+

)

�n

�! L

2

(M � IR

+

)

�(n�1)

(4)

is de�ned by

�

�

n

x;t

h

n

�

(x

1

; t

1

; : : : ; x

n�1

; t

n�1

) = h

n

(x

1

; t

1

; : : : ; x

n�1

; t

n�1

; x; t)1

[0;t]

(t

1

) � � � 1

[0;t]

(t

n�1

);

for x

1

; : : : ; x

n�1

; x 2M and t

1

; : : : ; t

n�1

; t 2 IR

+

. The isometry property

E

�

I

n

(h

n

)

2

�

= n! k h

n

k

2

L

2

(M�IR

+

)


n

;

follows from (3). Let h 2 L

2

(M � IR

+

). The characteristic function of

I

1

(h) =

Z

M�IR

+

h(x; t)

~

X(dx; dt) =

Z

M

�

�IR

+

h(x; t)

~

N(dx; dt) +

Z

1

0

h(0; t)dB

t

is given by the L�evy-Khintchine formula

E

�

e

izI

1

(h)

�

= exp

�

�

1

2

z

2

Z

1

0

h(0; t)

2

dt+

Z

M

�

�IR

+

(e

izh(x;t)

� 1� izh(x; t))�(dx)dt

�

:

2.3 Chaotic calculus

In the remaining of this paper we work on the Fock space �(H), with H = L

2

(M �

IR

+

), and let K = L

2

(M). Let C = C

1

c

(IR

+

; C

c

(M)) \ C

c

(M � IR

+

).

De�nition 1 Let S denote the vector subspace of �(H) generated by elements of the

form h

1

� � � � � h

n

, where h

1

; : : : ; h

n

2 C, n 2 IN.
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Elements of �(H) are identi�ed with random variables in L

2

(
), by associating h

n

2

L

2

(M � IR

+

)

�n

to its multiple stochastic integral I

n

(h

n

), building the classical linear

isometric isomorphism from �(H) onto L

2

(
). For F 2 S, rF 2 �(H)
L

2

(M�IR

+

)

is identi�ed to a square-integrable function on M � IR

+

with values in S, and this

function will be denoted as (r

�

x;t

F )

(x;t)2M�IR

+

. In Sect. 4, elements of S will be

interpreted via the Fock space isomorphism as smooth random variables that will be

de�ned everywhere, that is for every trajectory of the L�evy process X.

We denote by � : L

2

(M � IR

+

) ! L

2

(M

�

� IR

+

) the canonical projection. Let

h 2 L

2

(M � IR

+

), let H denote the multiplication operator by the function h, and

let

^

h = �h. We de�ne the operator Y

h

on the dense domain S in �(H) as:

Y

h

F = r

+

�

H�r

�

F

�

+r

+

(F 
 h) + (r

�

F; h)

H

:

The following is an adaptation of a result of [17] with a di�erent proof.

Proposition 1 The operator Y

h

= d�(H�)+a

�

h

+a

+

h

on � (H) acts by multiplication

by I

1

(h) on L

2

(
) under the identi�cation between �(H) and L

2

(
).

Proof. We use the Itô formula for multiple Wiener-Poisson n-th and �rst order

stochastic integrals, cf. e.g. [23], [24]. Let g 2 C. We have

I

1

(h)I

n

(g

�n

) = nI

n

(g

�(n�1)

� (

^

hg)) + I

n+1

(g

�n

� h) + n(g; h)

H

I

n�1

(g

�(n�1)

); (5)

n � 1, and this identity can be rewritten as

I

1

(h)I

n

(g

�n

) = r

+

(H�r

�

I

n

(g

�n

)) +r

+

(I

n

(g

�n

)
 h) + (r

�

I

n

(g

�n

); h)

H

: 2

This proposition will be used in Sect. 7 for the construction of the Skorohod integral.

From (5) we have S � \

p�2

L

p

(
). If h 2 L

1

(M � IR

+

) has �nite measure support,

Prop. 1 gives

�

�; exp(�izY

h

)�

�

�(L

2

(H))

= exp

�

�

1

2

z

2

Z

1

0

h

2

(0; s)ds+

Z

M

�

�IR

+

(e

izh(x;s)

� 1� izh(x; s))�(dx)ds

�

; z 2 IR;

where � = 1 denotes the vacuum vector in �(H). In other terms, the spectral

measure associated to � of Y

h

is the law of I

1

(h) =

R

M�IR

+

h(x; t)

~

X(dx; dt).
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3 Operators on Fock space de�ned by derivation

of kernels

Let 1 denotes the unit function in K. Let @ denote the operator of di�erentiation

with respect to t 2 IR

+

of di�erentiable functions f 2 L

2

(IR

+

;K) and let @

�

be

de�ned on L

2

(IR

+

;K) as

@

�

u(t) =

Z

t

0

u(s)ds 2 K; t 2 IR

+

; u 2 L

2

(IR

+

;K):

The operators @, @

�

are adjoint in the following sense:

(@u; v)

L

2

(IR

+

;K)

= (u; @

�

v)

L

2

(IR

+

;K)

; u 2 C; v 2 L

2

(IR

+

;K):

Let �

[t

denote the projection in L

2

(IR

+

;K) de�ned as �

[t

f = 1

[t;1[

f , t 2 IR

+

.

3.1 Operators r

	

and r

�

As a convention, tensor products are completed only if vector spaces are closed.

De�nition 2 We de�ne respectively on S and S 
L

2

(IR

+

) the following unbounded

operators by linearity and polarization.

� Let r

	

: �(L

2

(IR

+

;K)) �! �(L

2

(IR

+

;K))
 L

2

(IR

+

) be de�ned by

r

	

t

f

�n

= �nf

�(n�1)

�

�

�

[t

@f

�

2 L

2

(IR

+

;K)

�n

; t 2 IR

+

; n 2 IN: (6)

� Let r

�

: �(L

2

(IR

+

;K))
 L

2

(IR

+

;K) �! �(L

2

(IR

+

;K)) be de�ned by

r

�

(f

�n


 g) = nf

�(n�1)

� (@ (f@

�

g)) ; n 2 IN: (7)

An operator similar to r

	

has been de�ned in di�erent contexts in [11], [21]. Mim-

icking the quantum probabilistic de�nition (2) of the operators a

�

g

and a

+

g

, let a

	

g

,

a

�

g

, g 2 L

2

(IR

+

) be de�ned as

a

	

g

F = (r

	

F; g)

L

2

(IR

+

)

; a

�

g

F = r

�

(F 
 g); F 2 S: (8)

The de�nitions of a

	

g

and a

�

g

as operators on S can also be extended to g 2

L

2

(IR

+

;K):

De�nition 3 For g 2 L

2

(IR

+

;K) we de�ne on S

a

	

g

F = �r

+

(@

�

g@ � r

�

F ); a

�

g

F = r

+

(@(@

�

gr

�

F )) = r

�

(F 
 g): (9)
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This de�nition is consistent with (8) since for g 2 L

