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Abstract: In a recent paper, we proposed a new estimation method for the blind

deconvolution of a linear system with discrete random input, when the observations

may be noise perturbed. In this paper, we give the speed of convergence of the esti-

mators in the parametric situation. With n noisy observations, the estimator satis�es

a central limit theorem with speed

p

n as usual, while with non noisy observations,

the speed of convergence is governed by the l

1

-tail of the inverse �lter, which may

have exponential decay. It appears that noisy and non noisy models are of di�erent

statistical nature. We also extend results concerning Hankel estimation to Toeplitz esti-

mation, and prove a formula to compute Toeplitz forms that may have interest in itself.
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1 Introduction

In a recent paper ([1]) one of the authors proposed a new method for the estimation

of a linear �lter when the input series takes value in an unknown �nite alphabet with

known cardinality and when the �ltered output is noiseless. We further re�ned the

method to take noise into account (see [2]) so that the estimated �lter converges to the

unknown �lter whatever the signal to noise ratio was. We claimed in both papers that

our estimator should behave asymptotically better than other estimators that apply to

many input distributions, since our estimator takes the discreteness into account. This

claim was supported by the result that, for autoregressive processess, the estimator

achieved the exact value of the unknown �lter with a �nite number of observations.

The aim of this paper is to give theoretical results on the speed of convergence to make

the claim proved.In a similar context but with known alphabet, Li ([4]) proposed an

estimator to deal with multilevel inputs. In the non noisy situation and when the �lter

is parametrized with a �nite dimensional parameter, the speed of convergence was up-

per bounded by the l

1

-tail of the inverse of the unknown �lter. We prove here a similar

result for our estimator, and we also give partial results on the speed of convergence in

the non parametric situation. Since our method may take noise into account, we give

also results concerning the estimator when noise is present.

Let us now be more precise. We assume that the observed sequence (Y

k

)

k2ZZ

is the

output of an unknown linear time-invariant system U with impulse response (u

k

)

k2ZZ

that is driven by an unobservable input sequence (X

k

)

k2ZZ

, corrupted or not with

additive noise (�

0

�

k

)

k2ZZ

where the level �

0

is either 0, or known, or unknown:

Y

k

=

X

j2ZZ

u

j

X

k�j

+ �

0

� �

k

(1)

The input signal is known a priori to be discretely distributed with p di�erent possible

values. The linear system u = (u

j

)

j2ZZ

is invertible; � = (�

k

)

k2ZZ

is the inverse �lter of

u, that is :

X

j

�

j

u

k�j

= �

k

; k 2 ZZ

where �

k

denotes the Kronecker symbol. Notice that we do not make any phase as-

sumption on the system : the system U could have non minimum phase. Also, the

input signal needs not to be independently distributed. To solve the problem of blind

identi�cation, we apply an adjustable linear time-invariant system S : s = (s

k

)

k2ZZ

to

the output (Y

k

)

k2ZZ

and work on the sequence (Z(s)

k

)

k2ZZ

:

Z(s)

k

=

X

j

s

j

Y

k�j

(2)
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It is clear that the sequence (Z(s)

k

)

k2ZZ

is just the sum of the sequence obtained as

the result of the linear system S � U applied to the input X and of the linear system

S applied to the noise �

0

� � :

Z(s)

k

=

X

j

(s � u)

j

X

k�j

+ �

0

�

X

j

s

j

�

k�j

(3)

Under very general assumptions, linear combinations of random variables lead to vari-

ables with strictly bigger support. Say that a distribution is p-concentrated if its

support reduces to p di�erent points. Our estimator relies on the quanti�cation of the

p-concentration of a probability distribution, in particular through the Hankel matrix

of the �rst algebraic moments or Toeplitz matrix of the trigonometric moments of the

distributions, and the fact that the inverse �lter � may be found as the particular �l-

ter s that leads to the only p-concentrated series (Z(s)

k

)

k2ZZ

if there is no noise. In

the presence of noise, divisibility of gaussian distributions allows a similar method to

estimate simultaneously the inverse �lter and the noise level �

0

. Let us now recall the

de�nition of the estimators, and the convergence results we obtained.

General assumptions on the model (1) are the following :

(M1) The input signal consists of discrete real random variables X

k

with unknown

common support A := fx

1

; : : : ; x

p

g of known cardinality p.

(M2) U(x) :=

P

k

u

k

e

ikx

is a continuous function which does not vanish on [0; 2�].

(M3) X = (X

k

)

k2ZZ

is a stationary ergodic process.

(M4) For any integer n and for any integers j

1

; : : : ; j

n

in f1; : : : ; pg,

P (X

1

= x

j

1

; : : : ;X

n

= x

j

n

) > 0:

(M5) � = (�

k

)

k2ZZ

is a sequence of i.i.d. gaussian variables which are independent of

the input signal; �

0

is unknown; E(�

1

) = 0; E(�

2

1

) = 1.

Let us give simple examples where the assumptions hold:

� White input sequence: When the variablesX

t

; t 2 ZZ, are independent identically

distributed, (M1), (M3), (M4) hold.

� Thresholded process: Let (W

t

)

t2ZZ

be a stationary process such that the distribu-

tion of any �nite marginal is continuous (for example, a Gaussian process). Let

m

1

< m

2

� � � < m

p�1

be real numbers, and set m

0

= �1, m

p

= +1. De�ne the

thresholded process (X

t

)

t2ZZ

by: X

t

= x

j

if and only if W

t

2]m

j

;m

j+1

]. Then

(M1), (M3), (M4) hold.
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� Aperiodic recurrent Markov chain: Let (X

t

)

t2ZZ

be a Markov chain with state

space of cardinality p and a transition matrix such that any transition probability

is positive (all states communicate in one step). Then (M1) and (M4) hold. It

is also easy to see that the chain is aperiodic and recurrent, so that (M3) holds.

The Gaussian distribution for the noise � has been chosen for sake of simplicity. How-

ever, all the probabilistic results of the section stay true with a noise of the form �

0

:�

k

,

where the scale �

0

is unknown, and �

k

has an in�nitely divisible distribution of classe

L, see Petrov (1975).

In the next section, we shall recall the general estimation procedure proposed in [1]

when there is no noise, Hankel estimation, Toeplitz estimation, and re�nement to deal

with the presence of noise, proposed in [2], together with their convergence Theorems.

We also set new results when using Toeplitz forms in the estimation procedure. We

refer to previous papers the interested readers for details and explanations on the

procedures. Subsequent sections give the asymptotic speed of convergences in the

parametric case when there is no noise and asymptotic results concerning the noisy

situation. Numerical experiments to illustrate those theoretical results may be found

in [2].

2 Estimation procedures and previous results.

2.1 T -system estimation procedure.

let � = (1;�

1

; : : : ;�

2p

) be a Tchebytchev system (T -system) of functions on [0; 1] (for

the de�nition of T -system see [3]). For any �lter s, de�ne:

c(s) = (c

i

(s))

i=1;:::;2p

c

i

(s) = E [�

i

('(Z(s)

1

))]

where ' is a given continuous bijective function which maps IR onto ]0; 1[. Notice that

'(Z

1

(s)) is now a variable taking value in ]0; 1[. Now, a nice property of a T -system is

the following: Let P be the set of all probability measures on [0; 1] and

K := fc 2 IR

2p

: 9P 2 P;

Z

1

0

�dP = cg:

Recall that if V is a random variable taking value in ]0; 1[ then: E(�(V )) lies on the

boundary of K if and only if V is discrete with at most p points of support. Let now

h be a non negative and continuous function de�ned on K such that:

h(c) = 0() c 2 bd(K)
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We then de�ne a contrast function H by:

De�nition 2.1

H(s) = h(c(s)); s 2 �

De�ne now the parameter space � as a subset of l

1

(ZZ) which is unambiguous on scale

and delay. The sequenceH

n

is de�ned as an empirical contrast function in the following

way. To use only the observations Y

1

; : : : ; Y

n

, we need to truncate the �lter s.

