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In this paper, we address to the problem of testing hypothesis using maximum like-

lihood statistics in non identi�able models, with application for model selection in

situations where the parametrization for the larger model leads to non identi�ability

in the smaller model. We give two major applications: the case where the number

of populations has to be tested in a mixture, and the case of stationary ARMA(p,q)

processes where the order (p,q) has to be tested. We give the asymptotic distribution
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1 Introduction.

In this paper, we propose a general theory to deal with testing problems in non identi�-

able context. In case the model is a regular parametric model, the lack of identi�ability

leads in general to a degenerated Fisher information, so that the usual �

2

-theory does

not apply. The usual proof for the �

2

-theory relies on an expansion of the likelihood

till order 2, and then a maximization of the expansion. The major questions that now

arise are the following:

� Question 1: Since the parameter is not identi�able, around which point can an

expansion be made ?

� Question 2: In the optimization procedure, the inverse of the Fisher information

appears, what to do since it is not invertible ?

Two famous examples of such situation are the test of the number of components in a

mixture model, and the test of the order of an ARMA process. We solved completely

the �rst example for testing one population against a mixture of populations in a

previous work, see Dacunha-Castelle and Gassiat (1996). We develop here a general

theory which applies to both problems. Let us �rst recall on the examples the lack of

identi�ability, where the di�culty of the problem comes from, and the general idea of

our theory.

Let F = (f



)

2�

be a family of probability densities with respect to �. � is a compact

subset of IR

k

for some integer k. G

p

is the set of all p�mixtures of densities of F :

G

p

= fg

�;�

=

p

X

i=1

�

i

� f



i
: � = (�

1

; : : : ; �

p

); � = (

1

; : : : ; 

p

); (1)

8i = 1; : : : ; p; 

i

2 �; 0 � �

i

� 1;

p

X

i=1

�

i

= 1g

Obviously, the model is not identi�able for the parameters � = (�

1

; : : : ; �

p

) and

� = (

1

; : : : ; 

p

). There exist mixtures g in G

p

which have di�erent representations g

�;�

with di�erent parameters � and �. For instance, we have for any permutation � of the

set f1; : : : ; pg:

p

X

i=1

�

i

� f



i
=

p

X

i=1

�

�(i)

� f



�(i)

Another example which may not be avoided by taking some quotient with respect to

permutations is:

f



0
=

p

X

i=1

�

i

� f



0
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for any (�

i

) such that �

i

� 0 and

P

p

i=1

�

i

= 1.

Since we solved part of the problem in Dacunha-Castelle and Gassiat (1996), we do

not recall previous results concerning mixtures which were discussed there.

ARMA processes are given by the recurrence equation:

X

n

+ a

1

X

n�1

+ : : :+ a

p

X

n�p

= �

n

+ b

1

�

n�1

+ : : :+ b

q

�

n�q

(2)

(X

n

)

n2IN

is a stationary process with (�

n

)

n2IN

as innovation process as soon as the

complex polynomials P (z) = 1+

P

p

j=1

a

j

z

j

and Q(z) = 1+

P

q

j=1

b

j

z

j

do not have roots

inside the complex unit disc and (�

n

)

n2IN

is a white noise. If (�

n

)

n2IN

is gaussian, then

(X

n

)

n2IN

is a gaussian ARMA process. The spectral density f of such a process is given

by:

f(x) =

�

2

2�

j

Q

P

(e

ix

)j

2

(3)

where �

2

is the variance of the noise. Assume now that the true spectral density is

f

0

(x) =

�

2

0

2�

j

Q

0

P

0

(e

ix

)j

2

(4)

with Q

0

of degree q

0

, P

0

of degree p

0

, and we want to test (p

0

; q

0

) against (p; q), where

p � p

0

and q � q

0

, (p; q) 6= (p

0

; q

0

). The general model is that of stationary processes

with spectral densities which have the form (3), where the degree of P is not larger than

p and the degree of Q is not larger than q. As soon as p > p

0

and q > q

0

, f

0

has in this

model in�nitely many representations, for instance by multiplying the representation

(4) with the constant 1 written as the quotient of two identical polynomials. With

this parametrization of the model, the information matrix for any parameter leading

to f

0

has a kernel of dimension inffp � p

0

; q � q

0

g, see Theorem 3.3 in Azencott and

Dacunha-Castelle (1986). The classical theory does not apply, the maximum likeli-

hood statistic does not have a �

2

asymptotic distribution. Alternative solutions for

this testing problem may be given, using the correlation properties, see for instance

Gill and Lewbel (1992). As test problems are intimately connected with estimation

problems via con�dence sets, another way to solve the problem could be the use of an

estimator together with its asymptotic distribution. A now classical way to estimate

the order of an ARMA process is by using some compensation term to the maximum

likelihood statistic. Such idea has been introduced by Akaike (see Akaike (1970) and

Akaike (1974)), with comparisons in Hannan (1980). The right choice of the com-

pensating sequence requires a carefull investigation of the speed of convergence of the

maximum likelihood statistic, which is studied for instance in Azencott and Dacunha-

Castelle (1986). They use some quotient of the parameter space. Redner (1981) gives

3



general ideas to use quotient spaces to prove the consistency (in the quotient space)

of the maximum likelihood estimator in non identi�able situations. However, the pre-

cise asymptotic behavior of the estimator of the order is not known, so that it cannot

be used for testing at a known asymptotic level. Another point of view is that of

predictive stochastic complexity developed for example by Gerencser and Rissanen ().

They give the asymptotic behaviour of three kinds of predictive stochastic complexities

associated with ARMA processes, which give a computable criterion for model order

estimation. However, this again does not lead to known asymptotics. Let us mention

that, for testing the order using maximum likelihood, the computation of the asymp-

totic distribution was made by Hannan (1982) for the particular case p

0

= q

0

= 0 and

p = q = 1. Hannan introduced a reparametrization of the model, which does not seem

to be easily generalised to handle the general case. It was used again by Veres (1987)

to �nd the asymptotic distribution for the case p = p

0

+ 1 and q = q

0

+ 1.

In this paper, we give the asymptotic distribution of the maximum likelihood statistic

for any mixture model selection and for any ARMA model selection problem, so that

this allows the construction of a test for the order at a known asymptotic level. To �nd

this asymptotic distribution, we introduce a reparametrization of the model which we

call a locally conic structure of the model. The general idea is that a �rst positive and

real parameter � contains some "distance" to the true model, this is the perturbation

parameter, and a second parameter � is some direction of approach to the true model,

or in other words the direction of the perturbation. A normalisation of the directional

vector imposes the directional Fisher informations to be uniformly equal to 1. This

gives an answer to question 2. � contains all the non identi�able part of the model.

� contains all the model order information, and is identi�able. � may be consistently

estimated: this gives an answer to question 1, the expansion will be done for � near 0.

Now, if l

n

(�; �) is the logarithm of the likelihood, the usual proof proceeds as follows

(for i.i.d. observations X

1

; : : : ;X

n

) :

l

n

(�; �)� l

n

(�; 0) = �

n

X

i=1

h

�

(X

i

)�

�

2

2

n

X

i=1

h

�

(X

i

)

2

+ o

P

(1)

Maximisation over � leads to:

sup

�

l

n

(�; �) =

1

2

(

P

n

i=1

h

�

(X

i

))

2

P

n

i=1

h

�

(X

i

)

2

+ o

P

(1)

Now, when maximizing over �, two problems appear.

P

n

i=1

h

�

(X

i

)

2

may take the

value zero. There is a need of some uniform central limit theorem for a normalised

variable. More importantly, the remaining o

P

(1) has to be uniform over � !!!
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To our opinion, this last point has been overlooked in previous literature. In the most

general cases of model selection for mixtures and ARMA processes, the expansion has

to be done to an order bigger than 2, at least 4, leading to new asymptotics. The

general situation seems to be the following. All directional models are LAN (locally

asymptotically normal) models. The set D, which is the union of all directional scores,

may be de�ned as a subset of the unit sphere of some Hilbert space H. D has to

be precompact, and its compacti�cation leads to adding a new set

~

D, due to the non

identi�ability. De�ne �

d

to be the (continuous) gaussian process indexed by D and

with covariance the Hilbert product in H. Two di�erent situations appear:

�

~

D is small, the remaining terms in the expansion till order 2 are uniformly small,

and the asymptotic distribution is

sup

d2D

1

2

�

2

d

1

�

d

�0

This is the case for testing one population against a simple mixture (see Dacunha-

castelle and Gassiat(1996)), and for testing an ARMA(p

0

; q

0

) against an ARMA(p

0

+

1; q

0

+ 1).

�

~

D is not small, the expansion has to be done till order 4, and the asymptotic

distribution is

sup

(

sup

d2D

1

2

�

2

d

1

�

d

�0

; sup

d

1

2D

1

;d

2

2D

2

1

2

(�

2

d

1

+ �

2

d

2

1

�

d

2

�0

)

)

where D

1

and D

2

are two orthogonal subsets of

~

D. This is the case for testing

q against p populations (q < p) and for testing an ARMA(p

0

; q

0

) against an

ARMA(p,q), p

0

� p, q

0

� q, (p� p

0

+ q � q

0

) � 3.

The paper is organized as follows: In section 2, we give the de�nition of a locally

conic parametrization. Section 3 is devoted to the problem of testing q against p

populations, and section 4 is devoted to the problem of testing an ARMA(p

0

; q

0

) against

an ARMA(p,q). All technical proofs that are not essential for a comprehensive reading

are given in section 5.

2 Locally conic models.

X

(n)

= (X

1

; : : : ;X

n

) is an n-dimensional real observation with distribution P

(n)

0

in a

set P

n

, which is assumed to be dominated by some positive measure �

(n)

.

We assume there exists a parametrization of all P

n

through two parameters � and �:
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(�; �) 2 [0;M ]�B,M is a positive real number, B is a compact Polish space, and there

exists a subset T of [0;M ]� B such that:

8n 2 IN; P

n

= fP

(n)

(�;�)

; (�; �) 2 T g

where [0;M ]�B is endowed with the product topology of IR and B, and T has compact

closure T .