2

(IR

+

), a

�

g

F = r

�

(F 
 g), and

a

	

g

f

�n

= (r

	

f

�n

; g)

L

2

(IR

+

)

, as follows from the equality

a

	

g

f

�n

= �nf

�(n�1)

� (@f@

�

g) = �n

Z

1

0

f

�(n�1)

�

�

�

[t

@f

�

g(t)dt = (r

	

f

�n

; g)

L

2

(IR

+

)

;

(10)

and a

	

g

is adjoint of a

�

g

:

< a

	

g

h

�n

; f

�n

>

�(H)

= n < h

�(n�1)

� @(h@

�

g); f

�n

>

�(H)

= n(h; f)

L

2

(IR

+

;K)

(@(h@

�

g); f)

L

2

(IR

+

;K)

= �n(h; f)

L

2

(IR

+

;K)

(h@

�

g; @f)

L

2

(IR

+

;K)

=< h

�n

; a

	

g

f

�n

>

�(H)

;

f; g; h 2 C. Consequently, r

	

and r

�

are also adjoint of each other:

< r

�

(f

�n


 g); h

�(n+1)

>

�(H)

=< f

�n


 g;r

	

h

�n

>

�(H)
L

2

(IR

+

)

;

f; g; h 2 C. and since S is dense in L

2

(IR

+

;K), and r

	

, r

�

, a

	

g

, a

�

g

are closable.

3.2 Relationship to the number operator

We notice here that the operators r

	

, r

�

, and the type of time perturbation they

relate to are closely connected to the number operator on �(L

2

(IR

+

;K)), or more

precisely to a second quantization operator. This property will be useful in Sect. 7

to distinguish between the two di�erent notions of Skorohod integrals.

Proposition 2 For g 2 L

2

(IR

+

;K), we have

a

	

g

+ a

�

g

= d�(g); (11)

on S, where g is identi�ed to a multiplication operator in L

2

(IR

+

;K).

Proof. This relation is a consequence of the identity @(f@

�

g) � @

�

g@f = fg, for

f 2 C, g 2 L

2

(IR

+

;K), and of the de�nition (9) of a

	

g

and a

�

g

.

2

This decomposition can be viewed as a decomposition of Poisson noise into creation

and annihilation parts, in a way that parallels the well-known decomposition of white

noise.
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3.3 Product rule

In this subsection elements of �(H) are identi�ed with random variables in L

2

(
) via

the Wiener-Poisson-Itô isometric isomorphism, hence (r

�

x;t

F )

(x;t)2M�IR

+

is an element

of L

2

(M � IR

+

; L

2

(
)), for F 2 Dom(r

�

).

Remark 1 Due to the Itô formula (5), every element of S can be expressed as a

polynomial in single stochastic integrals with respect to X. Conversely, a polynomial

in single stochastic integrals with respect to X is in S, provided its integrands are in

C.

As will be recalled in the next section, r

�

0;t

is identi�ed to a derivation operator,

and r

�

x;t

is, for x 6= 0, is identi�ed to a �nite di�erence operator. Hence we have the

identity

r

�

x;t

(FG) = Fr

�

x;t

G+Gr

�

x;t

F + 1

fx6=0g

r

�

x;t

Fr

�

x;t

G; (x; t) 2 M

�

� IR

+

; (12)

F;G 2 S.

Proposition 3 The action of the operator a

	

g

on a product is the following:

a

	

g

(FG) = Fa

	

g

G+Ga

	

g

F �

Z

M�IR

+

g(x; t)r

�

x;t

Fr

�

x;t

G�(dx)dt; (13)

g 2 L

2

(M � IR

+

), F;G 2 S.

Proof. The proof of this result uses the Itô formula, or equivalently Prop. 1. Let

h; f 2 C, and let

^

h denote the function

^

h = �h, where � : L

2

(M � IR

+

)! L

2

(M

�

�

IR

+

) is the canonical projection. We have

a

	

g

(I

1

(h)I

n

(f

�n

)) +

Z

M�IR

+

g(x; t)r

�

x;t

I

1

(h)r

�

x;t

I

n

(f

�n

)�(dx)dt

= �nI

n

�

f

�(n�1)

�

h

(@f

^

h + f@

^

h)@

�

g

i�

�n(n� 1)I

n

�

f

�(n�2)

�

^

hf � @f@

�

g

�

� nI

n+1

�

f

�(n�1)

� h � @f@

�

g

�

�I

n+1

(f

�n

� @f@

�

g)� n(n� 1)(f; h)

H

I

n�1

�

f

�(n�2)

� @f@

�

g

�

+n

Z

M�IR

+

g(x; t)h(x; t)f(x; t)�(dx)dtI

n�1

(f

�(n�1)

)

= �n(n� 1)I

n

�

f

�(n�1)

� f

^

h � @f@

�

g

�

� nI

n

�

f

�(n�1)

�

^

h@f@

�

g

�

�nI

n+1

�

f

�(n�1)

� h � @f@

�

g

�

� n(n� 1)(f; h)

H

I

n�1

�

f

�(n�2)

� @f@

�

g

�

�n(@

�

g; h@f)

H

I

n�1

�

f

�(n�1)

�

�nI

n

�

f

�(n�1)

� @

^

h@

�

gf

�

� I

n+1

(f

�n

� @h@

�

g)� n(@

�

g; f@h)

H

I

n�1

(f

�(n�1)

)

= I

1

(h)a

	

g

I

n

(f

�n

) + I

n

(f

�n

)a

	

g

I

1

(h):

9



The formula is then easily extended by induction to F;G 2 S from Prop. 1, as in

Prop. 8 of [22]. Assume that (13) holds for F = I

n

(f

�n

) and G = I

1

(h)

k

for some

k � 1. Then using the identity (12) satis�ed by r

�

x;t

, we can write

a

	

g

(I

n

(f

�n

)I

1

(h)

k+1

)

= I

1

(h)a

	

g

(I

n

(f

�n

)I

1

(h)

k

) + I

n

(f

�n

)I

1

(h)

k

a

	

g

I

1

(h)

�

Z

M�IR

+

g(x; t)r

�

x;t

I

1

(h)r

�

x;t

(I

1

(h)

k

I

n

(f

�n

))�(dx)dt

= I

1

(h)

�

I

1

(h)

k

a

	

g

I

n

(f

�n

) + I

n

(f

�n

)a

	

g

�

I

1

(h)

k

��

�I

1

(h)

Z

M�IR

+

g(x; t)r

�

x;t

�

I

1

(h)

k

�

r

�

x;t

I

n

(f

�n

)�(dx)dt+ I

n

(f

�n

)I

1

(h)

k

a

	

g

I

1

(h)

�

Z

M�IR

+

g(x; t)r

�

x;t

I

1

(h)