Let k(n) be an increasing sequence of integers. De�ne:

^

Z(s)

t

=

+k(n)

X

k=�k(n)

s

k

� Y

t�k

for t = 1 + k(n); : : : ; n� k(n), and

c

n

(s) :=

1

n� 2k(n)

n�k(n)

X

t=1+k(n)

�

�

'(

^

Z(s)

t

)

�

:

We may now de�ne:

H

n

(s) := h(c

n

(s)):

We now de�ne the estimator:

De�nition 2.2

^

� is any minimizer of H

n

over �

n

:

�

n

= � \ fs : s

k

= 0 for jkj > k(n)g:

We assume throughout the sequel that:

lim

n!1

k(n) =1 and lim

n!1

k(n)

n

= 0:

The following Theorems were proved in [1]

Theorem 2.3 Assume that (M1), (M2), (M3), (M4) hold, and that �

0

= 0. If �

is compact, then

^

� converges almost surely, in l

1

(ZZ), to � as n tends to in�nity.

Suppose that the set � can be represented as a parametric model with real-valued

parameter vector � in a set S of dimension q: � = (�

j

)

j=1:::q

:

� := f�(�); � 2 Sg

Let �

�

be the true parameter value. To estimate �

�

, we minimize L

n

(�) := H

n

(�(�)).

Let

^

� be any minimizer of L

n

over a given compact set K containing �

�

.

Theorem 2.4 Assume that the application � ! �(�) from IR

q

to l

1

(ZZ) is continuous,

and that assumptions (M1) to (M4) hold, and that �

0

= 0. Assume the identi�ability

assumption:

�

k

(�) = r�

k�K

(�

0

); 8k 2 ZZ() r = 1; K = 0 and � = �

0

:

Then,

^

� converges, almost surely, as n approaches in�nity, to �

�

.
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2.2 Hankel forms

We propose here a similar estimation procedure using Hankel forms based on the

algebraic moments. Let � be the sequence of moment functions: �

j

(x) = x

j

; j =

1; : : : ; 2p. Let M(s) be the (p + 1) � (p + 1) Hankel matrix given by: M(s)

i;j

=

c

i+j�2

(s); i; j = 1; : : : ; p + 1, where here c(s) = E(�(Z(s)

1

)) (Notice that here we do

not need to map IR on the interval ]0; 1[). This matrix is non negative as soon as c is the

begining of the moment sequence of a random variable, and degenerates if and only if

this random variable is discrete with at most p points of support. Set: h(c) = det[M ],

and H(s) = h(c(s)). Then Theorems 2.3 and 2.4 hold.

The interest of this estimation procedure is because it may be used to handle with the

presence of noise.

De�ne M(s; �) as the Hankel matrix built using the solutions c

j

(s; �) of the triangular

system :

E(Z(s)

j

1

) =

j

X

i=0

C

i

j

c

i

(s; �) � v(s; �)

j�i

�

j�i

; j = 0; : : : ; 2p (4)

where v

2

(s; �) = �

2

� ksk

2

2

and �

j�i

is the j � i-th moment of the standard gaussian.

De�ne the fonction H(s; �) of the �lter and the noise level as the value of the determi-

nant of M(s; �). De�ne the estimators

b

c

j

(s; �) of the pseudo-moments c

j

(s; �) as the

solutions of the triangular system:

b

c

j

(s) =

j

X

i=0

C

i

j

�

b

c

i

(s; �) � (� � ksk

2

)

j�i

� �

j�i

; j = 1; : : : ; 2p

Let M

n

(s; �) be the Hankel matrix built using the

b

c

j

(s; �), and let H

n

(s; �) be the

estimator of the function H :

H

n

(s; �) = det[M

n

(s; �)]

Let �(n) be a sequence of positive real numbers with limit 0 as n tends to in�nity.

De�ne:

J

n

(s; �) = (H

n

(s; �))

2

+ (�(n))

2

� � (5)

We set:

De�nition 2.5 The estimator (

b

�;

b

�) is any minimizer of J

n

over �� IR

+

.

To have a good asymptotic behaviour of the estimator, the speed �(n) has to be related

to the stochastic variation of the empirical moments and to the truncation parameter

k(n). We then need some more assumption on the processes :
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Assumption (M6) : Assume that

X

jkj>k(n)

j�

k

j = o(�(n))

and that:

lim

n!1

(�(n))

�1

�

1

n

n

X

t=1

 

[X

t

+

X

k

�

k

�

t�k

]

j

�m

j

(�)

!

= 0

in probability for j = 1; : : : ; 2p, where m

j

(�) = E([X

t

+

P

k

�

k

�

t�k

]

j

).

In [2], a convergence Theoremwas proved for the estimatorminimizing jdet[M

n

(s; �)]j+

�(n) � �. Since we shall derive the speed of convergence via a Taylor expansion, we

choosed here to work with (det[M

n

(s; �)])

2

. Following the same lines, we easily have:

Theorem 2.6 Assume that (M1) to (M6) hold.

Then, as n tends to in�nity,

b

� converges in l

1

in probability to �, and

b

� converges in

probability to �

0

.

An immediate corollary of this Theorem is that the method leads to consistent esti-

mation in the parametric case. Assume that the model is �nitely parameterized by

� = (�

k

)

k=1;:::;q

in IR

q

, such that the parametrizing function �(�) is continuous, one

to one, with continuous inverse for � in a compact set �. De�ne the estimator (

b

�;

b

�)

as the minimizer of J

n

(�(�); �) over � � IR

+

. If the parametrizing function veri�es

assumptions (M1) to (M6), we obviously have :

Corollary 2.7 (

b

�;

b

�) converges in probability to the true value (�; �

0

) of the parameter.

We shall also recall a useful formula given in Lindsay ([5]), which gives the valueM(W )

of the determinant of the Hankel matrix based on the 2p �rst algebraic moments of a

random variable W :

Proposition 2.8 Let W

0

; : : : ;W

p

be p + 1 independent copies of W . We have:

M(W ) =

1

(p + 1)!

E[

Y

i<j

(W

i

�W

j

)

2

]

2.3 Toeplitz forms

In case some information is available concerning the magnitude of the X

t

, Toeplitz

forms may be used to handle with noisy observations in a similar manner as Hankel

forms. We here assume that:
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� (T) The unknown alphabet A is a subset of ]m;M [, m and M are known.