The parametrization is assumed to be non identi�able in the parameter � for � = 0,

but identi�able in the parameter � at � = 0, that is:

P

(n)

(�;�)

= P

(n)

0

() � = 0

which in particular implies:

8� 2 B; P

(n)

(0;�)

= P

(n)

0

De�ne for any positive number c:

B

c

= f� 2 B : 9� � c; (�; �) 2 T g

For any � in B

c

, de�ne:

�

�

= supft : [0; t]� f�g � T g

Assume moreover:

8� 2 B, either �

�

> 0, or there exists c > 0 such that [0; c]� f�g \ T is empty.

De�ne now:

~

B =

\

c>0

B

c

The assumption says that it is impossible to �nd accumulation sequences of parameter

leading to � = 0 with directions � where the submodel (P

(n)

(�;�)

; (�; �) 2 T )

�

(where �

is �xed) is not de�ned in a rightneighborhood of 0. Moreover,

~

B is then the set of all

directions � for which the submodel approaches 0.

Such parametrization is called a locally conic parametrization. Models for which there

exists a locally parametrization are called locally conic models.

3 Testing the number of populations in a mixture.

In this section, X

(n)

is an n-sample of a mixture of q populations, that is

P

(n)

0

= (g

0

�)


n

6



where g

0

is a mixture of q populations in the parametric family (f



)

2�

, � � IR

k

:

g

0

=

q

X

l=1

�

0

l

f



l;0

The general model is that of p mixtures G

p

given by (1). We assume that G

p

is identi-

�able in the weak following sense:

p

X

l=1

�

0

l

f



l;0 =

p

X

l=1

�

1

l

f



l;1 � a:e:()

p

X

i=1

�

0

i

� �



0

i

=

p

X

i=1

�

1

i

� �



1

i

as probability distributions on �. In other words, G

p

is identi�able if the parameter

is the mixing discrete probability distribution on �. Teicher (1965) or Yakowitz and

Spragins (1968) give su�cient conditions for such weak identi�ability, which hold for

instance for �nite mixtures of gaussian or gamma distributions.

The aim of this section is to derive the limiting distribution of the maximum likelihood

statistic. De�ne for any g in G

p

:

l

n

(g) =

n

X

i=1

log g(X

i

)

and the maximum likelihood statistic

T

n

= sup

g2G

p

l

n

(g)

We introduce the following locally conic parametrization, previously proposed by the

authors in Dacunha-Castlle and Gassiat (1996). De�ne B

0

the set of parameters

� = (�

1

; : : : ; �

p�q

; 

1

; : : : ; 

p�q

; �

1

; : : : ; �

q

; �

1

; : : : ; �

q

)

such that

�

i

� 0; 

i

2 �; i = 1; : : : ; p � q; �

l

2 IR

k

; �

l

2 IR; l = 1; : : : ; q (5)

p�q

X

i=1

�

i

+

q

X

l=1

�

l

= 0 and

p�q

X

i=1

�

2

i

+

q

X

l=1

�

2

l

+

q

X

l=1

k�

l

k

2

= 1 (6)

Let H be the Hilbert space L

2

(g

0

�). Let then

N(�) = k

q

X

l=1

�

0

l

k

X

i=1

�

l

i

1

g

0

@f



@

i

j

=

l;0 +

p�q

X

i=1

�

i

f



i

g

0

+

q

X

l=1

�

l

f



l;0

g

0

k

H

We shall see later the interpretation of this quantity. For any � in B

0

and any non

negative � such that for any integer l = 1; : : : ; q,

�

0

l

+ �

l

�

N(�)

� 0, de�ne the mixture:

g

(�;�)

=

p�q

X

i=1

�

i

�

N(�)

f



i
+

q

X

l=1

(�

0

l

+ �

l

�

N(�)

)f



l;0

+

�

N(�)

�

l

(7)
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Such parametrization may be viewed as a perturbation of g

0

in the following way: per-

turb the q mixture g

0

through a perturbation of the parameters 

l;0

and the weights

�

0

l

, and add a perturbation as a p� q-mixture with weight tending to 0.

Such equation does not completely set a locally conic parametrization. Indeed, the

equation (7) does not de�ne unambiguously (�; �) for a given mixture. For instance,

di�erent sets of parameters may give g

0

. It is then important to de�ne the set

~

B such

that g

(�;�)

= g

0

() � = 0, which is not an immediate consequence of the de�nition of

g

(�;�)

.

Let g be any p-mixture:

g =

p

X

i=1

�

i

� f



i

To describe it through equation (7), one has to associate the parameters of g to those

of g

0

, that is to give a special order to the parameters. In other words: for any

permutation � of the set f1; : : : ; pg, we de�ne the parameters �

�

such that g

(�

�

;�

�

)

= g.

This leads to:

�

�

= (�

1;�

; : : : ; �

p�q;�

; 

1;�

; : : : ; 

p�q;�

; �

1;�

; : : : ; �

q;�

; �

1;�

; : : : ; �

q;�

)

with:

8i = 1; : : : ; p� q; �

i;�

� �

�

= �

�(i)

�N(�

�

)

8i = 1; : : : ; p � q; 

i;�

= 

�(i)

8i = 1; : : : ; q; �

i;�

� �

�

= (

�(p�q+i)

� 

i;0

) �N(�

�

)

8i = 1; : : : ; q; �

i;�

� �

�

= (�

�(p�q+i)

� �

0

i

) �N(�

�

)

It is easily seen that

�

�

= k

q

X

l=1

k

X

i=1

(

�(p�q+l)

i

� 

l;0

i

)

1

g

0

@f



@

i

j

=

l;0 +

p�q

X

i=1

�

�(i)

f



�(i)

g

0

+

q

X

l=1

(�

�(p�q+l)

� �

0

l

)

f



l;0

g

0

k

H

The system is not ambiguous on the scale of �

�

because of the normalizing condition

(6).

The problem is then to choose between the permutations. The following choice is a

good one. The idea is to associate step by step the nearest points 

i

involved in g to

the set of points 

l;0

involved in g

0

. Look for:

min

l=1;:::;q;i=1;:::;p

k

l;0

� 

i

k

It is attained for l

1

and i

1

. De�ne then �(p� q + l

1

) = i

1

. Look then for

min

l=1;:::;q;l6=l

1

;i=1;:::;p;i6=i

1

k

l;0

� 

i

k

8



It is attained for l

2

and i

2

. Set then �(p�q+ l

2

) = i

2

. By induction, de�ne in the same

way �(p � q + l

j

) = i

j

for j = 1; : : : ; q. In this algorithm, consider only points truly

involved in g (eventually less than p points). Then complete the permutation � in some

ordered way. You then have de�ned a permutation �(g). The locally parametrization

is then given by equation (7) with:

T = f(�; �

�(g)

) : � � �

�(g)

; g 2 Gg

This induces the set

~

B as the intersection of all directions approaching 0 in T .

Such parametrization is locally conic. An important point to notice, coming from the

normalizing condition (6) is that:

8(�; �) 2 T ;

�

N(�)

� p+ 2q sup

2�

kk

2

(8)

so that � tends to 0 as soon as N(�) tends to 0.

Since we shall use partial derivatives of f



with respect to , we introduce some nota-

tions: D

h

i

1

:::i

h

will be the h-th partial derivative operator with respect to 

i

1

: : : 

i

h

. So

that D

h

i

1

:::i

h

f



will be the value of this partial derivative of f at point . We shall now

need some more assumptions. De�ne D the subset of the unit sphere of H of functions

of form

1

N(�)

 

q

X

l=1

�

0

l

k

X

i=1

�

l

i

D

1

i

f



l;0

g

0

+

p�q

X

i=1

�

i

f



i

g

0

+

q

X

l=1

�

l

f



l;0

g

0

!

with � in

~

B. De�ne also �

d

the gaussian process indexed by D with covariance the

usual hilbertian product in H.

We shall use the following assumptions.

� (P0) There exists a function h in L

1

(g

0

�) such that: 8 2 �; j log f



j � h �-a.e.

Moreover, f



possesses partial derivatives till order 5. For all h � 5, and all

i

1

: : : i

h

,

D

h

i

1

:::i

h

f



0

g

0

2 L

3

(g

0

�)

Moreover, there exist functions m

2

, m

5

and a positive � such that:

sup

k�

0

k��

j

D

2

i

1

i

2

f



g

0

j � m

2

E

g

0

�

[m

3

2

] < +1

sup

k�

0

k��

j

D

5

i

1

:::i

5

f



g

0

j � m

5

E

g

0

�

[m

3

5

] < +1

� (P1) D is a Donsker class (see Van der Vart and Wellner (1996)), and �

d

has

continuous sample paths.
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� (P2) For any integer p

1

, p

2

, such that p

1

+ p

2

� p � q, for any set of distinct

points 

l

, l = 1; : : : ; p

1

, distinct from any 

l;0

, the set of functions

((

f



l

g

0

)

l=1;:::;p

1

; (

f



l;0

g

0

)

l=1;:::;q

; (

D

1

i

f



l;0

g

0

)

l=1;:::;q;i=1;:::;k

; (

D

2

ij

f



l;0

g

0

)

l=1;:::;p

2

;i;j=1;:::;k

is free in H.

To check (P1), one may use metric entropy or bracketing entropy Theorems (see for

instance Ossiander (1987) or Van der Vart and Wellner (1996)). Those entropy results

may also be used to prove the continuity of the process (�

d

). In fact, computation of

entropy behavior is in general easy, since, as will be seen later, D is a parametric set

described with a �nite number of parameters varying in a compact euclidian space.

Let now D

1

be the subset of the unit sphere of H of functions of form

q

X

l=1

k

X

i=1

�

l;k

D

1

i

f



l;0

g

0

and let D

2

be the subset of the unit sphere of H of functions of form

p

1

X

l=1

�

l

f



l

g

0

+

q

X

l=1

~�

l

f



l;0

g

0

+

q

X

l=1

k

X

i=1

�

l;i

D

1

i

f



l;0

g

0

+

p

2

X

l=1

k

X

i;j=1

�

l

a

i

a

j

D

2

ij

f



l;0

g

0

with p

1

� p � q � 1, p

1

+ p

2

� p � q, �

l

� 0,

P

p

1

l=1

�

l

+

P

q

l=1

~�

l

= 0, �

l

� 0, which are

orthogonal to D

1

. We have the following asymptotic result:

Theorem 3.1 Under the assumptions (P0), (P1), (P2), T

n

� l

n

(g

0

) converges in

distribution to the following variable:

sup

(

sup

d2D

1

2

�

2

d

1

�

d

�0

; sup

d

1

2D

1

;d

2

2D

2

1

2

(�

2

d

1

+ �

2

d

2

1

�

d

2

�0

)

)

Notice that D

1

and D

2

are subset of D, the (compact) closure of D inH. More precisely,

D is the subset of the unit sphere of H of functions of form

p

1

X

l=1

�

l

f



l

g

0

+

q

X

l=1

~�

l

f



l;0

g

0

+

q

X

l=1

k

X

i=1

�

l;i

D

1

i

f



l;0

g

0

+

p

2

X

l=1

k

X

i;j=1

�

l

a

i

a

j

D

2

ij

f



l;0

g

0

with p

1

+ p

2

� p � q, �

l

� 0,

P

p

1

l=1

�

l

+

P

q

l=1

~�

l

= 0, �

l

� 0.