�

I

1

(h)

k

r

�

x;t

I

n

(f

�n

) + I

n

(f

�n

)r

�

x;t

�

I

1

(h)

k

��

�(dx)dt

�

Z

M�IR

+

1

fx6=0g

g(x; t)r

�

x;t

I

1

(h)r

�

x;t

I

1

(h)

k

r

�

x;t

I

n

(f

�n

)�(dx)dt

= I

1

(h)

k+1

a

	

g

I

n

(f

�n

) + I

n

(f

�n

)a

	

g

�

I

1

(h)

k+1

�

�

Z

M�IR

+

g(x; t)r

�

x;t

�

I

1

(h)

k+1

�

r

�

x;t

I

n

(f

�n

)�(dx)dt:

2

Following the proof of Prop. 3 we can show

r

	

t

(FG) = Fr

	

t

G+Gr

	

t

F �

Z

M

r

�

x;t

Fr

�

x;t

G�(dx); F; G 2 S; t 2 IR

+

; (14)

hence for g 2 L

2

(
)
 L

2

(IR

+

),

a

	

g

(FG) = Fa

	

g

G+Ga

	

g

F �

Z

1

0

g(t)

Z

M

r

�

x;t

Fr

�

x;t

G�(dx)dt; (15)

a.s., F;G 2 S. However this formula is not extended to a random g 2 L

2

(
) 


L

2

(M � IR

+

) since a

	

g

is not de�ned for such processes. See Sect. 7 for an extension

of the de�nition to random g.

4 Perturbations of L�evy processes and their Fock

space interpretation

In this section we study the probabilistic interpretations of r

�

and r

	

. While it is

well known that r

�

is interpreted by shifts of trajectories on both the Wiener and

Poisson spaces, we show that r

	

corresponds to perturbations by time changes.

10



4.1 Perturbations by shifts of trajectories

First by perturbation via addition of a jump to the Poisson point measure and

in�nitesimal shift of the Brownian trajectory, we get the annihilation operator on

�(H).

Proposition 4 We have for F 2 S:

r

�

x;t

F = F (X(�) + �

x;t

(�))� F; (x; t) 2M

�

� IR

+

; (16)

and

r

�

0;t

f (I

1

(h

1

); : : : ; I

1

(h

n

)) =

i=n

X

i=1

h

i

(0; t)@

i

f (I

1

(h

1

); : : : ; I

1

(h

n

)) ; (17)

f 2 C

1

b

(IR

n

), h

1

; : : : ; h

n

2 C, t 2 IR

+

, or more formally:

r

�

0;t

F = lim

"!0

1

"

(F (X(�) + "�

0;t

(�))� F ) ; F 2 S:

Proof. The Wiener and Poisson parts of

~

X can be treated separately. In the Wiener

case we refer to [14], [27] and to the references therein. In the Poisson case this result

is contained in [8], [16].

2

The Wiener part (r

0;t

F )

t2IR

+

of the operator r

�

is also called the Malliavin deriva-

tive, cf. [14]. The following relation between the values of the gradients r

�

on

M

�

� IR

+

and on f0g� IR

+

is connected to the convergence of the renormalized Pois-

son process to Brownian motion, and shows that r

�

F on f0g� IR

+

can be obtained

by continuity from its values on M

�

� IR

+

.

Proposition 5 Let h 2 C

c

(M) with lim

x!0

h(x) = 0 and h(x) 6= 0, 8x 2 M

�

. If

F 2 Dom(r

�

) is of the form F = f

�

R

M

R

t

0

h(x)

~

X(dx; ds)

�

, f 2 C

1

b

(IR), h 2 C

c

(M),

then

r

�

0;s

F = lim

x!0

1

h(x)

r

�

x;s

F; s 2 IR

+

; a:s:

Proof. This is a consequence of Relations (16) and (17).

2

11



4.2 Perturbations by time changes

We now turn to the probabilistic interpretation of r

	

and r

�

. The main di�erence

between our construction and that of e.g. [1] is that only jump times are perturbed

in the Poisson part of X. In this way we retain the connection between variational

calculus and stochastic integration, cf. Sect. 7. Since this probabilistic interpretation

will involve time changes and such perturbations can not be absolutely continuous

with respect to the Wiener measure (they can be, however, with respect to the Pois-

son measure), we will consider functionals that can be de�ned everywhere, i.e. for

every trajectory of X. Single stochastic integrals with respect to a Poisson measure

can be de�ned everywhere provided the support of the integrand has �nite intensity

measure. Wiener single stochastic integrals can be de�ned for every Brownian trajec-

tory if the integrand is continuously di�erentiable in the time variable so as to allow

to write an integration by parts formula. Hence single stochastic integrals in S can

be de�ned trajectory by trajectory, but S also contains iterated stochastic integrals

whose de�nition trajectory by trajectory is a priori ambiguous. We choose to de�ne

them everywhere by taking into account Remark 1 and by using the expression of

elements of S as polynomials in single stochastic integrals. More precisely, we state

the following de�nitions.

De�nition 4 Let F be a random variable de�ned for every trajectory of X. For

h 2 L

2

(M � IR

+

) \ L

1

(M � IR

+

) with k h k

L

1

(M�IR

+

)

< 1, let T

h

F denote the

functional F 2 S evaluated at time-changed trajectories whose jumps are obtained

from the jumps of N(dx; ds) via the mapping

M � IR

+

�!M � IR

+

(x; t) 7! (x; �

h

(x; t)) = (x; t+ @

�

h(x; t));

and whose continuous part is given by the time-changed Brownian motion (B

h

t

)

t2IR

+

de�ned as

B

h

�

h

(0;t)

= B

t

; t 2 IR

+

:

Since most functionals of stochastic analysis are only de�ned almost surely, we will

also need the following.

De�nition 5 Let D denote the vector space dense in L

2

(
) generated by

fI

n

(h

1

� � � � � h

n

) : h

1

; : : : ; h

n

2 \

p�2

L

p

(M � IR

+

); n 2 INg:

12



Let h 2 L

2

(M � IR

+

) \ L

1

(M � IR

+

) with k h k

L

1

(M�IR

+

)

< 1. For F 2 D of the

form I

n

(f

1

� � � � � f

n

), let F = f(I

1

(g

1

); : : : ; I

1

(g

m

)) denote the expression of F as a

polynomial in single stochastic integrals obtained from Prop. 1. We de�ne

U

h

F = f(I

1

(g

1

� �

h

); : : : ; I

1

(g

m

� �

h

)):

The de�nition of U

h

extends to D by linearity.

The interest in the operator U

h

, compared to T

h

, is that it is de�ned on a set of L

2

functionals, whereas T

h

is not. The link between U

h

and T

h

is given by the following

remark.

Remark 2 For any F 2 S there is a version

^

F of F such that U

h

F = T

h

^

F , a.s.

Proof. It su�ces to do the proof in the Wiener case, for F 2 S of the form F = I

1

(f).