Let F = 2�(M � m)kuk

1

sup

s2�

ksk

1

. Let � be the sequence of moment functions:

�

j

(x) = exp(

i

F

(j � p � 1)x); j = 1; : : : ; 2p. Let T (s) be the (p + 1)� (p + 1) Toeplitz

matrix given by: T (s)

i;j

= c

i�j

(s); i; j = 1; : : : ; p + 1, where here c(s) = E(�(Z

1

(s)))

This matrix is non negative as soon as c is the begining of the Fourier coe�cients of the

distribution of a random variable, and degenerates if and only if this random variable

is discrete with at most p points of support. Set: h(c) = det[T ], and H(s) = h(c(s)).

Then Theorems 2.3 and 2.4 hold if (T) is assumed.

Again, this procedure may be used to handle with the presence of noise.

De�ne T (s; �) as the Toeplitz matrix built using the c

j

(s; �):

E(exp(

ij

F

Z(s)

1

)) = c

j

(s; �) � exp(�

j

2

�

2

ksk

2

2

2F

2

) j = �p; : : : ; p (6)

De�ne the fonction H(s; �) of the �lter and the noise level as the value of the de-

terminant of T (s; �). De�ne the estimators

b

c

j

(s; �) of the pseudo-moments c

j

(s; �)

by:

b

c

j

(s; �) =

b

c

j

(s) � exp(

j

2

�

2

ksk

2

2

2F

2

) j = �p; : : : ; p

Let T

n

(s; �) be the Toeplitz matrix built using the

b

c

j

(s; �), and let H

n

(s; �) be the

estimator of the function H :

H

n

(s; �) = det[T

n

(s; �)]

J

n

(s; �) is de�ned again by (5), and (

b

�;

b

�) as any minimizer of J

n

over ��IR

+

. Replace

assumption (M6) by

Assumption (T6) : Assume that

X

jkj>k(n)

j�

k

j = o(�(n))

and that:

lim

n!1

(�(n))

�1

�

1

n

n

X

t=1

 

exp(

i

F

j(X

t

+

X

k

�

k

�

t�k

))�m

j

(�)

!

= 0

in probability for j = 1; : : : ; 2p, where m

j

(�) = E(exp(

i

F

j(X

t

+

P

k

�

k

�

t�k

))).

The following Theorem holds, its proof is analoguous to that of Theorem 2.6, and

will be omitted.

Theorem 2.9 Assume that (M1) to (M5), (T) and (T6) hold.

Then, as n tends to in�nity,

b

� converges in l

1

in probability to �, and

b

� converges in

probability to �

0

. With a parametric continuous parametrization, (

b

�;

b

�) converges in

probability to the true value (�; �

0

) of the parameter.
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We shall now prove a useful formula, which gives the value T (W ) of the determinant

of the Toeplitz matrix based on the p �rst complex exponential moments of a random

variable W . It is proved in section 5.

Proposition 2.10 Let W

0

; : : : ;W

p

be p + 1 independent copies of W . We have:

T (W ) =

2

p(p+1)=2

(p+ 1)!

E

Y

j<k

�

1� cos(

W

j

�W

k

F

)

�

We shall now study the speed of convergence of the proposed estimators in the para-

metric situation. The parameter will now be � = (�

j

)

j=1:::q

in the parameter space

S.

� := f�(�); � 2 Sg

We assume that the model is identi�able. �

�

is the true parameter value.

3 Speed of convergence: non noisy observations.

Throughout this section, the level noise �

0

is set to 0.

From now on, the notation D

r

x

F (y) will designate the r-th derivative of F with respect

to the variable x and evaluated at point y.

Let also �

�

be the set of all elements of � except �.

Since the speed of convergence is studied via Taylor expansions, we shall always assume:

� (D) The functions h(�), �(�) and '(�) are twice continuously di�erentiable. Let

D

2

s

H(s) = (

@

2

@s

k

@s

l

H(s))

k;l2ZZ

. Then D

2

s

H(�) is positive de�nite on the set �

�

.

It should be seen that H(�) and H

n

are twice continuously di�erentiable, and that

since � is a minimizer of H, the operator D

2

s

H(�) is necessarily non negative. The

assumption concerns the de�niteness. Notice also that the gradient operator D

1

s

H of

H is in L

1

with no more assumptions.

In case H is the Hankel form, h is a multi polynomial and c is an algebraic power, so

that they are twice continuously di�erentiable. It will be later proved that in this case

D

2

s

H(�) is positive de�nite on �

�

, so that (D) holds with no particular assumption.

In case H is the Toeplitz form, h is a multi polynomial and c is a complex exponential,

so that they are twice continuously di�erentiable. It will also be later proved that in

this case D

2

s

H(�) is positive de�nite on �

�

, so that again (D) holds with no particular

assumption.

We shall also use the following assumptions:
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� (P) The application � ! �(�) is twice continuously di�erentiable.

For any i = 1; : : : ; q, (

@�

k

@�

i

)

k2ZZ

and (

@

2

�

k

@�

2

i

)

k2ZZ

are in l

1

(ZZ).

Moreover, (

@�

k

@�

1

(�

�

))

k2ZZ

; : : : ; (

@�

k

@�

q

(�

�

))

k2ZZ

are linearly independent, and no linear

combination of these derivatives equals �.

3.1 Asymptotic result

To estimate �

�

, we minimize L

n

(�) as described in section 2. Let L(�) = H(�(�)). A

useful result will be:

Proposition 3.1 Under (P) and (D), the functions L(�) and L

n

(�) are twice contin-

uously di�erentiable. Let D

2

�

L(�) = (

@

2

L(�)

@�

k

@�

l

)

k;l=1;:::;q

. Then D

2

�

L(�

�

) is positive de�nite

on S � �

�

.

The main result of this section is:

Theorem 3.2 Assume that (M1), (M2), (M3), (M4), (P) hold. If the estimation

method is not Hankel nor Toeplitz, assume moreover (D). We have almost surely for

big enough n:

k

^

� � �

�

k

2

� C �

X

jkj>k(n)

j�

k

(�

�

)j

where C is a constant.

Proof.

Using Theorem 2.4,

^

� is almost surely consistent. So that for big enough n, and for

i = 1; : : : ; q:

@

@�

i

L

n

(

^

�) = 0

Using a Taylor expansion of �rst order we obtain, for all i = 1; : : : ; q:

0 =

@

@�

i

L

n

(�

�

) +

q

X

j=1

(

^

�

j

� �

�

j

)

@

2

@�

i

@�

j

L

n

(

~

�

j

) (7)

where

~

�

j

2 [

^

�; �

�

). Usually, empirical based estimators are related to the speed of

convergence of the empirical functions to the expectation of the functions, so that

p

n speed of convergence is obtained. The key idea here will be to relate not to the

expectation of the functions, but to the non truncated empirical moments. To do

this, de�ne for any �lter s the empirical moments for the non truncated series:

~c

n

(s) =

1

n� 2k(n)

n�k(n)

X

t=1+k(n)

�('(Z(s)

t

)) :

10



and also

~

H

n

(s) = h(~c

n

(s));

~

L

n

(�) =

~

H

n

(�(�))

Since Z(�(�

�

))

t

= X

t

for all t, ~c

n

(�(�

�

)) is the expectation of a random variable taking

at most p distinct values, so that �(�

�

) is a minimum point of

~

H

n

! Now:

@

@�

i

L

n

(�

�

) =

X

jkj�k(n)

@

@s

k

H

n

(�(�

�

))

@

@�

i

�

k

(�

�

)

since H

n

depends only on s

k

for jkj � k(n). Using the previous remark,

@

@s

k

~

H

n

(�(�

�

)) = 0

for all k, and then:

@

@�

i

L

n

(�

�

) =

X

jkj�k(n)

 

@

@s

k

H

n

(�(�

�

))�

@

@s

k

~

H

n

(�(�

�

))

!

