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Abstract.

We introduce on the Fock space �(L

2

(IR

+

)) two operators r

	

and r

�

expressing the in-

�nitesimal perturbations of random variables by time changes in the Wiener and Poisson

probabilistic interpretations of �(L

2

(IR

+

)). These operators complement the annihilation

and creation operators r

�

and r

+

that are related to perturbations by shifts of trajec-

tories. The operators r

	

and r

�

have close connections with stochastic integration, the

absolute continuity of laws of random variables and chaotic expansions.

R�esum�e.

Nous introduisons sur l'espace de Fock �(L

2

(IR

+

)) deux op�erateurs r

	

qui r

�

qui perme-

ttent d'exprimer les perturbations in�nit�esimales de variables al�eatoires par changements

de temps dans les interpr�etations probabilistes de Wiener et de Poisson de �(L

2

(IR

+

)).

Ces op�erateurs compl�etent les op�erateurs d'annihilation et de cr�eation r

�

and r

+

relat-

ifs aux perturbations par translations de trajectoires. Les op�erateurs r

	

et r

�

sont li�es

�a l'int�egration stochastique, �a l'absolue continuit�e des lois de variables al�eatoires et aux

d�ecompositions chaotiques.
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1 Introduction

Let �(H) =

L

n�0

H

�n

denote the symmetric Fock space over the Hilbert space H,

where H

�n

consists of the space of symmetric tensors in the tensor product H


n

,

endowed with the norm k � k

2

H

�n

= n! k � k

2

H


n

, n 2 IN. The annihilation operator

r

�

: �(H) ! �(H) 
 H is de�ned by r

�

f

�n

= nf

�(n�1)


 f , n 2 IN, while the

creation operatorr

+

: �(H)
H ! �(H) satis�es r

+

f

�n


g = f

�n

�g, n 2 IN. Those

operators are extended by polarization, linearity and closability to their respective

domains in �(H) and �(H) 
 H. In case H = L

2

(IR

+

), the two main probabilistic

interpretations of �(L

2

(IR

+

)) are the Wiener and Poisson interpretations, which are

constructed by identifying f

n

2 L

2

(IR

+

)

�n

with its multiple stochastic integral with

1
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respect to the Wiener or Poisson processes. It is well-known, cf. e.g. [4], [5],

that in these probabilistic interpretations the annihilation operator acts on random

variables by shifts of the Brownian, resp. Poisson trajectories. On the other hand,

on the Poisson space, trajectories can be perturbed by time changes, and this yields

another construction of the stochastic calculus of variations, cf. [2], [6]. The purpose

of this paper is �rst to determine the action on Fock space of perturbations by time

changes of the Poisson process. It turns out that the corresponding operator can be

written as r

	

+ r

�

, where r

	

has a relatively simple description on Fock space.

Since r

	

is expressed on the Fock space, it is a natural question to ask about its

action on Wiener space. The results obtained are summarized in the table below.

Type of perturbation and properties Wiener case Poisson case

Shifts of trajectories Operator on Fock space r

�

r

�

Absolute continuity a.c. not a.c.

Time changes Operator on Fock space r

	

+

1

2

r

�

r

�

r

	

+r

�

Absolute continuity not a.c. a.c.

In this table some information has been added concerning the absolute continuity of

the considered transformations with respect to the Wiener and Poisson probability

measures. Transformations by deterministic shifts of trajectories are absolutely con-

tinuous with respect to the Wiener measure (from the Cameron-Martin theorem),

but not with respect to the Poisson measure, since the standard Poisson process has

�xed height jumps. On the other hand, the action of deterministic time changes on

trajectories is absolutely continuous with respect to the Poisson measure (from the

Girsanov theorem on Poisson space), but not with respect to the Wiener measure

since a time changed Brownian motion does not have the standard quadratic vari-

ation. Consequently some smoothness has to be imposed on Wiener and Poisson

functionals in order to perturb them by time changes, in particular they need to be

de�ned everywhere, and on Fock space this corresponds to the assumption that the

considered functionals have �nite developments with smooth kernels. The operators

obtained in this way can be extended by closability. The calculus introduced in this

paper di�ers from the chaotic calculus of [6] which uses the polynomials of Laguerre

instead of Hermite and can not be based on the Fock space.

This paper is organized as follows. In Sect. 2, de�nitions and preliminary results are

stated. In Sect. 3 we de�ne the operators r

	

and r

�

and show that they give a

non-commutative decomposition of the number operator on Fock space. Sect. 4 is

devoted to the Wiener space interpretation of r

	

. In Sect. 5, we obtain the Poisson

probabilistic interpretation of our calculus from the explicit chaotic expansions of
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functionals of the Poisson process jump times. Part of the results of this paper have

been announced in [8]. In the Poisson space case a di�erent approach to this calculus

can be found in [3].