It this case, I

1

(f) =

R

1

0

f

0

(s)B

s

ds, a.s., hence letting

^

F =

R

1

0

f

0

(s)B

s

ds, we obtain

T

h

^

F =

Z

1

0

f

0

(s)B(�

�1

h

(s))ds =

Z

1

0

f

0

(�

h

(s))B

s

(1+h(s))ds =

Z

1

0

f(�

h

(s))dB

s

; a:s:;

hence T

h

^

F = U

h

F , a.s.

2

Proposition 6 Let u 2 L

2

(M � IR

+

) \ L

1

(M � IR

+

). For F 2 S we have

�

d

d"

U

"u

F

j"=0

= a

	

u

F +

Z

M�IR

+

u(x; t)

�

1

fx6=0g

r

�

x;t

+

1

2

1

fx=0g

r

�

0;t

r

�

0;t

�

F�(dx)dt;

(18)

the limit being taken in L

2

(
).

Proof. Relation (18) is proved in two steps. First we notice that it holds for a simple

stochastic integral I

1

(h), h 2 C, cf. Prop. 9 of [22] and [21], and then use the product

rules (13) and (15) which imply that

F 7! a

	

u

F +

Z

M�IR

+

u(x; t)

�

1

fx6=0g

r

�

x;t

+

1

2

1

fx=0g

r

�

0;t

r

�

0;t

�

F�(dx)dt

is a derivation operator on S, given that r

�

0;t

is a derivation operator and that r

�

x;t

for x 6= 0 satis�es as a �nite di�erence operator:

r

�

x;t

(FG) = Fr

�

x;t

G+Gr

�

x;t

F +r

�

x;t

Fr

�

x;t

G; (x; t) 2 M

�

� IR

+

:

13



2

Prop. 6 will be interpreted in Sect. 5 as an extended form of the Itô formula, in which

a

	

g

F , having expectation zero, represents a \martingale term". Although it is dense

in L

2

(
), the class S is too small to be of real interest in stochastic analysis since it

does not contain the increments of X. Thus we need to extend Prop. 6 to a wider

class of functionals.

De�nition 6 We de�ne the operator A : D ! L

2

(
)
 L

2

(IR

+

) by

A

s

F =

Z

M

�

1

fx6=0g

r

�

x;s

F +

1

2

1

fx=0g

r

�

0;s

r

�

0;s

F

�

�(dx); dP 
 ds a:e:

The operator A, (whose \Wiener part" is the Gross Laplacian after integration with

respect to ds), will be used to de�ne a notion of pseudo generator for non-Markovian

processes that will, due to Relation (24) below, extend the classical notion of gen-

erator. The operator A is \intrinsic", in that unlike classical generators, it is not

determined by a particular process. Absolutely continuous drifts are not considered

here because their inuence is of a deterministic nature and for this reason they do

not create new problems in an extension of stochastic calculus to an anticipative or

to a non-Markovian setting. Similarly, in order to simplify the exposition, stochas-

tic integrals with respect to the Poisson measure are evaluated for functions with

�nite intensity measure support. The general case can be treated by introduction of

appropriate compensators.

Proposition 7 We have for u 2 C

1

c

(IR

+

) and F 2 D:

�

d

d"

< U

"u

F;G >

j"=0

=< F; a

�

u

G >

L

2

(
)

+ < AF;G
u >

L

2

(
)
L

2

(IR

+

)

; G 2 S: (19)

Proof. By comparison with the Malliavin calculus by space perturbation of trajec-

tories, the di�culty lies here in the fact that on Wiener space the transformation

T

"u

is not absolutely continuous. By polarization and use of the Itô formula (5) it is

su�cient to prove (19) for F = I

1

(f)

n

, where f 2 \

p�2

L

p

(M � IR

+

). We have the

chaos expansion

I

1

(f)

n

=

j=n

X

j=0

I

j

(f

j

):

Due to the multiplication formula for multiple Wiener-Poisson stochastic integrals,

f

k

is of the form f

k

= h

k

1

� � � ��h

k

k

�P

k

(f), where h

k

1

; : : : ; h

k

k

are powers of f of degree

14



lower than 2n, and P

k

(f) is a polynomial in integrals on M � IR

+

of powers of f . For

h 2 L

p

(M�IR

+

), p � 2, we let h(�

"u

) be the function de�ned by (x; t) 7! h(x; �

"u

(t)).

For " in a certain neighborhood of zero, (x; t) 7! (x; �

"u

(t)) is invertible and absolutely

continuous with bounded Radon-Nykodim derivative, hence h(�

"u

) is well-de�ned in

L

p

(M � IR

+

). We have

U

"h

F =

j=n

X

j=0

P

j

(f(�

"u

))I

j

(h

j

1

(�

"u

) � � � � � h

j

n

(�

"u

)):

We assume that G is in the k-th chaos, k � n, and that it is written as G = I

k

(g

�k

),

g 2 C. With this notation,

< U

"u

F;G >

L

2

(
)

= P

k

(f(�

"u

))(h

k

1

(�

"u

) � � � � � h

k

k

(�

"u

); g

�k

)

L

2

(M�IR

+

)


k : (20)

Now,

(h

k

1

(�

"u

) � � � � � h

k

k

(�

"u

); g

�k

)

L

2

(M�IR

+

)


k

=

�

h

k

1

;

�

g

1 + "u

�

(�

�1

"u

)

�

L

2

(M�IR

+

)

� � �

�

h

k

k

;

�

g

1 + "u

�

(�

�1

"u

)

�

L

2

(M�IR

+

)

; (21)

and the derivative of

�

g

1+"u

�

(�

�1

"u

) in " is continuously di�erentiable and uniformly

bounded on M � IR

+

for " in a neighborhood of zero by a function integrable on

M � IR

+

. An analogous change of variables can be performed in P

k

(f), hence <

U

"u

F;G > is di�erentiable in " in a certain neighborhood of zero. For F 2 S,

Relation (19) is a consequence of Prop. 6 and of the duality between r

	

and r

�

.

In order to prove (19) for F 2 D we need to exchange the derivation with respect

to " with the limit of a sequence (F

n

)

n2IN

in S such that (F

n

)

n2IN

and (AF

n

)

n2IN

converge respectively in L

2

(
) and L

2

(
) 
 L

2

(IR

+

) to F 2 D and to AF . Hence

the proposition will hold if we show

d

d"

< U

"u

F;G >

j"=0

= lim

n!1

d

d"

< U

"u

F

n

; G >

j"=0

; G 2 S:

For this it is su�cient to prove the following, given the polynomials expressions (20),

(21) . Let N � 1 and let (�

n

)

n2IN

be a sequence in C converging in \

p=N

p=2

L

p

(M � IR)

to �. We have for " in a neighborhood of zero

d

d"

(�(�

"

); g)

L

2

(M�IR

+

)

=

d

d"

(�;

�

g

1 + "u

�

(�

�1

"u

))

L

2

(M�IR

+

)

= (�;

d

d"

�

g

1 + "u

�

(�

�1

"u

))

L

2

(M�IR

+

)

15



= lim

n!1

(�

n

;

d

d"

�

g

1 + "u

�

(�

�1

"u

))

L

2

(M�IR

+

)

= lim

n!1

d

d"

(�

n

;

�

g

1 + "u

�

(�

�1

"u

))

L

2

(M�IR

+

)

= lim

n!1

d

d"

(�

n

(�

"u

); g)

L

2

(M�IR

+

)

:

2

Prop. 7 also gives:

�

d

d"

< U

"u

f(I

1

(h)); G >

j"=0

= < f(I

1

(h));r

�

(G
 u) >

L

2

(
)

+ <

Z

1

0

u

s

�

G

h

s

f

�

(I

1

(h))ds;G >

L

2

(
)

;

G 2 S, for f polynomial, h 2 \

p�2

L

p

(M � IR

+

), u 2 C

1

c

(IR

+

). For G = 1 we can

along the lines of the proof of Prop. 7 show the following result.