@

@�

i

�

k

(�

�

)

This will allow to prove (see section 5)

j

@

@�

i

L

n

(�

�

)j � C

4

�

X

jkj>k(n)

j�

k

j (8)

for some constant C

4

. Now, for any i; j = 1; : : : ; q we have

@

2

@�

i

@�

j

L

n

(

~

�

j

) =

@

2

@�

i

@�

j

L(�

�

) +

 

@

2

@�

i

@�

j

L

n

(

~

�

j

)�

@

2

@�

i

@�

j

L(�

�

)

!

It is easily proven, using the ergodicity of the process (X

t

) and the fact that it is

bounded, that

 

@

2

@�

i

@�

j

L

n

(

~

�

j

)�

@

2

@�

i

@�

j

L(�

�

)

!

tends to 0 a.s., and uniformly in i and j since there are a �nite number of them.

Now, using Proposition 3.1,

X

i;j=1;:::;q

@

2

@�

i

@�

j

L(�

�

)(

^

�

i

� �

�

i

)(

^

�

j

� �

�

j

) � �k

^

� � �

�

k

2

2

(9)

where � is the smallest eigen value of D

2

L(�

�

).

The Theorem follows using (7), (8) and (9) and with C =

2C

4

�

.
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3.2 De�niteness of D

2

s

H(�)

Let us study the second derivative operator of H with respect to s when it is the Hankel

or the Toeplitz form.

Let (X

0

t

)

t2ZZ

; : : : ; (X

p

t

)

t2ZZ

be p+1 independent copies of (X

t

)

t2ZZ

. De�ne for i = 0; : : : ; p

and t 2 ZZ

Y

i

t

=

X

k2ZZ

u

k

X

i

t�k

(Y

0

t

)

t2ZZ

; : : : ; (Y

p

t

)

t2ZZ

are p + 1 independent copies of (Y

t

)

t2ZZ

In the same way, de�ne

for i = 0; : : : ; p, t 2 ZZ and any �lter s

Z

i

(s)

t

=

X

k2ZZ

s

k

Y

i

t�k

(Z

0

(s)

t

)

t2ZZ

; : : : ; (Z

p

(s)

t

)

t2ZZ

are p + 1 independent copies of (Z(s)

t

)

t2ZZ

. We have the

following result:

Proposition 3.3 For any �lter v = (v

k

)

k2ZZ

, we have for the Hankel procedure:

v

T

�D

2

s

H(�) � v =

2

(p + 1)!

X

i<j

E

0

@

(Z

i

0

(v)� Z

j

0

(v))

Y

i

0

<j

0

;(i

0

;j

0

) 6=(i;j)

(X

i

0

0

�X

j

0

0

)

1

A

2

and for the Toeplitz procedure:

v

T

�D

2

s

H(�)�v =

2

p(p+1)=2

(p + 1)!F

2

X

i<j

E

0

@

(Z

i

0

(v)� Z

j

0

(v))

2

Y

i

0

<j

0

;(i

0

;j

0

) 6=(i;j)

(1 � cos(

X

i

0

0

�X

j

0

0

F

))

1

A

In particular, D

2

s

H(�) is positive de�nite on �

�

under assumption (M4).

To �nish the study of D

2

s

H(�), let us mention a result:

Proposition 3.4 For any �lter v, and if the variables X

t

are i.i.d., then

v

T

�D

2

s

H(�) � v = C

H

X

k 6=0

(v � u)

2

k

with

� For the Hankel procedure

C

H

=

2V ar(X

0

)

(p � 1)!

E(

Y

i<j;(i;j) 6=(0;1)

(X

i

0

�X

j

0

)

2

)

� For the Toeplitz procedure

C

H

=

2

1+p(p+1)=2

V ar(X

0

)

(p � 1)!F

2

E

0

@

Y

i<j;(i;j) 6=(0;1)

(1� cos(

X

i

0

�X

j

0

F

))

1

A

12



Indeed, by easy computation and applying Proposition 3.3, we have for the Hankel

procedure:

v

T

�D

2

s

H(�)�v =

1

(p � 1)!

X

k;l2ZZ

�

(v�u)

k

(v�u)

l

E[(X

0

�k

�X

1

�k

)(X

0

�l

�X

1

�l

)

Y

i<j;(i;j) 6=(0;1)

(X

i

0

�X

j

0

)

2

]

Now, if k = 0 or l = 0, (X

0

�k

�X

1

�k

)(X

0

�l

�X

1

�l

)

Q

i<j;(i;j) 6=(0;1)

(X

i

0

�X

j

0

)

2

= 0 a.s. And if

theX

i

k

are i.i.d., for k 6= l 2 ZZ, E(X

0

�k

�X

1

�k

)(X

0

�l

�X

1

�l

)

Q

i<j;(i;j) 6=(0;1)

(X

i

0

�X

j

0

)

2

) = 0.

For k = l 6= 0, E(X

0

�k

�X

1

�k

)(X

0

�l

�X

1

�l

)

Q

i<j;(i;j) 6=(0;1)

(X

i

0

�X

j

0

)

2

= (p� 1)!C

H

.

Same arguments lead to the result for the Toeplitz procedure.

4 Speed of convergence: noisy observations.

Now, the level of noise � is unknown, and the estimator (

^

�; �̂) minimizes

J

n

(�; �) = (H

n

(�(�); �))

2

+ (�(n))

2

� �

de�ned in section 2 for Hankel or Toeplitz forms.

With � the algebraic powers if the Hankel procedure is in study, and � the complex

exponentials if the Toeplitz procedure is in study de�ne

m

j

(�) = (E(�

j

(Z

t

(�(�)))))

j=1;:::;2p

De�ne now the vectors

M

n

(�) =

 

1

n

n

X

t=1

(�

j

(Z

t

(�(�))))

!

j=1;:::;2p

D

1

�

M

n

(�) = ((

@

@�

i

M

n

(�)))

i=1;:::;q

Let us introduce the following assumption:

� (M8)

lim

n!1

k(n)

p

n

= 0 lim

n!1

p

n

X

jkj>k(n)

j�

k

j = 0 lim

n!1

p

n�(n) = +1

The vector

p

n(M

n

(�

�

)�m(�

�

);D

1

�

M

n

(�

�

)�D

1

�

m(�

�

)) converges in distribution

to N (0;�)

The study of the asymptotic distribution proceeds as usual by a Taylor expansion of

the contrast function. Using (P), J

n

is twice continuously di�erentiable. Under (M8),

13



(M6) holds. Then (

^

�; �̂) is a zero of DJ

n

, and converges in probability to (�; �

0

) by

Corollary 2.7, so that the following Taylor expansion holds:

D

1

J

n

(�; �

0

) +D

2

J

n

(�; �

0

) � (

^

� � �

�

; �̂ � �

0

)

T

(1 + o(1)) = 0

We have:

D

1

J

n

(�; �

0

) = (2H

n

(�; �

0

)D

1

�

H

n

(�; �

0

); 2H

n

(�; �

0

)D

1

�

H

n

(�; �

0

) + (�(n))

2

)

T

Now, the matrix D

2

J

n

(�; �

0

) equals

2H

n

(�; �

0

)D

2

H

n

(�; �

0

) + 2D

1

H

n

(�; �

0

)D

1

H

n

(�; �

0

)

T

Notice that we have H

n

(�; �

0

) 6= 0. Indeed, the pseudo-moments may not be moments

of discrete random variables. We may then rewrite the Taylor expansion:

0

B

B

@

D

1

�

H

n

(�; �

0

)

D

1

�

H

n

(�; �

0

) +

(�(n))

2

2H

n

(�;�

0

)

1

C

C

A

+

 

D

2

H

n

(�; �

0

) +

D

1

H

n

(�;�

0

)D

1

H

n

(�;�

0

)

T

H

n

(�;�

0

)

!