The proof of Theorem 3.1 is in section 5.
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4 Testing the order of an ARMA process.

In this section we assume X

(n)

is an n-realization of a strictly stationary process with

spectral density f

0

given by equation (4).

Recall that if X is an ARMA(p,q) process with spectral density f , the Fejer-Riesz

canonical representation is:

f(e

ix

) =

�

2

2�

� j

Q

P

(e

ix

)j

2

=

�

2

2�

� g(e

ix

)

where P is a polynomial with p roots of modulus strictly bigger then 1 and Q is a

polynomial with q roots of modulus �1, P (0) = Q(0) = 1, and P and Q have real

coe�cients. We then de�ne the parameter space F (�; u) as the space of all spectral

densities of the previous form with all poles and zeros � 1 + �, and 0 < u � �

2

� 1=u.

We shall use the maximum pseudo-likelihood statistic for testing the order. We set it

now. For any integrable function h on the torus, de�ne

b

h

k

the Fourier coe�cient:

b

h

k

=

Z

�

��

e

�ikx

h(e

ix

)

dx

2�

De�ne also the Toeplitz operator of order n, T

n

, as the operator which associates to

each integrable function h on the torus the n� n Toeplitz matrix T

n

(h):

(T

n

(h))

i;j

=

b

h

i�j

; i; j = 1; : : : ; n

De�ne for any continuous function v the periodogram

I

n

(v) :=

T

X

(n)

� T

n

(v) �X

(n)

=

Z

�

��

v(e

ix

)j

n

X

1

X

k

e

ikx

j

2

dx

2�

In case the process is a gaussian process, the logarithm of the likelihood is L

n

(f) with:

�2L

n

(f) = n log 2� + log detT

n

(f) +

T

X

(n)

[T

n

(f)]

�1

X

(n)

It is well known (see for instance Azencott and Dacunha-Castelle (1986)) that it is well

approximated by the Whittle contrast function C

n

, or pseudo likelihood, given by:

C

n

(f) = n log 2� +

T

X

(n)

� T

n

(

1

f

) �X

(n)

+ n log �

2

(9)

= n log 2� + n log �

2

+ I

n

(

1

f

) (10)

which is a contrast function for the estimation of the parameters even if the process is

not gaussian. As was explained in the introduction, for p > p

0

and q > q

0

, the model

is not identi�able. We now de�ne a locally conic parametrization. Let f

0

have zeros

11



1=u

i

; i = 1; : : : ; q

0

and poles 1=t

i

; i = 1; : : : ; p

0

. We assume for simplicity that all poles

are distinct and all zeros are distinct. In other case, the Theorem still holds with a

similar proof. De�ne r = min(p� p

0

; q� q

0

). Suppose that r = p� p

0

. The case where

r = q� q

0

can be handled in the same manner. Let s = q� q

0

� r. De�ne for any non

negative �, and any

� = (�; �; �; c; ; �)

with � 2 IR, � = (�

j

)

j=1;:::;q

0

2 C

?

q

0

, � = (�

j

)

j=1;:::;p

0

2 C

?

q

0

, c = (c

j

)

j=1;:::;r

2 C

?

r

,

 = (

j

)

j=1;:::;r

2 C

?

r

, � = (�

j

)

j=1:::;s

2 C

?

s

, and such that

k�k

2

+ k�k

2

+ kk

2

+ k�k

2

= 1

De�ne now

f

(�;�)

(e

ix

) =

0

@

�

2

0

+

�

N(�)

�

2�

1

A

�

�

�

�

�

�

Q

q

0

i=1

(1 � (u

i

+

�

N(�)

�

i

)z)

Q

p

0

i=1

(1 � (t

i

+

�

N(�)

�

i

)z)

�

�

�

�

�

�

2

�

�

�

�

�

�

r

Y

i=1

(1� (c

i

+ �

i

�

N(�)



i

)z)

(1� (c

i

+ (1 � �

i

)

�

N(�)



i

)z)

�

�

�

�

�

�

2

j

s

Y

i=1

(1� (

�

N(�)

�

i

)z)j

2

(11)

with z = e

ix

, where, for i = 1; : : : ; r, �

i

= 1 if jc

i

� t

i

j < jc

i

� u

i

j and �

i

= 0 if

jc

i

� t

i

j � jc

i

� u

i

j, and with

N(�) = k

�

�

2

0

+

p

0

X

i=1

(

�

i

z

1 � t

i

z

+

�

i

z � t

i

)�

q

0

X

i=1

(

�

i

z

1 � u

i

z

+

�

i

z � u

i

)

+

r

X

i=1

(

(1 � 2�

i

)

i

z

1� c

i

z

+

(1� 2�

i

)

i

z � c

i

)�

s

X

i=1

(�

i

z +

�

i

z

)k

2

H

whereH is the Hilbert space L

2

([0; 2�];

dx

2�

). The parameters � and � can be constrained

to ly in a prescribed set in order that f

(�;�)

lies in F (�; u) (in particular the polynomials

have real coe�cients), and in order that:

f

(�;�)

= f

0

() � = 0

This can be done for example by a choice of associations of the zeros and poles of

f with those of f

0

. Let f have zeros 1=v

j

, j = 1; : : : ; q

0

; q

0

� q

0

� q, and poles

w

j

, j = 1; : : : ; p

0

; p

0

� p

0

� p. Let �

1

be any permutation of [1; : : : ; q

0

] and �

2

any

permutation of [1; : : : ; p

0

]. De�ne then P (z) =

Q

(1�w

�

2

(j)

z), Q(z) =

Q

(1�v

�

1

(j)

). The

right choice of the permutations �

1

and �

2

will lead to the desired local identi�ability

without loosing in�nite di�erentiability. For this choice, use the following rule: choose

�rst any (maybe between several) �

1

(j) such that

jv

�

1

(j)

� u

j

j = inf

l

inf

�

jv

�

1

(j)

� u

j

j

12



Then iterate the rule for the q

0

� 1 remaining zeros of f

0

. Do the same for the p

0

poles of f

0

, so that �

2

is de�ned for p

0

points. It remains p

0

� p

0

poles and q

0

� q

0

zeros. Do the same coupling for r points relating r remaining poles to the r remaining

poles. To end, complete �

2

in some way. This gives an enumeration of poles and zeros

so that polynomials P , Q may be built with this order, and then � and �; The set T

is then the set of all obtained (�; �) when f runs over F (�; u). Recall that, to have

real parameters for the AR and MA polynomials, when one perturbation coe�cient

is associated to a zero or a pole which is not real, its conjugate is the perturbation

coe�cient associated to the conjugate zero or pole. This will always be the case. The

number of real parameters is then p + q + 1. We then obviously have by construction

that f

(�;�)

= f

0

implies � = 0.

Notice that, in some sense, such construction chooses a particular member of the

equivalent classes in the quotient space. Our locally conic parametrization is one way

of thinking distances between quotient classes.

Notice also that, at least for small enough �, the perturbation direction � may take

any direction. In other words, the set of real parameters involved in

~

B spans IR

p+q+1

.

Another important remark is that we have for all (�; �)

�

N(�)

� 2(p

0

+ q

0

+ r + s)

We now de�ne the derivative space D to be the subset of the unit sphere of H of

functions of form

1

N(�)

(

�

�

2

0

+

p

0

X

i=1

(

�

i

z

1 � t

i

z

+

�

i

z � t

i

)�

q

0

X

i=1

(

�

i

z

1 � u

i

z

+

�

i

z � u

i

)

+

r

X

i=1

(

(1 � 2�

i

)

i

z

1� c

i

z

+

(1� 2�

i

)

i

z � c

i

)�

s

X

i=1

(�

i

z +

�

i

z

))

with z = e

ix

and with � in

~

B. De�ne also �

d

the gaussian process indexed by D with

covariance the usual hilbertian product in H. Let now D

1

be the subset of the unit

sphere of H of functions of form

�

�

2

0

+

p

0

X

i=1

 

a

i

X

k=1

�

i;k

(

z

1 � t

i

z

)

a

i

+ �

i;k

(

1

z � t

i

)

a

i

!

+

q

0

X

i=1

0

@

b

i

X

k=1

�

i;k

(

z

1� u

i

z

)

b

i

+ �

i;k

(

1

z � u

i

)

b

i

1

A

�

r

1

X

i=1

(

(1� 2�

i

)

i

z

1 � c

i

z

+

(1� 2�

i

)

i

z � c

i

)�

s

X

i=1

(�

i

z +

�

i

z

) (12)

with 1 � a

i

� 2, i = 1; : : : ; p

0

, 1 � b

i

� 2, i = 1; : : : ; q

0

,

P

p

0

1

a

i

+

P

q

0

1

b

i

> p

0

+ q

0

,

P

p

0

1

a

i

+

P

q

0

1

b

i

� (p

0

+ q

0

) � r, and r

1

� r � [

P

p

0

1

a

i

+

P

q

0

1

b

i

� (p

0

+ q

0

)].

Let also D

2

be the subset of the unit sphere of H of functions orthogonal to D

1

of

13



form (12) with 1 � a

i

, i = 1; : : : ; p

0

, 1 � b

i

, i = 1; : : : ; q

0

,

P

p

0

1

a

i

+

P

q

0

1

b

i

> p

0

+ q

0

,

P

p

0

1

a

i

+

P

q

0

1

b

i

� (p

0

+ q

0

) � r, and r

1

� r � [

P

p

0

1

a

i

+

P

q

0

1

b

i

� (p

0

+ q

0

)].