Proposition 8 Let T 2 IR

+

and let (u

"

)

"2IR

+

� C

1

c

([0; T ]) be continuous in " for the

k � k

L

1

(IR

+

)

norm. We have for F 2 D:

d

d"

E[U

"u

"

F ]

j"=0

= E[(AF; u

0

)

L

2

(IR

+

)

]:

5 A chaos approach to the Itô formula

The aim of this section is to develop from Prop. 6 a formula that extends the Itô

formula and gives the chaos expansion of its martingale term. The generator (G

h

s

)

s2IR

+

of the uncompensated process

X

h

t

=

Z

M

�

Z

t

0

h(x; s)N(dx; ds) +

Z

t

0

h(0; s)dB

s

; t 2 IR

+

;

where h 2 L

2

(M � IR

+

) has �nite measure support, is given by

�

G

h

s

f

�

(x) =

Z

M

�

(f(x + h(y; s))� f(x))�(dy)+

1

2

h(0; s)

2

@

2

f(x); x; s 2 IR

+

; (22)

f 2 C

2

(IR). The Dynkin formula says that the process f(X

h

t

)� f(0)�

R

t

0

G

h

s

f(X

h

s

)ds

is a martingale relative to the �ltration (F

t

)

t2IR

+

, and the Itô formula identi�es this

martingale:

f(X

h

t

)� f(0)�

Z

t

0

�

G

h

s

f

�

(X

h

s

)ds

=

Z

t

0

h(0; s)f

0

(X

h

s

)dB

s

+

Z

M

�

Z

t

0

(f(X

h

s

+ h(x; s))� f(X

h

s

))

~

N(dx; ds); (23)
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f 2 C

2

(IR). Note that from (16), (17) and (22) we have the relations

�

G

h

s

f

�

(I

1

(h)) =

Z

M

�

1

fx6=0g

r

�

x;s

+

1

2

1

fx=0g

r

�

0;s

r

�

0;s

�

f(I

1

(h))�(dx); (24)

and

1

[0;t]

(s)

�

G

h

s

f

�

(X

h

t

) =

Z

M

�

1

fx6=0g

r

�

x;s

+

1

2

1

fx=0g

r

�

0;s

r

�

0;s

�

f(X

h

t

)�(dx); (25)

for f 2 C

2

b

(IR). A similar relation can be written if X

h

is replaced by a di�usion

process but it is not as straightforward, cf. Relation (29) in Sect. 6. The annihilation

operatorr

�

does not appear only in the generator G

h

s

, but also in the martingale term

of the Itô formula from its expressions (16) and (17), moreover the anticipating Itô

formula makes use of r

�

in the Wiener case, cf. [14], [26]. However, the martingale

term (23) can not be explicitly written with r

�

. The closest result that directly

uses r

�

may be the Clark formula, cf. [7], [25] and Sect. 8 for its extension to L�evy

processes. The aim of the following lemma is to provide a chaos form for the Itô

formula, using the operators r

	

and r

�

.

Lemma 1 Let h 2 C, and let u 2 L

2

(
� IR

+

) \ L

1

(
� IR

+

) be (F

t

)-adapted. We

have for f polynomial:

�

d

d"

U

"u

f(I

1

(h))

j"=0

= (r

	

f(I

1

(h)); u)

L

2

(IR

+

)

+ (G

h

f(I

1

(h)); u)

L

2

(IR

+

)

: (26)

Proof. We apply Prop. 6 and use Relation (24).

2

Each term in the above Lemma belongs to L

2

, but the smoothness imposed on

functionals and the type of perturbation chosen do not make obvious the analogy

with the Itô formula. The following proposition gives from Lemma 1 more precise

information on the links between Itô di�erentials and the chaotic calculus induced

by r

	

. The formula applies to X

h

t

which does not have the smoothness property

required in Lemma 1, without having recourse to generalized random variables.

Proposition 9 Let h 2 C, and X

h

t

=

R

M

R

t

0

h(x; s)X(dx; ds), t 2 IR

+

. We have for

f polynomial

lim

n!1

Z

t

0

r

	

s

f(X

h;n

s

)ds =

Z

t

0

f

0

(X

h

s

)dB

s

+

Z

t

0

Z

M

(f(X

h

s

+h(x; s))�f(X

h

s

))

~

N(dx; ds);
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where the limit is taken in L

2

(
), and (X

h;n

)

n2IN

is any sequence converging to X

h

in L

2

(
)
 L

2

(IR

+

), of the form

X

h;n

t

=

Z

M

Z

1

0

h(x; s)e

n

(s� t)X(dx; ds); n 2 IN; t 2 IR

+

;

where (e

n

)

n2IN

� C

1

b

(IR) converges pointwise to 1

]�1;0]

with e

n

(s) = 1, s � 0, 0 �

e

n

(s) � 1, s � 0, n 2 IN.

Proof. Let (e

n

)

n2IN

be a sequence of smooth positive functions bounded by one and

converging everywhere to 1

]�1;0]

, with e

0

n

= 0 on IR

�

. We have almost surely

�

@

@s

X

h;n

s

=

Z

M

Z

1

0

h(x; u)e

0

n

(u� s)X(dx; du) =

Z

M

Z

1

s

h(x; u)e

0

n

(u� s)X(dx; du)

=

Z

M

Z

1

s

@

@u

(h(x; u)e

n

(u� s))(u)X(dx; du)�

Z

M

Z

1

s

@h(x; u)e

n

(u� s)X(dx; du);

which implies

@

@s

f(X

h;n

s

) = �

Z

M

Z

1

s

@

@u

(h(x; u)e

n

(u� s))X(dx; du)f

0

(X

h;n

s

)

+

Z

M

Z

1

s

@h(x; u)e

n

(u� s)X(dx; du)f

0

(X

h;n

s

):

With the same argument as in Prop. 6 we can show, using (14) and (24), that

�

Z

M

Z

1

s

@

@u

(h(x; u)e

n

(u� s))X(dx; du)f

0

(X

h;n

s

) = r

	

s

f(X

h;n

s

) + G

h

s

f(X

h;n

s

);

hence

@

@s

f(X

h;n

s

) = r

	

s

f(X

h;n

s

) + G

h

s

f(X

h;n

s

) +

Z

M

Z

1

s

@h(x; u)e

n

(u� s)X(dx; du)f

0

(X

h;n

s

);

and by integration on [0; t]:

f(X

h;n

t

) = f(0) +

Z

t

0

r

	

s

f(X

h;n

s

) +

Z

t

0

G

h

s

f(X

h;n

s

)ds

+

Z

t

0

Z

M

Z

1

s

@h(x; u)e

n

(u� s)X(dx; du)f

0

(X

h;n

s

)ds:

It remains to take the limit in L

2

(
), which does not depend on the choice of the

sequence (e

n

)

n2IN

as n goes to in�nity, and to use (23).