�

0

B

@

^

� � �

�

�̂ � �

0

1

C

A

(1+o(1))

= 0

(10)

As usual, the asymptotic result comes from adequate central limit theorems and law

of large numbers, together with the asymptotic de�niteness of the second derivative

matrix. De�ne K(�(�); �) the triangular matrix inverting the system (4) for the Hankel

procedure, or inverting the system (6) for the Toeplitz procedure. In this last case,

K(�(�); �) is a diagonal matrix. Notice that K(�(�); �) is di�erentiable with respect

to � and with respect to �. De�ne D

1

�

j

K the derivative matrix of K with respect to �

j

,

D

1

�

j

c be the derivative vector of c(�(�); �) with respect to �

j

. Let V be the q � (2pq)

matrix:

V = (V

1

V

2

)

where V

1

is the (q)� (2p) matrix with lines

(V

1

)

j

= (D

1

�

j

c)

T

�D

2

c

h �K +D

1

c

h

T

�D

1

�

j

K

where all functions or matrices or evaluated at (�(�

�

); �

0

), and V

2

is the (q+1)� (2pq)

matrix which is block diagonal:

V

2

= Diag(V

1

2

; : : : ; V

q

2

)

where for j = 1; : : : ; q, the block V

j

2

is the 2p-dimensional vector

D

1

c

h

T

�K

We now have:

14



Lemma 4.1 Under the assumptions of Theorem 4.2 below, (

p

nD

1

�

H

n

(�; �

0

);

p

nH

n

(�; �

0

))

converges in distribution to a centered gaussian distribution, and D

1

�

H

n

(�; �

0

) converges

in probability to a positive constant. The asymptotic distribution of

p

nD

1

�

H

n

(�; �

0

) has

variance V � � � V

T

.

De�ne C the q � q matrix given by:

C

i;j

= v

T

i

�D

2

s

H(�) � v

j

with v

i

the �lter

@�

@�

i

(�

�

), and D

2

s

H(�) given in Proposition 3.3. We have

Theorem 4.2 Assume that (M1), (M2), (M3), (M4), (M5), (M8), (P) hold.

Then, as n tends to in�nity,

p

n(

^

�� �

�

) converges in distribution to the centered gaus-

sian distribution with variance � given by:

� = C

�1

� V � � � V

T

� (C

�1

)

T

Roughly speaking, the asymptotic result comes from the fact that asymptotically, the

matrix involved in equation (10) has the bottom-right term tending to in�nity, so that

asymptotically, the inverse has only the up-left term as non zero term. It is proved in

the last section.

5 Discussion

Theorems 3.2 and 4.2 allow to see that the model without noise and the model with

noise are statistically of di�erent nature. The model with noise is a regular parametric

model, where the optimal speed of convergence for parametric estimation is

p

n. The

model with no noise is not regular, it is not dominated. The parameter may here

be estimated with speed the l

1

tail of the inverse �lter, which may have exponential

decay. This speed appears to be related to some truncation parameter. Since, with

no truncation, the parameter could be perfectly estimated, the model appears in some

sense non random. No lower bound is known for estimating a parameter in such non

regular models, so that we do not know whether our estimator achieves the optimal

rate or not.

Let us also make some remarks about non parametric estimation, that is the direct

estimation of the inverse �lter �. With no noise, following the same lines for the study

of the convergence rate, it appears that the gradient of H

n

at point � has an l

1

-norm

upper bounded by the l

1

-tail of the inverse �lter. However, the remaining problem is to

study the resting terms in th Taylor expansion, together with the convergence rate of

the second derivative operator of H

n

to the operator D

2

H. The main di�erence with

the parametric case is that all norms are not equivalent, so that the norm in which the

remaining terms are studied has a great importance.
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6 Proofs

Proof of Proposition 2.10.

Let MT be the Toeplitz matrix:

MT =

0

B

B

B

B

B

B

@

1 E(e

�i2�

W

1

F

) � � � E(e

�i2�p

W

p

F

)

E(e

i2�

W

0

F

) 1 � � � E(e

�i2�(p�1)

W

p

F

)

.

.

. � � �

.

.

.

� � �

E(e

i2�p

W

0

F

) E(e

i2�(p�1)

W

1

F

) � � � 1

1

C

C

C

C

C

C

A

Let � be a permutation of the p + 1 indices.

8�; MT =

0

B

B

B

B

B

B

B

@

1 E(e

�i2�

W

�(1)

F

) � � � E(e

�i2�p

W

�(p)

F

)

E(e

i2�

W

�(0)

F

) 1 � � � E(e

�i2�(p�1)

W

�(p)

F

)

.

.

. � � �

.

.

.

� � �

E(e

i2�p

W

�(0)

F

) E(e

i2�(p�1)

W

�(1)

F

) � � � 1

1

C

C

C

C

C

C

C

A

Taking the determinant of MT (W ), we have a sum of products where, in each product,

the involved variables are independent, so that we may write:

8�; det(MT ) = Edet

0

B

B

B

B

B

B

B

@

1 e

�i2�

W

�(1)

F

� � � e

�i2�p

W

�(p)

F

e

i2�

W

�(0)

F

1 � � � e

�i2�(p�1)

W

�(p)

F

.

.

. � � �

.

.

.

� � �

e

i2�p

W

�(0)

F

e

i2�(p�1)

W

�(1)

F

� � � 1

1

C

C

C

C

C

C

C

A

and also

8�; det(MT ) = E

p

Y

j=0

e

�i2�j

W

�(j)

F

det

0

B

B

B

B

B

B

@

1 1 � � � 1

e

i2�

W

�(0)

F

e

i2�

W

�(1)

F

� � � e

i2�p

W

�(p)

F

.

.

. � � �

.

.

.

� � �

e

i2�p

W

�(0)

F

e

i2�p

W

�(1)

F

� � � e

i2�p

W

�(p)

F

1

C

C

C

C

C

C

A

Let now s(� ) be the signature of the permutation � . We have:

8�; det(MT ) = E

p

Y

j=0

e

�i2�j

W

�(j)

F

(�1)

s(�)

det

0

B

B

B

B

B

@

1 1 � � � 1

e

i2�

W

0

F

e

i2�

W

1

F

� � � e

i2�p

W

p

F

.

.

. � � �

.

.

.

� � �

e

i2�p

W

0

F

e

i2�p

W

1

F

� � � e

i2�p

W

p

F

1

C

C

C

C

C

A
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But the distribution of the random variable involved in the expectation does not depend

on the permutation. We thus have:

(p + 1!)det(MT ) = E

X

�

p

Y

j=0

e

�i2�j

W

�(j)

F

(�1)

s(�)

det

0

B

B

B

B

B

@

1 1 � � � 1

e

i2�

W

0

F

e

i2�

W

1

F

� � � e

i2�p

W

p

F

.