Notice that D

1

and D

2

are subset of D, the (compact) closure of D in H. More

precisely, D is the subset of the unit sphere of H of functions of form (12) with 1 � a

i

,

i = 1; : : : ; p

0

, 1 � b

i

, i = 1; : : : ; q

0

,

P

p

0

1

a

i

+

P

q

0

1

b

i

� (p

0

+q

0

) � r, and r

1

� r� [

P

p

0

1

a

i

+

P

q

0

1

b

i

� (p

0

+ q

0

)]. To identify the set D, one looks at the limit points of functions in

D such that N(�) tends to 0. This happens when at least one c

i

tends to some t

i

or

u

i

with corresponding 

i

tending to the corresponding �

i

, or to the corresponding �

i

.

De�ne now U

n

= inf

f2F (�;u)

C

n

(f). We have the following asymptotic result:

Theorem 4.1 U

n

� C

n

(f

0

) converges in distribution to the following variable:

� sup

(

sup

d2D

1

2

�

2

d

1

�

d

�0

; sup

d

1

2D

1

;d

2

2D

2

1

2

(�

2

d

1

+ �

2

d

2

1

�

d

2

�0

)

)

The proof of Theorem 4.1 is in section 5.

Remarks:

� An important point of the proof is the identi�cation of D, that is the study of

the limit points in D when N(�) tends to 0. This is why the �

i

appears in (11),

so that when N(�) tends to 0, f

(�;�)

tends to f

0

, and so that, due to the locally

conic structure (coming from the choice of permutation):

�

N(�)

j�

i

j(1 + o(1)) � (jc

i

� u

i

j) (13)

for a c

i

tending to u

i

, for which �

i

= 0, and

�

N(�)

j�

i

j(1 + o(1)) � (jc

i

� t

i

j) (14)

for a c

i

tending to t

i

, for which �

i

= 1.

� In case p

0

= q

0

= 0 and p = q = 1, we recover the result of Hannan (1982).

� In case p

0

+ 1 = p and q

0

+ 1 = q, and only in this case, D

2

is empty so that we

recover the asymptotic result of Veres (1987).

Corollary 4.2 When p = p

0

+1 and q = q

0

+1, U

n

�C

n

(f

0

) converges in distribution

to the following variable:

� sup

d2D

1

2

�

2

d

1

�

d

�0

14



5 Proofs.

5.1 Proof of Theorem 3.1.

First of all, de�ne

b

�

�

a maximizer of l

n

(�; �) for the �xed value of �. Recall the following

result, which is proved in Dacunha-Castelle and Gassiat(1996) coming from (M0) and

the fact that the parametrization is locally conic:

Proposition 5.1 De�ne �

n

= sup

�2

~

B

b

�

�

. Then �

n

converges to 0 in probability as n

tends to in�nity.

Using (P0), g

(�;�)

is di�erentiable with respect to � till order 5, and we have for all

2 � h � 5, if g

(h)

(�;�)

is the h-th derivative of g with respect to � at point (�; �):

g

(h)

(�;�)

=

h

N(�)

h

k

X

i

1

:::i

h�1

=1

q

X

l=1

�

l

�

l

i

1

: : : �

l

i

h�1

D

h�1

i

1

:::i

h�1

f



l;0

+

�

N(�)

�

l

+

1

N(�)

h

k

X

i

1

:::i

h

=1

q

X

l=1

(�

0

l

+ �

l

�

N(�)

)�

l

i

1

: : : �

l

i

h

D

h

i

1

:::i

h

f



l;0

+

�

N(�)

�

l

and also

g

0

(�;�)

=

1

N(�)

 

p�q

X

l=1

�

l

f



l +

q

X

l=1

�

l

f



l;0

+

�

N(�)

�

l

+

k

X

i=1

q

X

l=1

(�

0

l

+ �

l

�

N(�)

)�

l

i

D

1

i

f



l;0

+

�

N(�)

�

l

!

The proof of the Theorem follows the same lines as that of Theorems 4.2 and 4.3 in

Dacunha-Castelle and Gassiat (1996). However, the parametrization is not exactly

the same, and has more terms, so that we detail the proof. It will aslo rely on some

control's Lemma that we set now.

Lemma 5.2 Under (P2), there exists a constant number a such that for � in

~

B:

sup

l

k�

l

k

2

N(�)

� a

Proof of Lemma 5.2.

First of all, using assumption (P2), the hermitian matrix of all hilbertian scalar prod-

ucts involving functions in the free system is positive, so that it has a positive smallest

eigenvalue �, and the associated hermitian product is larger than � multiplied by the

usual scalar product in IR

s

, s = p+ kq + p

2

(k

2

� 1).

If

k�

l

k

2

N(�)

is unbounded, there exists a sequence �

n

such that

lim

n!+1

k�

l;n

k

N(�

n

)

= +1
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Since �

l;n

is bounded (see (6)), this implies that N(�

n

) tends to 0. Using assumption

(P2), this implies that �

l;n

tends to 0. Let now J

l

be the set of indices i such that 

i;n

tends to 

l;0

. We have:

k�

l;n

k

2

N(�

n

)

�

1

�

k�

l;n

k

2

(k

P

j2J

l

�

j

(

j;n

� 

l;0

) + �

l

k

2

+

1

4

(

P

j2J

l

�

j

k

j;n

� 

l;0

)k

2

)

2

)

1=2

(1 + o(1))

Now,

� If k

P

j2J

l

�

j

(

j;n

� 

l;0

)k = o(k�

l

k) or k�

l

k = o(k

P

j2J

l

�

j

(

j;n

� 

l;0

)k), obviously

k�

l;n

k

2

N(�

n

)

�

1

�

� If now

P

j2J

l

�

j

(

j;n

� 

l;0

) = ��

l

(1 + o(1)) we have

X

j2J

l

�

j

k

j;n

� 

l;0

k

2

�

k

P

j2J

l

�

j

(

j;n

� 

l;0

)k

2

(

P

j2J

l

�

j

)

2

so that

X

j2J

l

�

j

k

j;n

� 

l;0

k

2

�

k�

l

k

2

(1 + o(1))

(

P

j2J

l

�

j

)

2

and so that again

k�

l;n

k

2

N(�

n

)

�

(

P

j2J

l

�

j

)

2

�

�

p� q

�

and the Lemma follows.

The proof of Theorem 3.1 will rely on covering the domain in di�erent regions. Let us

look �rst at

A

n

= f� :

k sup

l

�

l

k

N(�)

2

�

1

�

�

n

g

for some � < 3=4. A �rst Lemma states the asymptotic distribution of the likelihood

maximized on (�; �) for � 2 A

n

.

Lemma 5.3 Under the assumptions of Theorem 3.1, sup

�2A

n

l

n

(

b

�

�

; �) � l

n

(0) con-

verges in distribution to

1

2

sup

d2D

(�

d

)

2

� 1

�

d

� 0

Proof of lemma 5.3.

First, the following expansion holds for � tending to 0:

l

n

(�; �)� l

n

(0) =

n

X

i=1

g

(�;�)

� g

0

g

0

(X

i

)�

1

2

n

X

i=1

 

g

(�;�)

� g

0

g

0

)

2

(X

i

) +O(

g

(�;�)

� g

0

g

0

(X

i

))

3

!

(15)
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Let us now write an expansion of g

(�;�)

till order 2:

g

(�;�)

(x) = g

0

(x) + � � g

0

(0;�)

(x) +

�

2

2

� g"

(��;�)

(x)

for a �� � � and depending on x. Now as � tends to 0:

g"

(��;�)

(x) =

2

N(�)

2

q

X

l=1

k

X

i=1

�

l

�

l

i

D

1

i

f



l;0(x) + 0((sup

l

k�

l

k

2

N(�)

3

)�m

2

(x)g

0

(x))

since �

l

is bounded and using (P0). Write:

D

n

(�) =

n

X

i=1

g

0

(0;�)

g

0

(X

i

)

F

i;l

n

=

n

X

i=1

D

1

i

f



l;0

g

0

(X

i

)

De�ne also

u(�; i; l) = h

D

1

i

f



l;0

g

0

;

g

0

(0;�)

g

0

i

H

v(i; l; i

0

; l

0

) = h

D

1

i

f



l;0

g

0

;

D

1

i

0

f



l

0

;0

g

0

i

H

Notice that

n

X

i=1

 

g

0

(0;�)

g

0

!

2

(X

i

) = n � (1 + o(1))

n

X

i=1

 

g

0

(0;�)

g

0

D

1

i

f



l;0

g

0

!

(X

i

) = nu(�; i; l) � (1 + o(1))

n

X

i=1

 

D

1

i

0

f



l

0

;0

g

0

D

1

i

f



l;0

g

0

!

(X

i

) = nv(i; l; i

0

; l

0

) � (1 + o(1))

where the o(1) are uniform in probability, thanks to (P1). Let us now see what happens

on A

n

and for � � 2�

n

. Applying lemma 5.2 we obtain for any l = 1; : : : ; q:

k�

l

k

2

N(�)

3

� � �

1�4�=3

n

which goes to 0 since � < 3=4. One can now prove:

l

n

(�; �)� l

n

(0) = �D

n

(�) +

q

X

l=1

k

X

i=1

�

l

�

l

i

N(�)

2

F

i;l

n

�

2

+ o(n�

2

)

�

�

2

2

n(1 + o(1)) �

q

X

l=1

k

X

i=1

�

l

�

l

i

N(�)

2

�

3

nu(�; i; l)(1 + o(1))

�

�

4

2

q

X

l;l

0

=1

k

X

i;i

0

=1

�

l

�

l

0

�

l

i

�

l

0

i

0

N(�)

4

nv(l; i; l

0

; i

0

)(1 + o(1)) + o(n�

2

)
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where all the o(�) are uniform in probability over � in A

n

.Now,

k�

l

k

N(�)

2

� � �

1��

n

and since (D

n

(�); F

i;l

n

)

i;l

=

p

n converges uniformly in distribution using (P1) we have

easily

�

l

i

N(�)

2

F

i;l

n

�

2

= o(�D

n

(�))

where the o(�) is uniform in probability over � in A

n

. We �nally get for � in A

n

and

for � � 2�

n

:

l

n

(�; �)� l

n

(0) =

 

�D

n

(�)�

�

2

2

n

!