2

The result of the above proposition might be formally written as

r

	

t

f(X

h

t

+

) = f

0

(X

h

t

)@

t

B(t) +

Z

M

(f(X

h

t

+ h(x; t))� f(X

h

t

))@

t

~

N(dx; t);
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where @

t

B(t), @

t

~

N(dx; t) denote the Gaussian and Poissonian white noises.

We will now write a statement which is closer than Lemma 1 to the classical

Itô formula, and applies to a class of processes that can be anticipating with respect

to the L�evy �ltration, or non-Markovian. More generally, the considered processes

do not need to possess any particular property with respect to a �ltration. We state

below the properties that should be satis�ed by (X

t

)

t2IR

+

in order to extend the Itô

formula and the notion of generator to this process. Apart from the smoothness and

integrability hypothesis (1) and (2), the third condition ensures a form of consistency

in the time evolution of the process without requiring it to be Markov or adapted.

De�nition 7 We denote by V the class of processes (X

t

; (u

t

"

)

"2IR

+

)

t2IR

+

where (X

t

)

t2IR

+

is a family of random variables and (u

t

"

)

t;"2IR

+

is a family of functions such that for

any t > 0,

1. X

t

2 D,

2. (u

t

"

)

"2IR

+

is continuous in " for the k � k

L

1

(IR

+

)

norm,

3. for some T

t

2 IR

+

, u

t

"

2 C

1

c

([0; T

t

]) and satis�es U

"u

t

"

X

t

= X

t�"

a.s., for " in a

neighborhood of zero.

The family (u

t

"

)

t;"2IR

+

may be independent of ", and in this case we use the notation

(X

t

; u

t

)

t2IR

+

2 V.

Theorem 1 Let (X

t

; u

t

)

t2IR

+

2 V be such that X

t

2 S, 8t 2 IR

+

. We have the

extension of the Itô formula

f(X

t

) = f(0) +

Z

t

0

(r

	

f(X

s

); u

s

)

L

2

(IR

+

)

ds+

Z

t

0

(Af(X

s

); u

s

)

L

2

(IR

+

)

ds; (27)

for f polynomial.

Proof. This relation is (in di�erential form) a consequence of Def. 7 and Prop. 6.

2

In (27) the \martingale" term

R

t

0

(r

	

f(X

s

); u

s

)

L

2

(IR

+

)

ds is actually a �nite variation

process since (X

t

)

t2IR

+

� S. In the general case, this process is obviously not a

martingale but it has expectation zero and by analogy with classical di�usions, a

\martingale property" could be written here as

E

�

Z

t

0

(r

	

f(X

s

); u

s

)

L

2

(IR

+

)

ds j F

v

�

= E

�

Z

t

0

(1

[0;v]

r

	

f(X

s

); u

s

)

L

2

(IR

+

)

ds j F

v

�

;

v 2 IR

+

, given the property E[r

	

s

F j F

t

] = 0 of r

	

, s < t, obtained from (6).
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6 Pseudo generators of non-Markovian stochastic

processes

In this section we show that Prop. 8 yields a systematic method to �nd a partial

di�erential or integro-di�erential equation associated to the law of non-Markovian

stochastic processes. In the Markov case the results coincide with the ones obtained

via the classical theory. From the operator A we construct a pseudo generator L

associated to a stochastic process in the class V of Def. 7.

De�nition 8 To any process (X

t

; (u

t

"

)

"2IR

+

)

t2IR

+

in V we associate a family (L

t

)

t2IR

+

of operators de�ned as

(L

t

f)(X

t

) = E

�

(Af(X

t

); u

t

0

)

L

2

(IR

+

)

j X

t

�

;

for f polynomial, t 2 IR

+

.

Since (Af(X

t

); u

t

0

)

L

2

(IR

+

)

2 L

1

(
), L

t

f is de�ned dp

t

-a.e., where p

t

is the law of X

t

.

The following result uses the operator L to extend the notion of generator.

Theorem 2 Let (X

t

; (u

t

"

)

"2IR

+

)

t2IR

+

2 V. The law p

t

of X

t

satis�es the integro-

di�erential equation

@

dt

Z

IR

fdp

t

=

Z

IR

L

t

fdp

t

; t 2 IR

+

; (28)

for f polynomial.

Proof. Relation (28) is a direct consequence of Def. 8 and Prop. 8 that give

d

dt

E[f(X

t

)] = E[(Af(X

t

); u

t

)]; t 2 IR

+

: 2:

Relation (28) can be written in distribution sense as

@

@t

p

t

(x) = L

�

t

p

t

(x), t 2 IR

+

,

x 2 IR, where L

�

t

denotes the adjoint of L

t

. In view of the remark at the end of

Sect. 4 it is also possible to choose u

t

2 L

2

(M � IR

+

). In this way we can, for

instance in case X is a sum of independent Poisson processes, perturb each process

independently.

Until the end of this section we focus on the continuous case, in which it is

possible to gain more information on the operator L

t

. We have

A

s

f(X

t

) =

1

2

r

�

0;s

(f

0

(X

t

)r

�

0;s

X

t

) =

1

2

f

00

(X

t

)(r

�

0;s

X

t

)

2

+

1

2

f

0

(X

t

)r

�

0;s

r

�

0;s

X

t

:

Hence L

t

is of the form

L

t

= a

t

(x)@

2

x

+ b

t

(x)@

x

;
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where a

t

and b

t

are functions de�ned p

t

-a.e. on IR as

a

t

(X

t

) =

1

2

E[((r

�

0;�

X

t

)

2

; u

t

)

L

2

(IR

+

)

j X

t

]; b

t

(X

t

) =

1

2

E[(r

�

0;�

r

�

0;�

X

t

; u

t

)

L

2

(IR

+

)

j X

t

]:

We now illustrate Th. 2 with examples whose choices relies essentially on

the simplicity of calculations. In most cases, various di�erential equations can be

written for the law p

t

of a stochastic process, even when the Itô formula is not directly

applicable. The point in the present method is that it gives a systematic procedure

to derive a di�erential equation which is \canonical" in that its coincides with the

result obtained via the Itô formula in the Markov case. For each a; b 2 IR

+

, a < b, we

choose a function e

a;b

2 C

1

c

(IR

+

) with support in [a; b] and such that

R

b

a

e

a;b

(x)dx = 1,

with e

a;a

= 0.