.

. � � �

.

.

.

� � �

e

i2�p

W

0

F

e

i2�p

W

1

F

� � � e

i2�p

W

p

F

1

C

C

C

C

C

A

But

P

�

Q

p

j=0

e

�i2�j

W

�(j)

F

(�1)

e(�)

is the exact expansion of the determinant of the matrix

0

B

B

B

B

B

@

1 1 � � � 1

e

�i2�

W

0

F

e

�i2�

W

1

F

� � � e

�i2�p

W

p

F

.

.

. � � �

.

.

.

� � �

e

�i2�p

W

0

F

e

�i2�p

W

1

F

� � � e

�i2�p

W

p

F

1

C

C

C

C

C

A

which is a Vandermonde matrix, with known determinant. We thus obtain:

(p + 1!)det(MT ) = E

2

4

Y

0�k<j�p

�

e

�i2�

W

k

F

� e

�i2�

W

j

F

�

�

Y

0�k<j�p

�

e

i2�

W

k

F

� e

i2�

W

j

F

�

3

5

which leads to the formula of the Proposition.

Proof of Proposition 3.1.

Di�erentiability of L and L

n

easily come from that of H, H

n

and �. Now we have:

D

2

�

L(�) = D

1

�

�(�)

T

�D

2

s

H(�(�)) �D

1

�

�(�) +D

1

s

H(�(�)) �D

2

�

�(�)

Now, H is minimum at point �(�

�

), so that D

1

s

H(�(�

�

)) = 0. We then have

D

2

�

L(�

�

) = D

1

�

�(�

�

)

T

�D

2

s

H(�(�

�

)) �D

1

�

�(�

�

)

Taking the associated quadratic form at some nonzero point y = (�

i

� �

�

i

)

i=1;:::;q

:

y

T

�D

2

�

L(�

�

) � y = (y �D

1

�

�(�

�

))

T

�D

2

s

H(�(�

�

)) � (y �D

1

�

�(�

�

))

which, using (D), is nonzero unless y �D

1

�

�(�

�

) is either the null series, which is impos-

sible since by (P) (

@�

k

@�

1

(�

�

))

k2ZZ

; : : : ; (

@�

k

@�

q

(�

�

))

k2ZZ

are linearly independent, or the �lter

�(�

�

), which is also impossible by (P).

Proof of Theorem 3.2.

It remains to prove formula (8). Following the �rst formula, we have

j

@

@�

i

L

n

(�

�

)j � sup

jkj�k(n)

j

@

@s

k

H

n

(�(�

�

))�

@

@s

k

~

H

n

(�(�

�

))j � k

@

@�

i

�(�

�

)k

1
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Now for any k

@

@s

k

H

n

(�(�

�

))�

@

@s

k

~

H

n

(�(�

�

)) = D

1

c

h(c

n

(�(�

�

)))�

@

@s

k

c

n

(�(�

�

))�D

1

c

h(~c

n

(�(�

�

)))�

@

@s

k

~c

n

(�(�

�

))

and then

@

@s

k

H

n

(�(�

�

))�

@

@s

k

~

H

n

(�(�

�

)) =

�

D

1

c

h(c

n

(�(�

�

)))�Dh

1

c

(~c

n

(�(�

�

)))

�

�

@

@s

k

c

n

(�(�

�

)) +

D

1

c

h(~c

n

(�(�

�

)))

 

@

@s

k

c

n

(�(�

�

))�

@

@s

k

~c

n

(�(�

�

))

!

Moreover

kD

1

c

h(c

n

(�(�

�

)))�D

1

c

h(~c

n

(�(�

�

)))k

1

� 2pC

1

kc

n

(�(�

�

))� ~c

n

(�(�

�

))k

1

� 2pC

1

� C

2

k

^

Z(�(�

�

))

t

� Z(�(�

�

))

t

k

1

� 2pC

1

C

2

kXk

1

kuk

1

�

X

jkj>k(n)

j�

k

j

with C

1

= kD

2

c

hk

1

, C

2

= kD(� � ')k

1

and kXk

1

the maximum possible absolute

value in the alphabet where the variables X

t

take value. Here, the norms k � k

1

for

functions are taken as the supremum value of the function on the space where the

possible moments and there derivatives take value, which are compact since the X

t

are

bounded and the �lters are summable.

Notice also that for any k

k

@

@s

k

c

n

(�(�

�

))k

1

� C

2

� kXk

1

� kuk

1

so that for any k

jD

1

c

h(c

n

(�(�

�

)))�Dh

1

c

(~c

n

(�(�

�

)))j � j

@

@s

k

c

n

(�(�

�

))j � 4p

2

C

1

C

2

2

kuk

2

1

kXk

2

1

�

X

jkj>k(n)

j�

k

j

We also have:

kD

1

c

h(~c

n

(�(�

�

)))k � kD

1

c

hk

1

and for any jkj � k(n)

k

@

@s

k

c

n

(�(�

�

))�

@

@s

k

~c

n

(�(�

�

)k

1

� C

3

kuk

2

1

kXk

2

1

�

X

jkj>k(n)

j�

k

j

with C

3

= kD

2

(� � ')k

1

, so that

jD

1

c

h(~c

n

(�(�

�

)))(

@

@s

k

c

n

(�(�

�

))�

@

@s

k

~c

n

(�(�

�

))j � 2pC

3

kD

1

c

hk

1

kuk

2

1

kXk

2

1

�

X

jkj>k(n)

j�

k

j
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We �nally obtain (8) with C

4

= 2p(2pC

1

C

2

2

+ C

3

kDhk

1

)kXk

2

1

k(

@

@�

i

�

k

(�

�

))k

1

kuk

2

1

.

Proof of Proposition 3.3.

Let us �rst study the Hankel procedure. Applying Proposition 2.8 we have:

H(s) =

1

(p + 1)!

E[

Y

i<j

(Z

i

0

(s)� Z

j

0

(s))

2

]

so that

@

@s

k

H(s) =

2

(p + 1)!

E

0

@

X

i<j

(Y

i

�k

� Y

j

�k

)(Z

i

0

(s)� Z

j

0

(s))

Y

i

0

<j

0

;(i

0

;j

0

) 6=(i;j)

(Z

i

0

0

(s)� Z

j

0

0

(s))

2

1

A

and

@

2

@s

k

@s

l

H(s) =

2

(p+ 1)!

E(

X

i<j

(Y

i

�k

� Y

j

�k

)(Y

i

�l

� Y

j

�l

)

Y

i

0

<j

0

;(i

0

;j

0

) 6=(i;j)

(Z

i

0

0

(s)� Z

j

0

0

(s))

2

)

+

4

(p+ 1)!

E(

X

i<j;i

0

<j

0

;(i

0

;j

0

) 6=(i;j)

(Y

i

�k

� Y

j

�k

)(Z

i

0

(s)� Z

j

0

(s))(Y

i

0

�l

� Y

j

0

�l

)

(Z

i

0

0

(s)� Z

j

0

0

(s))

Y

i"<j";(i";j") 6=(i

0

;j

0

)and6=(i;j)

(Z

i"

0

(s)� Z

j"

0

(s))

2

)

At point s = �, this leads to

@

2

@s

k

@s

l

H(�) =

2

(p + 1)!