(1 + o(1))

where again the o(�) is uniform in probability over � in A

n

. Since

b

�

�

� �

n

this obviously

leads, by maximizing �D

n

(�)�

�

2

2

n to:

V

n

(�) =

1

2

D

n

(�)

2

n

1

D

n

(�)�0

(1 + o(1))

for � in A

n

and where the o(�) is uniform in probability over � in A

n

. The conclusion

of Lemma 5.3 follows using (P1) and the fact that the set of functions in D such that

� is in [

n

A

n

is exactly D.

Let us now study what happens on

B

n

= f� : 9l = 1; : : : ; q;

k�

l

k

N(�)

2

�

1

�

�

n

g

First of all, notice that on B

n

, N(�) tends to 0, and using (P2) all �

l

tend to 0. We

have as an immediate consequence of Lemma 5.2:

Lemma 5.4 There exists a constant number M such that for � in B

n

:

N(�) �M�

2�=3

n

and for any (i; l):

j�

l

i

j �M�

�=3

n

Proof of Lemma 5.4.

De�ne �

i;l

=

�

l

i

N(�)

2

. We �rst have, using Lemma 5.2

N(�) �

a

1=3

j�

i;l

j

2=3
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Now, on B

n

, there exists (i; l) such that j�

i;l

j � 1=k�

�

n

, and the �rst inequality of the

Lemma follows. Now, using Lemma 5.2 we have for all (i; l)

j�

l

i

j �

q

aN(�)

and the second inequality follows .

In other words, on B

n

, N(�) and all j�

l

i

j tend uniformly to 0.

We shall use again expansion (15), but the expansion for g

(�;�)

has now to be done

till order 5:

g

(�;�)

(x) = g

0

(x) + � � g

0

(0;�)

(x) +

4

X

i=2

�

i

i!

� g

(i)

(0;�)

(x) +

�

5

5!

� g

(5)

(��;�)

(x)

for a �� � � and depending on x. The aim is now to prove that for � � 2�

n

and for

� 2 B

n

we have:

l

n

(�; �)� l

n

(0) = P

n

(�; �)(1 + o(1)) (16)

where all the o(�) are uniform in probability over � in B

n

and with P

n

(�; �) the poly-

nomial of degree 4 in the variable �:

P

n

(�; �) = �D

n

(�) +

q

X

l=1

�

2

 

k

X

i=1

�

l

�

l

i

N(�)

2

F

i;l

n

�

n

2

!

� �

3

n

q

X

l=1

k

X

i=1

�

l

�

l

i

N(�)

2

u(�; i; l)

�

�

4

2

n

q

X

l;l

0

=1

k

X

i;i

0

=1

�

l

�

l

0

�

l

i

�

l

0

i

0

N(�)

4

v(i; l; i

0

; l

0

)

=

4

X

j=1

p

j

(n; �)�

j

From now on, any o(1) will be uniform over B

n

(J

1

; J

2

). Since j�

l

i

j tends uniformly to

0, we have

�

l

i

1

: : : �

l

i

h

N(�)

h

= o

 

�

l

i

1

: : : �

l

i

h�1

N(�)

h

!

So that we can write for for h � 4:

g

(h)

(�;�)

=

0

@

h

N(�)

h

k

X

i

1

:::i

h�1

=1

q

X

l=1

�

l

�

l

i

1

: : : �

l

i

h�1

D

h�1

i

1

:::i

h�1

f



l;0

+

�

N(�)

�

l

1

A

(1 + o(1))

De�ne

E

n

(�; �) =

n

X

i=1

5

X

h=2

�

h

(h� 1)!

k

X

i

1

:::i

h�1

=1

q

X

l=1

�

l

�

l

i

1

: : : �

l

i

h�1

N(�)

h

D

h�1

i

1

:::i

h�1

f



l;0

g

0

(X

i

)
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J

n

(�; �) =

n

X

i=1

sup k�

l

k

5

N(�)

5

�

5

m

5

g

0

(X

i

))

We may now write, using also (P0):

n

X

i=1

g

(�;�)

� g

0

g

0

(X

i

) = �D

n

(�) + E

n

(�; �)(1 + o(1)) +O(J

n

(�; �))

Now, using expansion (15) together with the previous result leads to

l

n

(�; �)� l

n

(0) = �D

n

(�) + E

n

(�; �)(1 + o(1)) +O(J

n

(�; �))

�

1

2

(�D

n

(�) + E

n

(�; �)(1 + o(1)) +O(J

n

(�; �)))

2

+O(�D

n

(�) + E

n

(�; �)(1 + o(1)) +O(J

n

(�; �)))

3

so that we obtain

l

n

(�; �)� l

n

(0) = �D

n

(�) + E

n

(�; �)�

1

2

(�D

n

(�) + E

n

(�; �))

2

+R

n

(17)

= P

n

(�; �) +R

n

(18)

whereR

n

is a sum of terms which are o(Q

n

(�; �)), withQ

n

(�; �) = sup

1�j�4

jp

j

(n; �)�

j

j,

plus terms which may be bounded with one of the following forms:

�

h

�

l

i

1

: : : �

l

i

h�1

N(�)

h

n

X

i=1

D

h�1

i

1

:::i

h�1

f



l;0

g

0

(X

i

) h � 3

�

5

k�

l

k

5

N(�)

5

n ;

�

h+1

�

l

i

1

: : : �

l

i

h�1

N(�)

h

n ;

�

h+l

�

l

i

1

: : : �

l

i

h�1

�

l

j

1

: : : �

l

j

l�1

N(�)

h+l

n with h; l � 3

�

3

n ;

�

h+2

�

l

i

1

: : : �

l

i

h�1

N(�)

h

n ;

�

h+l+1

�

l

i

1

: : : �

l

i

h�1

�

l

j

1

: : : �

l

j

l�1

N(�)

h+l

n

�

h+l+m

�

l

i

1

: : : �

l

i

h�1

�

l

j

1

: : : �

l

j

l�1

�

l

k

1

: : : �

l

k

m�1

N(�)

h+l+m

n with h; l;m � 2

Now, since �=N(�) and the �

l

i

are bounded, the �rst term in this list may be bounded

by:

M�

�=3

n

�

�

2

�

l

i

1

N(�)

2

n

X

i=1

D

1

i

f



0

g

0

(X

i

)

which is uniformly in probability

o(

�

2

�

l

i

1

N(�)

2

F

i

1

;l

n

)

Some of the other terms will be proven to be o(n�

2

) using Lemma 5.2, Lemma 5.4 and

the fact that � is in B

n

:

�

5

k�

l

k

5

N(�)

5

n = O(n�

2

�

�=3

n

)
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�

h+1

�

l

i

1

: : : �

l

i

h�1

N(�)

h

n = O(n�

2

�

�(k�3)=3

) k � 4

�

h+l

�

l

i

1

: : : �

l

i

h�1

�

l

j

1

: : : �

l

j

l�1

N(�)

h+l

n = O(n�

2

�

�(k+l�6)=3

) k; l � 3

�

3

n = o(n�

2

)

�

h+2

�

l

i

1

: : : �

l

i

h�1

N(�)

h

n = O(n�

2

�

(h�1)=3

n

)

�

h+l+1

�

l

i

1

: : : �

l

i

h�1

�

l

j

1

: : : �

l

j

l�1

N(�)

h+l

n = O(n�

2

�

�(h+l�4=3))

n

) k; l � 2

�

h+l+m

�

l

i

1

: : : �

l

i

h�1

�

l

j

1

: : : �

l

j

l�1

�

l

k

1

: : : �

l

k

m�1

N(�)

h+l+m

n = O(n�

2

�

�(h+l+m�7)=3

n

) k + l +m � 8

The remaining terms may be proven to be o(n

�

4

�

l

i

�

l

j

N(�)

4

) for some i; j. They are:

n�

4

�

l

i

�

l

j

N(�)

3

= O(N(�) � n

�

4

�

l

i

�

l

j

N(�)

4

)

n�

5

�

l

i

�

l

j

N(�)

4

= O(� � n

�

4

�

l

i

�

l

j

N(�)

4

)

n�

6

�

l

i

�

l

j

�

l

j

0

N(�)

6

= O(�

�=3

n

� n

�

4

�

l

j

N(�)

4

)

n�

7

�

l

i

�

l

j

�

l

i

0

�

l

j

0

N(�)

7

= O(�

2�=3

n

� n

�

4

�

l

j

N(�)

4

)

So every term of R

n

is o(Q

n

(�; �)) uniformly in �. It is not possible now to conclude

that (16) holds since we need o(P

n

(�; �)) instead of o(Q

n

(�; �)). It will be seen later

that, at the optimizing value (

b

�;

b

�), all terms in P

n

have the same order and that

Q

n

(�; �) = O(P

n

(

b

�;

b

�)). Let us now prove that when at least one term p

j

(n; �)�

j

of P

n

tends to +1, then this implies that P

n

(�; �) is negative. Recall that �

i;l

=

�

l

i

N(�)

2

. We

can limit ourselves to subsequences; we omit the related subscripts for simplicity.

We shall need two technical Lemmas. The �rst one is a simple consequence of (P2).

Lemma 5.5 There exists � > 0 such that:

q

X

l;l

0

=1

k

X

i;i

0

=1

�

l

�

l

0

�

i;l

�

i

0

;l

0

nv(i; l; i

0

; l

0

) � �

q

X

l=1

k

X

i=1

�

2

l

�

2

i;l

nv(i; l; i; l)

Let now J � f1; : : : ; qg�f1; : : : ; kg be the set of indices (l; i) such that ��

i;l

is bounded,

and

~

J � J be the set of indices (l; i) such that the accumulation point of ��

i;l

is non

zero; let �

i;l

be this accumulation point.
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Lemma 5.6 Suppose that J = f1; : : : ; qg � f1; : : : ; kg. Then

8j = 1; : : : ; 4; lim sup

n!+1

p

j

(n; �)�

j

= O(1)

Moreover, there exists m > 0 such that at the maximizing value P (jp

j

(n;

b

�)

b

�

j

j � m)

tends to 1.

Indeed, in this case we have

P

n

(�; �) = �

p

nA

1

(n; �) + (�

p

nA

2

(n; �)�

1

2

n�

2

) + �

2

nB

1

(n; �)�

1

2

n�

2

B

2

(n; �)

with A

1

= O(1), A

2

= O(1), B

1

= O(1), B

2

= O(1). Optimizing P

n

leads to the

maximum value:

1

2

(A

1

+A

2

)

2

(B

2

�B

1

+ 1)

2

and Schwartz inequality leads to the result.