� The main interest in this example is that it does not require the computation

of a conditional expectation, hence it clearly shows the role played by r

�

. Let

X

t

= B

2

t

+ (B

2t

� B

t

)

2

, t 2 IR

+

. The process (X

t

)

t2IR

+

is not Markovian, but it

has same law as a squared Bessel process. Let u

t

= e

0;t=2

+ e

t;3t=2

, t > 0. We have

U

"u

t

X

t

= X

t�"

, hence (X

t

; u

t

)

t2IR

+

2 V, and

A

s

f(X

t

) =

1

2

r

�

0;s

r

�

0;s

f(X

t

)

=

1

2

r

�

0;s

�

21

[0;t]

(s)B

t

f

0

(X

t

) + 21

[t;2t]

(s)(B

2t

� B

t

)f

0

(X

t

)

�

= 1

[0;2t]

(s)(f

0

(X

t

) + 2B

2

t

1

[0;t]

(s) + 2(B

2t

� B

t

)

2

1

[t;2t]

(s))f

00

(X

t

);

hence (Af(X

t

); u

t

)

L

2

(IR

+

)

= 2X

t

f

00

(X

t

)+2f

0

(X

t

), and L

t

= 2x@

2

x

+2@

x

. We retrieved

in this way the partial di�erential equation @

t

f

t

= 2x@

2

x

f

t

+ 2@

x

f

t

satis�ed by the

density f

t

of the law p

t

of (X

t

)

t2IR

+

.

� This example shows that the coe�cient of the second order derivative term

of the pseudo generator is allowed to be negative in our approach. Consider the

process X

t

=

R

b(t)

a(t)

h(s)dB

s

where a; b 2 C

1

(IR

+

), 0 � a < b, and h 2 L

1

(IR

+

) is a

step function h =

P

i=n

i=1

�

i

1

[t

i

;t

i+1

[

, and de�ne u

t

"

as

u

t

"

=

i=n

X

i=1

1

]t

i

;t

i+1

[

(a(t))

�

a(t+ ")� a(t)

"

e

t

i

;a(t)

�

a(t + ")� a(t)

"

e

a(t);t

i+1

�

+1

]t

i

;t

i+1

[

(b(t))

b(t + ")� b(t)

"

e

t

i

;b(t)

;
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for " > 0, and for " = 0 as:

u

t

0

=

i=n

X

i=1

1

]t

i

;t

i+1

[

(a(t))

�

a

0

(t)e

t

i

;a(t)

� a

0

(t)e

a(t);t

i+1

�

+ 1

]t

i

;t

i+1

[

(b(t))b

0

(t)e

t

i

;b(t)

:

With this de�nition of u

t

"

we have U

"u

t

"

X

t

= X

t�"

,A

s

f(X

t

) =

1

2

1

[a(t);b(t)]

(s)h(s)f

00

(X

t

),

and

(Af(X

t

); u

t

0

)

L

2

(IR

+

)

=

1

2

(�a

0

(t)h

2

(a(t)) + b

0

(t)h

2

(b(t)))@

2

f(X

t

);

hence the pseudo generator of (X

t

)

t2IR

+

is

L

t

=

1

2

(�a

0

(t)h

2

(a(t)) + b

0

(t)h

2

(b(t)))@

2

:

� In the following example the computation of a conditional expectation is

needed in order to calculate L

t

. Let X

t

= B

t

(B

1

�B

t

), t 2 [0; 1]. With u

t

= e

0;t

�e

t;1

we have U

"u

X

t

= X

t�"

, and

(Af(X

t

); u

t

)

L

2

(IR

+

)

=

1

2

�

(B

1

� B

t

)

2

� B

2

t

�

f

00

(X

t

):

The conditional expectation E[X

2

j XY ] where X; Y are independent centered gaus-

sian random variables with variances a

2

, b

2

respectively can be be computed as

E[X

2

j XY ] =

a

b

j XY j

K

1

�

jXY j

ab

�

K

0

�

jXY j

ab

�

;

where K

�

(x) is the modi�ed Bessel function of the second kind and of order � 2 IN,

hence

L

t

=

1

2

j x j

 

r

1� t

t

�

r

t

1� t

!

K

1

�

j x j =

p

t(1� t)

�

K

0

�

j x j =

p

t(1� t)

�

@

2

x

:

To end this section we discuss possible directions for the extension of the above re-

sults. The �rst problem that occurs is that the operatorr

	

requires the Fock kernels

it acts on to be smooth. Hence a construction involving distributions can be useful to

generalize the theory, and the Hida calculus seems to be a natural tool here because

the operator r

	

becomes continuous in Sobolev spaces of Fock kernels as it acts by

derivation of these kernels. Since the expectation of r

	

in the Itô formula is zero,
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the construction of pseudo-generators can be done without smoothness assumptions

kernels, for example on the space D. In this case the remaining problem is with the

proper de�nition of the operator

A

s

=

Z

M

�

1

fx6=0g

r

�

x;s

+

1

2

1

fx=0g

r

�

0;s

r

�

0;s

�

�(dx);

which requires give a meaning to the contraction of a function of two variables. The

right de�nition may consist in taking right limits, as suggests the following formal

treatment of classical di�usions. Let (X

t

)

t2IR

+

be de�ned by the stochastic di�erential

equation

X

t

=

Z

t

0

�(X

s

)dB

s

; t 2 IR

+

; � 2 C

2

c

(IR):

Here X

t

=2 D, and we indicate how the usual result can be formally recovered. We

have X

t

2 Dom(r

�

), cf. [14], and

r

�

s

f(X

t

) =

�

Z

t

s

r

�

s

�(X

v

)dB

v

+ 1

[0;t]

(s)�(X

s

)

�

f

0

(X

t

);

and for u > s,

r

�

u

r

�

s

f(X

t

) =

Z

t

s

r

�

u

r

�

s

�(X

v

)dB

v

f

0

(X

t

)

+

�

Z

t

s

r

�

s

�(X

v

)dB

v

+ 1

[0;t]

(s)�(X

s

)

�

�

�

Z

t

u

r

�

u

�(X

v

)dB

v

+ 1

[0;t]

(u)�(X

u

)

�

f

00

(X

t

);

hence we can de�ne

Af(X

t

) =

1

2

lim

s!t

�

lim

u!s

+

r

�

u

r

�

s

f(X

t

) =

1

2

�

2

(X

t

)f

00

(X

t+"

); (29)

and obtain L =

1

2

�

2

(x)@

2

x

.