E(

X

i<j

(Y

i

�k

� Y

j

�k

)(Y

i

�l

� Y

j

�l

)

Y

i

0

<j

0

;(i

0

;j

0

) 6=(i;j)

(X

i

0

0

�X

j

0

0

)

2

)

+

4

(p + 1)!

E(

X

i<j;i

0

<j

0

;(i

0

;j

0

) 6=(i;j)

(Y

i

�k

� Y

j

�k

)(Y

i

0

�l

� Y

j

0

�l

)(X

i

0

0

�X

j

0

0

)(X

i

0

�X

j

0

)

Y

i"<j";(i";j") 6=(i

0

;j

0

)and6=(i;j)

(X

i"

0

�X

j"

0

)

2

)

But H(�) = 0 says that a.s.

Y

i<j

(X

i

0

�X

j

0

) = 0

(which is also easily seen from the fact that the p + 1 variables X

i

0

take value in the

same alphabet with p values). This leads to

@

2

@s

k

@s

l

H(�) =

2

(p + 1)!

E(

X

i<j

(Y

i

�k

� Y

j

�k

)(Y

i

�l

� Y

j

�l

)

Y

i

0

<j

0

;(i

0

;j

0

) 6=(i;j)

(X

i

0

0

�X

j

0

0

)

2

)

which applied to v leads to the formula of Proposition 3.3.

Notice that for v = � � �, where � is a real number, v

T

� D

2

H(�) � v = 0. However,

the set �

�

cannot contain any multiple of delayed � except 0, either � would be
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ambiguous on scale and delay. Now, v

T

�D

2

H(�) � v = 0 if and only if for any i < j,

(Z

i

0

(v)� Z

j

0

(v))

Q

i

0

<j

0

;(i

0

;j

0

) 6=(i;j)

(X

i

0

0

�X

j

0

0

) = 0 a.s. Now,

(Z

i

0

(v)� Z

j

0

(v))

Y

i

0

<j

0

;(i

0

;j

0

) 6=(i;j)

(X

i

0

0

�X

j

0

0

) =

X

k 6=0

(u � v)

k

P

�k

where P

�k

= (X

i

�k

�X

j

�k

)

Q

i

0

<j

0

;(i

0

;j

0

) 6=(i;j)

(X

i

0

0

�X

j

0

0

). The variables P

k

have discrete

distribution with at least 2 di�erent points of support, and using (M4), any �nite

trajectory has positive probability. But, as soon as v is not a multiple of �, there is

at least one k 6= 0 such that (u � v)

k

6= 0. We may conclude that the distribution of

P

k 6=0

(u � v)

k

P

�k

may not be degenerate on 0, so that D

2

H(�) is positive de�nite on

�

�

.

Let us now study the Toeplitz procedure. Applying Proposition 2.10 we have:

H(s) =

2

p(p+1)=2

(p+ 1)!

E[

Y

j<k

(1 � cos(

Z

j

0

(s)� Z

k

0

(s)

F

))]

so that

@

@s

l

H(s) =

2

p(p+1)=2

(p + 1)!F

E

0

@

X

j<k

(Y

j

�l

� Y

k

�l

) sin(

Z

j

0

(s)� Z

k

0

(s)

F

))

Y

j

0

<k

0

;(j

0

;k

0

) 6=(j;k)

(1� cos(

Z

j

0

0

(s)� Z

k

0

0

(s)

F

))

1

A

and

@

2

@s

l

@s

m

H(s) =

2

p(p+1)=2

(p + 1)!F

2

E(

X

j<k

(Y

j

�l

� Y

k

�l

)(Y

j

�m

� Y

k

�m

) cos(

Z

j

0

(s)� Z

k

0

(s)

F

)

Y

j

0

<k

0

;(j

0

;k

0

) 6=(j;k)

(1� cos(

Z

j

0

0

(s)� Z

k

0

0

(s)

F

)))

+

2

p(p+1)=2

(p + 1)!F

2

E(

X

j<k;j

0

<k

0

;(j

0

;k

0

) 6=(j;k)

(Y

j

�l

� Y

k

�l

)(Y

j

0

�l

� Y

k

0

�l

) sin(

Z

j

0

(s)� Z

k

0

(s)

F

)

sin(

Z

j

0

0

(s)� Z

k

0

0

(s)

F

))

Y

j"<k";(j";k") 6=(j;k)and(i

0

;j

0

)

(1 � cos(

Z

j"

0

(s)� Z

k"

0

(s)

F

)))

At point s = �, this leads to

@

2

@s

l

@s

m

H(�) =

2

p(p+1)=2

(p + 1)!F

2

E(

X

j<k

(Y

j

�l

� Y

k

�l

)(Y

j

�m

� Y

k

�m

) cos(

X

j

0

�X

k

0

F

)

Y

j

0

<k

0

;(j

0

;k

0

) 6=(j;k)

(1� cos(

X

j

0

0

�X

k

0

0

F

)))

+

2

p(p+1)=2

(p + 1)!F

2

E(

X

j<k;j

0

<k

0

;(j

0

;k

0

) 6=(j;k)

(Y

j

�l

� Y

k

�l

) sin(

X

j

0

�X

k

0

F

)

(Y

j

0

�l

� Y

k

0

�l

) sin(

X

j

0

0

�X

k

0

0

F

)

Y

j"<k";(j";k") 6=(j;k)and(i

0

;j

0

)

(1� cos(

X

j"

0

�X

k"

0

F

)))
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But H(�) = 0 says that a.s.

Y

j<k

(X

j

0

�X

k

0

) = 0

so that as soon as cos(

X

j

0

�X

k

0

F

) 6= 1,

Y

j

0

<k

0

;(j

0

;k

0

) 6=(j;k)

(1� cos(

X

j

0

0

�X

k

0

0

F

))) = 0

This leads to

@

2

@s

l

@s

m

H(�) =

2

p(p+1)=2

(p + 1)!F

2

E(

X

j<k

(Y

j

�l

� Y

k

�l

)(Y

j

�m

� Y

k

�m

) (11)

Y

j

0

<k

0

;(j

0

;k

0

) 6=(j;k)

(1� cos(

X

j

0

0

�X

k

0

0

F

))) (12)

which applied to v leads to the formula of Proposition 3.3.

Now, v

T

�D

2

H(�) � v = 0 if and only if for any i < j,

(Z

j

0

(v)� Z

k

0

(v))

2

Y

j

0

<k

0

;(j

0

;k

0

) 6=(j;k)

(1� cos(

X

j

0

0

�X

k

0

0

F

)) = 0

a.s. But Z

j

0

(v)� Z

k

0

(v) =

P

l

(u � v)

l

(X

j

�l

�X

�l

0

). Now, on the event where

Q

j

0

<k

0

;(j

0

;k

0

) 6=(j;k)

(1� cos(

X

j

0

0

�X

k

0

0

F

)) 6= 0, X

j

0

= X

k

0

and as soon as v is not a multiple of

�, there is at least one l 6= 0 such that (u � v)

l

6= 0. We may conclude that the variable

Z

j

0

(v)� Z

k

0

(v) cannot be alwways 0, so that D

2

H(�) is positive de�nite on �

�

.