Now

� If p

1

(n; �)� tends to in�nity, then since D

n

(�) = O(

p

n), p

1

(n; �)� = o(n�

2

) and

P

q

l=1

P

k

i=1

�

l

�

i;l

F

i;l

n

�

2

= o(p

4

(n; �)�

4

) and p

4

(n; �) > 0. So the only possibility to

have P

n

> 0 is that jp

4

(n; �)�

4

j = o(jp

3

(n; �)�

3

j), with jp

4

(n; �)�

4

j and jp

3

(n; �)�

3

j

tending to in�nity. But this implies by Lemma 5.5 that no term ��

i;l

tends to

in�nity. So that, either

~

J is empty and jp

3

(n; �)�

3

j = o(n�

2

, and P

n

is negative

for large enough n, or by Lemma 5.6, the maximum value of P

n

is O(1), doesn't

tend to 0, and no term of P

n

tends to 0.

� If jp

2

(n; �)�

2

j tends to in�nity, the same analysis holds.

� If jp

3

(n; �)�

3

j tends to in�nity, then in case there exists some leading term ��

i

0

;l

0

tending to in�nity, jp

3

(n; �)�

3

j = o(jp

4

(n; �)�

4

j). In the other case, if J is empty,

jp

3

(n; �)�

3

j = o(n�

2

) and P

n

is negative. The case where J is not empty has been

treated already.

In summary, if one of the jp

j

(n; �)�

j

j tends to in�nity, either the maximum value of

P

n

is negative for large enough n, or the maximum value of P

n

is O(1), doesn't tend

to 0, and no term of P

n

tends to 0. We may conclude that the supremum value of l

n

is attained in the region where all terms of P

n

are O(1), where (16) holds.

Let us now look at the maximum value of P

n

(�; �) for � in B

n

. Let � =

1

N(�)

2

.
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De�ne, considering � and � as di�erent variables (in fact � is a function of �):

Y

n

(�; �; �) = �D

n

(�)�

n

2

�

2

+ (�

2

q

X

l=1

k

X

i=1

�

l

�

l

i

F

i;l

n

� �

3

n

q

X

l=1

k

X

i=1

�

l

�

l

i

u(�; i; l)) � �

�

�

4

2

n

q

X

l;l

0

=1

k

X

i;i

0

=1

�

l

�

l

0

�

l

i

�

l

0

i

0

v(i; l; i

0

; l

0

) � �

2

We have P

n

(�; �) = Y

n

(�; �; �), so that

sup

���

n

;�2B

n

P

n

(�; �) � sup

�2B

n

Z

n

(�)

where Z

n

(�) = sup

�;��0

Y

n

(�; �; �). Optimizing in � leads to:

� =

1

n�

2

P

q

l=1

P

k

i=1

�

l

�

l

i

F

i;l

n

P

q

l;l

0

=1

P

k

i;i

0

=1

�

l

�

l

0

�

l

i

�

l

0

i

0

v(i; l; i

0

; l

0

)

�

1

�

P

q

l=1

P

k

i=1

�

l

�

l

i

u(�; i; l)

P

q

l;l

0

=1

P

k

i;i

0

=1

�

l

�

l

0

�

l

i

�

l

0

i

0

v(i; l; i

0

; l

0

)

(19)

De�ne

F

n

(�) =

q

X

l=1

k

X

i=1

�

l

�

l

i

F

i;l

n

S(�) =

q

X

l;l

0

=1

k

X

i;i

0

=1

�

l

�

l

0

�

l

i

�

l

0

i

0

v(i; l; i

0

; l

0

)

U(�) =

q

X

l=1

k

X

i=1

�

l

�

l

i

u(�; i; l)

This leads to:

Y

n

(�; �; �) =

1

2n

 

F

n

(�)

2

S(�)

!

+ �

 

D

n

(�)�

F

n

(�)U(�)

S(�)

!

�

n�

2

2

 

1�

U(�)

2

S(�)

!

which leads to the maximizing value for �:

� =

1

n

0

@

D

n

(�)�

F

n

(�)U(�)

S(�)

1�

U(�)

2

S(�)

1

A

1

D

n

(�)�

F

n

(�)U(�)

S(�)

�0

The maximized value of Y

n

is then:

Z

n

(�) =

1

2n

0

@

(D

n

(�)�

F

n

(�)U(�)

S(�)

)

2

1 �

(U(�))

2

S(�)

1

A

1

D

n

(�)�

F

n

(�)U(�)

S(�)

�0

+

1

2n

 

(F

n

(�))

2

S(�)

!

Let us now study the behaviour of Z

n

(�) for � 2 B

n

.
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Lemma 5.7 Let d(�) be the function in D

d(�) =

1

N(�)

 

q

X

l=1

�

0

l

k

X

i=1

�

l

i

D

1

i

f



l;0

g

0

+

p�q

X

i=1

�

i

f



i

g

0

+

q

X

l=1

�

l

f



l;0

g

0

!

On B

n

, the set of possible accumulation points of d(�) are the d(�; ~�; �; �; a)(�) in the

unit sphere of H:

p

1

X

l=1

�

l

f



l

g

0

+

q

X

l=1

~�

l

f



l;0

g

0

+

q

X

l=1

k

X

i=1

�

l;i

D

1

i

f



l;0

g

0

+

p

2

X

l=1

k

X

i;j=1

�

l

a

i

a

j

D

2

ij

f



l;0

g

0

with p

1

� p � q � 1, p

1

+ p

2

� p � q, �

l

� 0,

P

p

1

l=1

�

l

+

P

q

l=1

�

l

= 0, �

l

� 0. On the

subsequence,

d(�) = d(�; ~�; �; �; a)(1 + o(1))

so that the same approximation holds for u(�; i; l).

Proof of Lemma 5.7.

On B

n

, N(�) tends uniformly to 0. This implies that there exists an integer p

1

�

p� q� 1 such that for the indices (eventually reordered) l � p

1

, the 

l

do not converge

to any of the 

l;0

. For the other indices, let J

l

be the (possibly empty but not all

empty) set of indices m such that 

m

tends to 

l;0

. Writing a Taylor expansion, and

keeping only the leading terms, we have

d(�) = (

1

N(�)

(

p

1

X

l=1

�

l

f



l

g

0

+

q

X

l=1

(

X

m2J

l

�

m

+ �

l

)

f



l;0

g

0

+

q

X

l=1

k

X

j=1

(

X

m2J

l

�

m

(

m

j

� 

l;0

j

) + �

0

l

�

l

j

)

D

1

j

f



l;0

g

0

+

p

2

X

l=1

k

X

j;j

0

=1

1

2

(

X

m2J

l

�

m

(

m

j

� 

l;0

j

)(

m

j

0

� 

l;0

j

0

))

D

2

jj

0

f



l;0

g

0

))(1 + o(1))

for some p

2

with p

1

+ p

2

� p � q. N(�) has the same expansion. The sequences of

coe�cients

�

l

N(�)

;

P

m2J

l

�

m

+ �

l

N(�)

;

P

m2J

l

�

m

(

m

j

� 

l;0

j

) + �

0

l

�

l

j

N(�)

P

m2J

l

�

m

(

m

j

� 

l;0

j

)(

m

j

0

� 

l;0

j

0

)

N(�)

are bounded. Let the accumulations points be respectively �

l

, ~�

l

, �

l;i

and �

l

a

i

a

j

. The

result follows.

We then have on B

n

:

D

n

(�) =

n

X

i=1

d(�; ~�; �; �; a)(X

i

)(1 + o(1)) (20)
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for some d(�; ~�; �; �; a)(�). and also

u(�; i; l) = u(�; ~�; �; �; a)(1 + o(1))

with obvious notations. We thus obtain that

1

2n

 

(F

n

(�))

2

S(�)

!

converges in distribution to

1

2

�

2

d

1

for some d

1

2 D

1

, and that jointly

1

2n

0

@

(D

n

(�)�

F

n

(�)U(�)

S(�)

)

2

1 �

(U(�))

2

S(�)

1

A

1

D

n

(�)�

F

n

(�)U(�)

S(�)

�0

converges in distribution, uniformly in (�; ~�; �; �; a), to

1

2

(�

d

2

)

2

� 1

�

d

2

� 0 for some

d

2

2 D

2

. Notice indeed that the variables (D

n

(�)�

F

n

(�)U(�)

S(�)

and F

n

(�) are uncorrelated.

We �nally have that sup

���

n

;�2B

n

P

n

(�; �) is upper bounded by the variable Z

n

which

converges in distribution to the variable

Z =

1

2

sup

d

1

2D

1

(�

d

1

)

2

+

1

2

sup

d

2

2D

2

(�

d

2

)

2

� 1

�

d

2

� 0

Let us now prove the lower bound. Let � = (�; ~�; �; �; a) be given such that d

2

(�) =

d

2

(�; ~�; �; �; a) is in D

2

with:

d

2

(�) =

p

1

X

l=1

�

l

f



l

g

0

+

q

X

l=1

~�

l

f



l;0

g

0

+

q

X

l=1

k

X

i=1

�

l;i

D

1

i

f



l;0

g

0

+

p

2

X

l=1

k

X

i;j=1

�

l

a

i

a

j

D

2

ij

f



l;0

g

0

Let

~

� = (

~

�

i;l

), and d

1

(

~

�) in D

1

given by

d

1

(

~

�) =

q

X

l=1

k

X

i=1

~

�

l;i

D

1

i

f



l;0

g

0

For any sequence of � tending to 0, de�ne

~

� by:

�

l

= �

l

� �; l = q + 1; : : : q + p

1

�

l

+ �

l

= ~�

l

� �; l = 1; : : : ; q

if p

1

+ q � p� q, and in case inffp

1

+ q; p� qg = p � q,

�

l

= ~�

l

� �; l = p

1

+ q + 1; : : : ; p� qg

�

l

(

l

j

� 

l;0

j

) + �

0

l

�

l

j

= �

j;l

� �; l = 1; : : : ; q; j = 1; : : : ; k

�

l

(

l

i

� 

l;0

i

)(

l

j

� 

l;0

j

) = �

l

a

i

a

j

� �; l = 1; : : : ; p

2

; i; j = 1; : : : ; k
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N(

~

�) has order �. The parameters of

~

� are not uniquely determined by this set of

equations. It is possible to �nd also a sequence of � tending to 0 such that:

�

l

�

l

j

=

~

�

j;l

� �; l = 1; : : : ; q; j = 1; : : : ; k

(just consider the case a

i

= 0 and a

i

6= 0, to set an equation of order 2 in �

l

j

, and choose

the speed � so that the equation has a solution for all j; l.) Choose now the speed � of

convergence to 0 of N(

~

�) such that

1

N(

~

�)

2

= �

with � given in (19), where � � �

n

. This is possible, since it is an homogeneous

equation in �. Since �

l

j

is at least of order � and at most of order

p

�, we have that

�

l

j

=N(

~

�)

2

is at least of order

1

�

, so that

~

� 2 B

n

In case

1

D

n

(

~

�)�

F

n

(

~

�)U(

~

�)

S(

~

�)

�0

= 1;

choose

� =

1

n

0

B

@

D

n

(

~

�)�

F

n

(

~

�)U(

~

�)

S(

~

�)

1�

U(

~

�)

2

S(

~

�)

1

C

A
1

D

n

(

~

�)�

F

n

(

~

�)U(

~

�)

S(

~

�)

�0

We have easily that �=N(

~

�) is of order n

�1=4

, so that we obtain that, using this par-

ticular (�;

~

�),

sup

���

n

;�2B

n

P

n

(�; �) � sup

�;

~

�

Z

n

(

~

�) (21)

(the supremum over �,

~

� is over all

~

� constructed from them.) In case

1

D

n

(

~

�)�

F

n

(

~

�)U(

~

�)

S(

~

�)

�0

= 0;

we obtain that

sup

���

n

;�2B

n

P

n

(�; �) �

1

2n

F

n

(

~

�)

2

S(

~

�)

= Z

n

(

~

�)

so that in all cases, (21) holds. Now, with those

~

� we have that

F

n

(

~

�)

q

S(

~

�)

= (

n

X

i=1

d

1

(

~

�)(X

i

))(1 + o(1))
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and

(D

n

(�)�

F

n

(�)U(�)

S(�)

)

r

1 �

(U(�))

2

S(�)

= (

n

X

i=1

d

2

(�)(X

i

))(1 + o(1))

so that sup

�;

~

�

Z

n

(

~

�) converges in distribution to

1

2

sup

d

1

2D

1

(�

d

1

)

2

+

1

2

sup

d

2

2D

2

(�

d

2

)

2

� 1

�

d

2

�0

We then have proved the following Lemma:

Lemma 5.8 Under the assumptions of Theorem 3.1, sup

�2B

n

l

n

(

b

�

�

; �) � l

n

(0) con-

verges in distribution to

1

2

sup

d

1

2D

1

(�

d

1

)

2

+

1

2

sup

d

2

2D

2

(�

d

2

)

2

� 1

�

d

2

�0

which, together with Lemma 5.3, gives the Theorem.

5.2 Proof of Theorem 4.1.

First of all, de�ne

b

�

�

a minimizer of C

n

(f

(�;�)

) for the �xed value of �. We have, since

the parametrization is locally conic, and using similar arguments as for Proposition

5.1:

Proposition 5.9 De�ne �

n

= sup

�2

~

B

b

�

�

. Then �

n

converges to 0 in probability as n

tends to in�nity.

We shall now study derivatives of C

n

(f

(�;�)

) with respect to � for �xed �. De�ne

e

(�;�)

=

1

N(�)

(

�

�

2

0

+

��

N(�)

+

p

0

X

i=1

(

�

i

z

1 � (t

i

+

�

N(�)

�

i

)z

+

�

i

z � (t

i

+

�

N(�)

�

i

)

)

�

q

0

X

i=1

(

�

i

z

1 � (u

i

+

�

N(�)

�

i

)z

+

�

i

z � (u

i

+

�

N(�)

�

i

)

)

�

r

X

i=1

(



i

z

1 � (c

i

+

�

N(�)



i

)z

+



i

z � (c

i

+

�

N(�)



i

)

)�

s

X

i=1

(�

i

z +

�

i

z

))

and e

(k)

(�;�)

to be the partial derivative of e

(�;�)

with respect to �. e

(�;�)

is an element of

D. Let C

0

n

(�; �) be the partial derivative of C

n

(f

(�;�)

) with respect to �, and C

(k)

n

(�; �)

the k-th partial derivative of C

n

(f

(�;�)

) with respect to �. We have:

C

0

n

(�; �) = n

�

N(�)

�

2

0

+ �

�

N(�)

� I

n

 

(

e

(�;�)

f

(�;�)

!
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C

"

n

(�; �) = �n

(

�

N(�)

)

2

(�

2

0

+ �

�

N(�)

)

2

+ I

n

 

e

2

(�;�)

� e

0

(�;�)

f

(�;�)

!

C
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n
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�
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)

3
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2

0

+ �

�
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)

3
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3
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+ 3e
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e

0
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� e"

(�;�)

f
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!

C

(4)

n

(�; �) = �n
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�
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)

4
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2

0

+ �

�

N(�)

)

4

+ I

n

0

@

e

4
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+ 4e"
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e
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� 6e

2

(�;�)

e

0

(�;�)

+ 3(e

0

(�;�)

)

2

� e

(3)

(�;�)

f

(�;�)

1

A

C

(5)

n
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24(

�
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)

5

(�

2

0

+ �

�

N(�)

)

5

+ I

n

(

1

f
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(�e

5

(�;�)

+ 10e

0
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e

3
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+ 10e

0

(�;�)
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(�;�)

� 15e
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(e

0
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)

2
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2
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e
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(4)
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We also have for k � 1:
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k

e

(k)

(�;�)

=

1
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p

0

X
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i
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�
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r
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((



i

z

1 � (c

i

+

�

N(�)



i

)z)

k+1

+ (



i

z � (c

i

+

�

N(�)



i

)

)

k+1

) +

k!(

�

N(�)

)

k+1

(�

2

0

+ �

�

N(�)

)

k+1

]

So that we may write

C

(3)

n

(�; �) = n

2(

�

N(�)

)

3

(�

2

0

+ �

�

N(�)

)

3

+

1

N(�)

2

I

n

�

K

(�;�)

�

C

(4)

n

(�; �) = �n

6(

�

N(�)

)

4

(�

2

0

+ �

�

N(�)

)

4

+

1

N(�)

4

I

n

�

S

(�;�)

�

C

(5)

n

(�; �) = n

24(

�

N(�)

)

5

(�

2

0

+ �

�

N(�)

)

5

+

1

N(�)

5

I

n

�

T

(�;�)

�

We shall make use of a Lemma which is a consequence of Theorem 2.5 of Dahlhaus

(1988). We prove it below.

Let G be the subset of H:

G =

(

e

(0;�)

f

0

;

N(�)

2

e

0

(0;�)

f

0

;

e

2

(0;�)

f

0

;K

(0;�)

: � 2

~

B

)

[

n

T

(�;�)

; S

(�;�)

: (�; �) 2 T

o

De�ne also for any function g in G

I(g) =

1

2�

Z

2�

0

g(�)f(�)d�

Let X be the set of bounded real functions on G, equipped with the metric generated

by the uniform norm kxk = sup jx(g)j.
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Lemma 5.10 Let E

n

(g) =

1

p

n

I

n

(g) �

p

nI(g) , where g is in G. Let (W (g))

g2G

be

the centered gaussian process with covariance the scalar product in the Hilbert space H.

Then the empirical spectral process (E

n

(g))

g2G

converges weakly on X to (W (g))

g2G

.

As for mixtures, the proof relies on separating T in two regions. De�ne again �

n

=

sup

�

b

�

�

, which tends to 0 in probability. Let

A

n

= f(�; �) 2 T :

�

N(�)

2

� �

�

n

; � � 2�

n

g

B

n

= f(�; �) 2 T :

�

N(�)

2

� �

�

n

; � � 2�

n

g

for some � 2]0; 1[.

Let us �rst study C

n

(�; �) on A

n

. Taylor expansion till order 4 with integral remaining

term, together with Lemma 5.10 lead to:

C

n

(�; �)� C

n

(0) = ��

p

nE

n

(

e

(0;�)

f

0

)(1 + o(1)) +

1

2

n�

2

(1 + o(1))

�

�

2

2N(�)

2

p

nE

n

(

N(�)

2

e

0

(0;�)

f

0

)(1 + o(1))

+

�

3

6N(�)

2

na(1 + o(1)) +

�

4

24N(�)

4

nb(1 + o(1))

where a and b are real numbers, and the o(1) are uniform in probability over A

n

. Now,

on A

n

we have

�

2

2N(�)

2

p

nE

n

(

N(�)

2

e

0

(0;�)

f

0

) = O(�

p

nE

n

(

N(�)

2

e

0

(0;�)

f

0

)�

�

n

) = o(1)

using Lemma 5.10, and

�

3

6N(�)

2

na = O(n�

2

�

2�

n

) = o(n�

2

)

where the o(:) are uniform in probability, so that we have

C

n

(�; �)� C

n

(0) = ��

p

nE

n

(

e

(0;�)

f

0

)(1 + o(1)) +

1

2

n�

2

(1 + o(1))

When minimizing over � this leads to

�

1

2

E

n

(

e

(0;�)

f

0

)

2

n

1

E

n

(

e

(0;�)

f

0

)�0

(1 + o(1))

The set of functions

e

(0;�)

f

0

is exactly D so that we have:
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Lemma 5.11 inf

(�;�)2A

n

C

n

(�; �) � C

n

(f

0

) converges in distribution to the following

variable:

� sup

d2D

1

2

�

2

d

1

�

d

�0

Let us now study what happens on B

n

. As for the mixtures, a key point of the proof

will be a control Lemma to be able to stop Taylor's expansion and to have uniformly

o(1) remaining terms. We set it below. We �rst state a Lemma to describe what

happens when N(�) tends to 0.

Lemma 5.12 On B

n

, any accumulation point of e

(0;�)

=f

0

has the form

1

f

0

e(�; �; �; ; c; �; a; b)

which is a point in the unit sphere of H, with

e(�; �; �; ; c; �; a; b) =

�

�

2

0

+

p

0

X

i=1

 

a

i

X

k=1

�

i;k

(

z

1� t

i

z

)

a

i

+ �

i;k

(

1

z � t

i

)

a

i

!