7 Construction of the Skorohod integral

The purpose of this section is to construct the two di�erent Skorohod integrals in-

duced by the operators r

+

and r

�

as adjoints of gradient operators, depending on

the type (space or time) of perturbation chosen for the Poisson process. Given the

identi�cation between �(L

2

(M � IR

+

)) 
 L

2

(M � IR

+

) and L

2

(
) 
 L

2

(M � IR

+

)

via multiple stochastic integrals, the following natural de�nition of adaptedness in

�(L

2

(IR

+

;K))
L

2

(IR

+

;K) coincides with the de�nition of adaptedness with respect

to the �ltration (F

t

)

t2IR

+

generated by X.
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De�nition 9 A process (u

t

)

t2IR

+

with values in �(L

2

(IR

+

;K)) 
 K is said to be

adapted if

(u

t

; h

n

)

�(L

2

(IR

+

;K))
K

= 0;

whenever h

n

2 L

2

([t;1[;K)

�n


 K, n � 0, t 2 IR

+

.

The set of simple processes de�ned below is dense in �(L

2

(IR

+

;K))
 L

2

(IR

+

;K) '

L

2

(
)
 L

2

(M � IR

+

).

De�nition 10 We say that u 2 �(L

2

(IR

+

;K))
 L

2

(IR

+

;K) is a simple process if it

is written as

i=n

X

i=1

F

i

u

i

;

where u

1

; : : : ; u

n

2 C

c

(M � IR

+

), and F

1

; : : : ; F

n

2 S, n � 1. This set of processes is

denoted by U .

The �rst de�nition of the Skorohod integral uses the operator r

+

, and is the most

frequently used on the Wiener space, cf. [14], [15]. Let � : L

2

(M�IR

+

)! L

2

(M

�

�IR)

denote the canonical projection.

Proposition 10 Let u 2 U be a simple process in L

2

(
; P ) 
 L

2

(M � IR

+

). We

have

r

+

(u) =

Z

M�IR

+

u(x; t)X(dx; dt)�

Z

M�IR

+

r

�

x;t

u(x; t)�(dx)dt

�r

+

�

�

�

r

�

�

u(�)

��

; (30)

and if u 2 L

2

(
)
 L

2

(M � IR

+

) is (F

t

)-adapted, then

r

+

(u) =

Z

M�IR

+

u(x; t)

~

X(dx; dt):

Proof. We work for a process of the form u = Fh and we use Prop. 1 to express

the multiplication of F 2 S by I

1

(h) as a sum of three terms including r

+

(F 
 h),

and obtain (30). This relation is then extended to U by linearity. The de�nition of

adaptedness implies that the correction terms vanish in the adapted case.

2

The second notion of Skorohod integral uses the operator r

�

and the splitting of

d�(g) into a

	

g

and a

�

g

in Prop. 2. If u 2 U is a simple process written as u =

P

i=n

i=1

F

i

u

i
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we de�ne the operator

~

D

u

on S by time changes and in�nitesimal shifts of Brownian

motion from Prop. 4 and Prop. 6 as

~

D

u

F = (r

�

F; u)

L

2

(M�IR

+

)

+

i=n

X

i=1

F

i

a

	

�u

i

F; F 2 S:

The operators

~

D and

~

� = r

+

+r

�

� � are adjoints in the following sense. We have

E[

~

D

u

F ] = < r

�

F; u >

�(H)
H

+E[

i=n

X

i=1

F

i

a

	

�u

i

F ]

= < F;r

+

(u) >

�(H)

+E[F

i=n

X

i=1

a

�

�u

i

F

i

]

= < F;r

+

(u) >

�(H)

+E[F

i=n

X

i=1

r

�

(�u

i

F

i

)]

= < F;r

+

(u) +r

�

(�u) >

�(H)

=< F;

~

�(u) >

�(H)

; u 2 U ; F 2 S:

For u 2 U with u =

P

i=n

i=1

F

i

u

i

, we de�ne trace(

~

Du) as

trace(

~

Du) =

Z

1

0

r

�

s

u

s

ds+

i=n

X

i=1

a

	

�u

i

F

i

:

Proposition 11 If u 2 U is a simple process in L

2

(
)
 L

2

(M � IR

+

), then

~

�(u) =

Z

M�IR

+

u(x; t)X(dx; dt)� trace(

~

Du):

If moreover u 2 L

2

(
)
 L

2

(M � IR

+

) is (F

t

)-adapted, then

~

�(u) = r

+

(u) =

Z

M�IR

+

u(x; t)

~

X(dx; dt):

Proof. For u of the form u = Fh we use Prop. 10 and the decomposition of the

number operator that follows from (9), (10) and (11):

r

+

(�r

�

�

u

�

) = r

+

(�h

�

r

�

�

F ) = a

	

�h

F + a

�

�h

F = a

	

�h

F +r

�

(�u):

Finally we use the fact that r

�

vanishes on adapted processes from its de�nition

(7).

2
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8 Clark formula

In this section we extend the Clark formula, cf. [7], [25], to the case of L�evy processes.

Proposition 12 For F 2 L

2

(
), we have

F = E[F ] +

Z

M�IR

+

E[r

�

x;t

F j F

t

]

~

X(dx; dt):

Proof. Let �

n

= f((x

1

; t

1

); :::; (x

n

; t

n

)) 2 (M � IR

+

)

n

: t

1

< � � � < t

n

g. We have for

F 2 S:

F = E[F ] +

X

n�1

I

n

(f

n

1

�

n

)

= E[F ] +

X

n�1

Z

M�IR

+

I

n�1

(f

n

(�; x; t)1

�

n

(�; x; t))

~

X(dx; dt)

= E[F ] +

Z

M�IR

+

X

n�0

E[I

n

(f

n+1

(�; x; t)1

�

n

) j F

t

]

~

X(dx; dt)

= E[F ] +

Z

M�IR

+

E[r

�

x;t

F j F

t

]

~

X(dx; dt)

The extension of this statement to F 2 L

2

(
) is a consequence of the fact that the

adapted projection of r

�

F extends to a continuous operator from L

2

(
) into the

space of adapted processes in L

2

(
) 
 L

2

(M � IR

+

). For F =

P

1

n=0

I

n

(f

n

) 2 S

and u =

P

1

n=0

I

n

(u

n+1

) 2 U with u

n+1

2 L

2

(IR

+

;K)

�n


 L

2

(IR

+

;K), n 2 IN, we can

extend a classical argument:

j E

�

Z

M�IR

+

u(x; t)E[r

�

x;t

F j F

t

]�(dx)dt

�

j

�

1

X

n=0

(n + 1)! j

Z

M�IR

+

(f

n+1

(�; x; t)1

[0;t]

(�); u

n+1

(�; t))

L

2

(IR

+

;K)


n

�(dx)dt j

�

1

X

n=0

n!

p

n + 1 k f

n+1

k

L

2

(IR

+

;K)


(n+1)

k u

n+1

k

L

2

(IR

+

;K)


(n+1)

�

 

1

X

n=0

n! k f

n

k

2

L

2

(IR

+

;K)


n

1

X

n=0

n! k u

n+1

k

2

L

2

(IR

+

;K)


(n+1)

!

1=2

� k F k

L

2

(
)

k u k

L

2

(
)
L

2

(M�IR

+

)

:

2
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