Proof of Lemma 4.1.

First of all, the ergodicity of (X

t

) allows to prove that H

n

(�; �

0

) converges in probabil-

ity to H(�; �

0

) = 0, and that D

1

H

n

(�; �

0

) converges in probability to D

1

H(�; �

0

). To

compute the derivatives of H with respect to � or �, recall for the Hankel procedure

the following formula, which may be found in [2]:

8� � �

0

; 8s; 8i; c

i

(s; �) = E[(Y

0

(s) +

q

�

2

0

� �

2

�

0

(s))

i

]

We may now use formula (2.8) in the same way as when studying the de�niteness of

D

2

s

H(�). Let for i = 0; : : : ; p, �

i

be p independent random sequence of independent

variables, independent from the (X

i

t

)

i=0;:::;p;t2ZZ

, with standard gaussian distribution.

We then have, for all � and all � < �

0

:

H(�(�); �) =

1

(p + 1)!

E

2

4

Y

i<j

(Y

i

0

(�(�)) � Y

j

0

(�(�)) +

q

�

2

0

� �

2

(�

i

0

(�(�)) � �

j

0

(�(�))))

2

3

5
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It is now possible to take derivatives of this expression, with respect to � and-or �. We

then take the value at � = �

�

, and then look at the terms as polynomials in

q

�

2

0

� �

2

,

beginning with negative exponents. Since it is already known that H is in�nitely

di�erentiable with respect to � and �, the coe�cients of terms with negative exponents

are 0, and the terms with positive exponents will be set to 0 when letting � tend to

�

0

, so that we just have to compute the constant term in the polynomials.

For, the Toeplitz procedure we may do the same thing with the formula

H(�(�); �) =

2

p(p+1)=2

(p+ 1)!

E

2

4

Y

i<j

(1 � cos(

Y

i

0

(�(�)) � Y

j

0

(�(�)) +

q

�

2

0

� �

2

(�

i

0

(�(�)) � �

j

0

(�(�))))

F

))

3

5

This leads to:

D

1

�

H(�; �

0

) = 0

D

2

�

H(�; �

0

) = C

and

D

1

�

H(�; �

0

) = �

2k�k

2

2

(p+ 1)!

X

i<j

E[

Y

i

0

<j

0

;(i

0

j

0

) 6=(i;j)

(X

i

0

0

�X

j

0

0

)

2

]

for the Hankel procedure, and

D

1

�

H(�; �

0

) = �

2

p(p+1)=2+1

k�k

2

2

(p+ 1)!F

X

i<j

E[

Y

i

0

<j

0

;(i

0

j

0

) 6=(i;j)

(1 � cos(

X

i

0

0

�X

j

0

0

F

))]

for the Toeplitz procedure.

Now we have if x is any of the variables �

j

:

D

1

x

H

n

(�; �

0

) = (D

1

c

h(c

n

(�; �

0

))�D

1

c

h(c(�; �

0

)))�D

1

x

c

n

(�; �

0

)+D

1

c

h(c(�; �

0

))�(D

1

x

c

n

(�; �

0

)�D

1

x

c(�; �

0

))

(13)

and also

D

1

c

h(c

n

(�))�D

1

c

h(c(�; �

0

)) = (D

2

c

h(c(�; �

0

))) � (c

n

(�; �

0

)� c(�; �

0

))(1 + o(1))

Notice now that

c

n

(�; �

0

) = K(�; �

0

) �m

n

(�

�

) (14)

where (m

n

(�)) = (m

j

n

(�(�)))

j=1;:::;2p

with

m

j

n

(�(�)) =

1

n� 2k(n)

n�k(n)

X

t=1+k(n)

�

j

(

^

Z

t

(�(�)))

We then easily obtain, using (M8), the ergodicity of (X

t

) and (M5), that

m

n

(�

�

) = M

n

(�

�

) + o(

1

p

n

); D

1

�

m

n

(�

�

) = D

1

�

M

n

(�

�

) + o(

1

p

n

)

22



where the o(1) are in probability. Using (14) we have also

D

1

x

c

n

(�; �

0

) = K(�; �

0

) �D

1

x

M

n

(�) +D

1

x

K(�; �

0

) �M

n

(�) + o(

1

p

n

)

In particular, using (M8), c

n

(�; �

0

) converges in probability to c(�; �

0

) and D

1

x

c

n

(�; �

0

)

converges in probability to D

1

x

c

n

(�; �

0

). Applying those results to (13) and using

the central limit theorem given by (M8) leads to the asymptotic distribution for

p

nD

1

�

H

n

(�; �

0

) given in Lemma 4.1.

Similarly, expanding also H

n

(�; �

0

) as

H

n

(�; �

0

) = h(c

n

(�; �

0

))� h(c(�; �

0

))

= D

1

c

h(c(�; �

0

)) � (c

n

(�; �

0

)� c(�; �

0

))(1 + o(1))

allows to prove that jointly (

p

nD

1

�

H

n

(�; �

0

);

p

nH

n

(�; �

0

)) converges in distribution to

a centered gaussian distribution.

Proof of Theorem 4.2.

Let D

n

be the matrix

D

2

H

n

(�; �

0

) +

D

1

H

n

(�; �

0

)D

1

H

n

(�; �

0

)

T

H

n

(�; �

0

)

Write

D

n

=

 

(D

n

)

11

(D

n

)

12

(D

n

)

21

(D

n

)

22

!

We have, using Lemma 4.1:

(D

n

)

11

= D

2

�

H

n

(�; �

0

) +

D

1

�

H

n

(�; �

0

)D

1

�

H

n

(�; �

0

)

T

H

n

(�; �

0

)

converges in probability to

D

2

�

H(�; �

0

) = C;

(D

n

)

12

= D

2

�;�

H

n

(�; �

0

) +

D

1

�

H

n

(�; �

0

)D

1

�

H

n

(�; �

0

)

T

H

n

(�; �

0

)

converges in distribution to some random variable, and also (D

n

)

12

, and

(D

n

)

22

= D

2

�

H

n

(�; �

0

) +

(D

1

�

H

n

(�; �

0

))

2

H

n

(�; �

0

)

converges to +1. It follows that in probability for big enough n, the matrix D

n

has

non zero determinant and is invertible. Let

23



D

�1

n

=

 

(D

n

)

11

(D

n

)

12

(D

n

)

21

(D

n

)

22

!

be its inverse. Usual linear computations together with equation (10) lead to

(

^

���

�

) =

 

(D

n

)

11

D

1

�

H

n

(�; �

0

)� (D

n

)

11

�

(D

n

)

12

(D

n

)

22

(D

1

�

H

n

(�; �

0

) +

�(n)

2

2H

n

(�; �

0

)

!

(1+o(1))

(15)

and

((D

n

)

11

)

�1

=

 

(D

n

)

11

�

(D

n

)

12

(D

n

)

T

21

(D

n

)

22

!

We now have that

(D

n

)

12

(D

n

)

T

21

(D

n

)

22

converges to 0 in probability, so that

((D

n

)

11

) = C

�1

(1 + o(1))

Moreover,

(D

n

)

12

(D

n

)

22

converges to 0 in probability, and

(D

n

)

12

(D

n

)

22

H

n

(�; �

0

)

� (�(n))

2

converges also to 0 in probability, so that equation (15) now leads to the Theorem.
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