+

q

0

X

i=1

0

@

b

i

X

k=1

�

i;k

(

z

1� u

i

z

)

b

i

+ �

i;k

(

1

z � u

i

)

b

i

1

A

�

r

1

X

i=1

(



i

z

1� c

i

z

+



i

z � c

i

)�

s

X

i=1

(�

i

z +

�

i

z

)

with 1 � a

i

, i = 1; : : : ; p

0

, 1 � b

i

, i = 1; : : : ; q

0

,

P

p

0

1

a

i

+

P

q

0

1

b

i

> p

0

+ q

0

,

P

p

0

1

a

i

+

P

q

0

1

b

i

� (p

0

+ q

0

) � r, and r

1

� r � [

P

p

0

1

a

i

+

P

q

0

1

b

i

� (p

0

+ q

0

)].

Proof of Lemma 5.12.

Let us look at a precise expansion when N(�) tends to 0. Let for any i = 1; : : : ; q

0

U(i) be the set of indices j such that c

j

tends to u

i

, and c

j

= u

i

+ �

j

(u

i

), and for any

i = 1; : : : ; p

0

T (i) be the set of indices j such that c

j

tends to t

i

, and c

j

= t

i

+ �

j

(t

i

).

Let also J be the complementary set of the union of all U(i) and T (i) in f1; : : : ; rg.

We then have:

e

(0;�)

=

1

N(�)

[

�

�

2

0

+

p

0

X

i=1

(

(�

i

�

P

j2T (i)



j

)z

1 � t

i

z

+

�

i

�

P

j2T (i)



j

z � t

i

)

+

p

0

X

i=1

(

X

j2T (i)



j

X

h�2

�

h�1

j

z

h

(1 � t

i

z)

h

+ 

j

X

h�2

�

j

h�1

(z � t

i

)

h

)

�

q

0

X

i=1

(

(�

i

�

P

j2U(i)



j

)z

1 � u

i

z

+

�

i

�

P

j2U(i)



j

z � u

i

)

�

p

0

X

i=1

(

X

j2U(i)



j

X

h�2

�

h�1

j

z

h

(1� u

i

z)

h

+ 

j

X

h�2

�

j

h�1

)

(z � u

i

)

h

)

�

X

i2J

(



i

z

1 � (c

i

+

�

N(�)



i

)z

+



i

z � (c

i

+

�

N(�)



i

)

)�

s

X

i=1

(�

i

z +

�

i

z

))
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and a similar expansion holds for N(�), which then appears as a quadratic function of

the perturbation parameters. The result comes then from looking at adherence values

of the parameters

1

N(�)

�

�

2

0

(�

i

�

P

j2T (i)



j

)

N(�)

X

j2T (i)



j

�

h�1

j

N(�)

(�

i

�

P

j2U(i)



j

)

N(�)

X

j2U(i)



j

�

h�1

j

N(�)

and



i

N(�)

; i 2 J;

�

i

N(�)

; i = 1; : : : ; s

Let us now state the control Lemma.

Lemma 5.13 On B

n

we have

N(�) � 2�

(1��)=2

n

and

�

N(�)

�M�

(1��)=2r

n

for some constant number M .

First of all, since on B

n

, � � 2�

n

, we have

N(�)

2

� 2�

(1��)

n

and the �rst inequality follows. Now, let us study what happens when N(�) tends to

0. There must be at least one c

i

tending to some u

i

with corresponding 

i

tending to

corresponding �

i

, or (and) some c

i

tending to some t

i

with corresponding 

i

tending to

corresponding �

i

. In each case, we have (13) or (14). Now, looking at the expansion of

N(�) near 0, it appears that the leading term is at least of order min

i

(jc

i

�u

i

j

r

; jc

i

�t

i

j

r

),

(recall that r = min(p� p

0

; q � q

0

)) so that

�

N(�)

= 0(N(�)

1=r

)

which, when combined with the �rst inequality, leads to the second inequality. :

On B

n

, we shall write Taylor expansion till order 5 again with integral remaining term,

so that, when using Lemma 5.10, we obtain:

C

n

(�; �)�C

n

(0) = ��

p

nE

n

(

e

(0;�)

f

0

)(1 + o(1)) +

1

2

n�

2

(1 + o(1))

�

�

2

2N(�)

2

p

nE

n

(

N(�)

2

e

0

(0;�)

f

0

)(1 + o(1))

+

�

3

6N(�)

2

na(1 + o(1)) +

�

4

24N(�)

4

nb(1 + o(1)) +O(

�

5

N(�)

5

n)(1 + o(1))
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where the o(1) are in probability uniform over B

n

,

a = I(K

(0;�)

) +

2(

�

N(�)

)

3

�

6

0

and

b = I(S

(0;�)

) +

6(

�

N(�)

)

4

�

8

0

All o(1) will be now uniform over B

n

using Lemma 5.13. We have

�

5

N(�)

5

n = o(

�

4

N(�)

4

n)

Notice that the functions

e

0

(0;�)

f

0

, after normalization, are in D

1

.

Notice also that on B

n

we have, for some e(�; �; �; ; c; �; a; b) as in Lemma 5.12,

e

(0;�)

f

0

=

1

f

0

e(�; �; �; ; c; �; a; b)(1 + o(1)) (22)

Notice also that on B

n

since N(�) tends uniformly to 0 we have:

a = 3I(

e

(0;�)

N(�)

2

e

0

(0;�)

f

0

)(1 + o(1))

and

b = 3I(

(N(�)

2

e

0

(0;�)

)

2

f

0

)(1 + o(1))

De�ne now B

n

(�; �; �; ; c; �; a; b) the subset of B

n

where (22) holds. We now minimize

C

n

(�; �)�C

n

(0) over B

n

(�; �; �; ; c; �; a; b), the reason why it is su�cient is the same

as that for the mixtures by a careful study of the leading terms in the expansion, and

the optimum value in the expansion. For � = 1=N(�)

2

the polynomial to be minimized

is

P (�; �) = ��

p

nW

n

1

++

1

2

n�

2

�

�

2

2

�

p

nW

n

2

+

�

3

2

n�C

12

+

�

4

8

n�

2

C

22

with

W

n

1

= E

n

(

e

(0;�)

f

0

) W

n

2

= E

n

(

N(�)

2

e

0

(0;�)

f

0

)

and, up to a factor 1 + o(1), C

12

is the covariance of W

n

1

and W

n

2

, C

22

the variance of

W

n

2

, W

n

1

being of unit variance.

We shall minimize it over � and then �. This leads to a minimum value, which is

reachable for some � in B

n

(�; �; �; ; c; �; a; b) giving the minimizing value of �.

Minimizing over � leads to

� =

1

C

22

 

2W

n

2

p

n�

2

�

2C

12

�

!
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with minimum value of the polynomial

�

1

2

(W

n

2

)

2

C

22

� �

p

n

�

W

n

1

�W

n

2

C

12

C

22

�

+

�

2

2

 

1�

C

2

12

C

2

22

!

When minimizing over �, this leads to

� =

1

p

n

W

n

1

�W

n

2

C

12

C

22

1�

C

2

12

C

2

22

1

W

n

1

�W

n

2

C

12

C

22

�0

with minimum value

�

1

2

0

B

@

(W

n

2

)

2

C

22

+

(W

n

1

�W

n

2

C

12

C

22

)

2

1 �

C

2

12

C

2

22

1

W

n

1

�W

n

2

C

12

C

22

�0

1

C

A

(1 + o(1))

We just have to verify that at the optimizing value, �=N(�)

2

� �

�

n

, which is indeed the

case since �� does not tend to 0.

Letting now n tend to in�nity and minimizing over all B

n

(�; �; �; ; c; �; a; b) leads to

Lemma 5.14 inf

(�;�)2A

n

C

n

(�; �) � C

n

(f

0

) converges in distribution to the following

variable:

� sup

d

1

2D

1

;d

2

2D

2

1

2

(�

2

d

1

+ �

2

d

2

1

�

d

2

�0

)

Lemma 5.11 and Lemma 5.14 give Theorem 4.1.

Proof of Lemma 5.10.

The proof proceeds by a veri�cation of the assumptions used in Theorem 2.5 of Dahlhaus

(1988), that is his assumption 2.1.

Assumption (a) is veri�ed since the process is an ARMA process and the spectral den-

sity has in�nitely many derivatives, all bounded.

(b) is veri�ed since the tapering is the constant 1.

Let us now verify (c).

G is a permissible subset of H (in the sense of Pollard (1984) Appendix C) since it is

a parametric class of functions which is pointwise continuous in the interior, and may

be approached by sequences of parameters on the boundary.

Let us recall that for all x:

m

O

=

1

2�u

0

@

(1�

1

1+�

)

q

0

2

p

0

1

A

2

� jf

0

(x)j �

u

2�

0

@

2

q

0

(1 �

1

1+�

)

p

0

1

A

2

=M

0

It is then enough to prove that the functions in G are uniformly pointwise bounded,

and to verify the entropy condition.
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Moreover, since the functions S

�;�)

, T

�;�)

,

N(�)

2

e

0

(0;�)

f

0

are bounded functions of bounded

parameters, which are continuous both pointwise and in H, with the square of the

norm which is a quadratic function of some of the parameters, so that the entropy

condition is veri�ed. it is enough to verify the conditions for the set of functions

N(�)

2

e

3

(0;�)

f

0

;

N(�)

2

e

0

(0;�)

e

(0;�)

f

0

;

N(�)

2

e"

(0;�)

f

0

It is again enough to verify that the functions

e

(0;�)

f

0

;

N(�)

2

e"

(0;�)

f

0

are uniformly pointwise bounded, and that the set of such functions verify the entropy

condition. This in turns implies the entropy condition for the whole set of functions.

To see that they are bounded, recall the expansion when N(�) tends to 0:

e

(0;�)

=

1
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�
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)
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s
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i
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�

i

z
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and also

N(�)

2
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=

1
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Looking at the leading terms in the expansions, we obtain that for all �:
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The entropy condition is the following. Let N (�) be the number of balls of diameter �

in H necessary for covering the set of functions. We have to verify that
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d� < +1

The previous expansions allow to �nd that for the set
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)

the norm square is a quadratic function of at most K bounded parameters, with K =

r(1 + 2s+ 2p

0

+ 2q

0

), so that we have

N (�) = O(

1

�

K

)

and the condition holds.
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