2 Preliminaries and notation

For A 2 B(IR

+

), let �

A

: L

2

(IR

+

) ! L

2

(IR

+

) denote the projection operator de�ned

by �

A

f = 1

A

f , f 2 L

2

(IR

+

). Let also �

t]

= �

[0;t]

, �

[t

= �

[t;1[

, and f

[t

= �

[t

f ,

f

t]

= �

t]

f , t 2 IR

+

, f 2 L

2

(IR

+

). The exponential vector �(f), f 2 L

2

(IR

+

), or Wick

exponential, is de�ned as

�(f) =

X

n2IN

1

n!

f

�n

:

The vector space generated by exponential vectors �(f) with f 2 C

1

c

(IR

+

) is denoted

by �. We denote by � the Fock space �(L

2

(IR

+

)) on L

2

(IR

+

), and call S the set of

elements of � which are in a �nite number of chaos and whose developments involve

only functions which are C

1

with compact supports. We let �(U) : � ! �, de�ned

on S as

�(U) =

M

n�0

U

�n

denote the second quantization of any operator U : L

2

(IR

+

) ! L

2

(IR

+

) de�ned on

C

1

c

(IR

+

). We say that F 2 � is F

A

-measurable if �(�

A

)F = F , A 2 B(IR

+

), and

let S([a; b]), 0 � a < b, denote the elements of S that are F

[a;b]

-measurable. All

operators considered in this work are densely de�ned on S

S

� and closable. We

denote by < �; � > the scalar product on �.

De�nition 1 The dual U

�

: �
L

2

(IR

+

)! � of an operator U : �! �
L

2

(IR

+

) is

said to be an extension of the stochastic integral if �(�

s]

)U

t

= �(�

s]

)r

�

t

; 0 � s � t,

t 2 IR

+

.

The space of square-integrable adapted processes is de�ned to be the completion in

�
 L

2

(IR

+

) of the set of simple adapted processes of the form

k=n�1

X

k=1

F

i

1

[t

i

;t

i+1

[

;

where F

i

2 S([0; t

i

]), i = 1; : : : ; n, t

1

< � � � < t

n

, n 2 IN. For G 2 S([0; a]), we have

< U

�

(1

[a;b]

G); F > =

Z

1

0

1

[a;b]

(s) < G;U

s

F > ds

=

Z

1

0

1

[a;b]

(s) < G;r

�

s

F > ds =< r

+

(1

[a;b]

G); F >; F 2 S:
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Hence U

�

is an extension of the stochastic integral if and only if U

�

and r

+

coincide

on the square-integrable adapted processes. If the Fock space is identi�ed to the

L

2

-space of a stochastic process (Y

t

)

t2IR

+

with stationary independent increments,

such as the Wiener and Poisson processes considered below, then the above property

means that U

�

coincides with the stochastic integral with respect to (Y

t

)

t2IR

+

on

the square-integrable adapted processes. The following result shows that the Clark

formula can be stated in general using the dual of an extension of the stochastic

integral. It can be proved using the same argument as in [6].

Proposition 1 If U

�

is an extension of the stochastic integral on Fock space, then

the application F 7! (�(�

s]

)U

s

F )

s2IR

+

is continuous from � to �
 L

2

(IR

+

), and any

F 2 � can be represented as

F =< F; 1 > +U

�

(�(�

�]

)U

�

F ):

As a consequence, the formula of [9] can be extended as follows.

Proposition 2 If U : �! �
L

2

(IR

+

) is the dual of an extension of the stochastic

integral and

F 2

\

n2IN

Dom(r

n

U);

then the chaotic development of F can be written as

F =< F; 1 > +

X

n2IN

s

�

1

�

n+1

< r

n

UF; 1 >

�

; (1)

where �

n+1

= f(t

1

; : : : ; t

n+1

) 2 IR

n+1

+

: t

1

< � � � < t

n+1

g, and s(f

n

), f

n

2 L

2

(IR

+

)


n

,

denotes the symmetrization of f

n

in n variables.

3 A non-commutative decomposition of the num-

ber operator

In this section we de�ne the operators r

	

and r

�

and remark that their sum gives

the number operator. Some connections between r

	

, r

�

, the number operator and

the non-commutative stochastic calculus have been studied in [8]. Let

�

h

, h 2 L

2

(IR

+

),

denote the function de�ned as

�

h

(t) =

R

t

0

h(s)ds, and let f

0

(t) =

d

dt

f(t), t 2 IR

+

,

f 2 C

1

c

(IR

+

). Let U denote the set of elements of �
L

2

(IR

+

) of the form

P

i=n

i=1

F

i


h

i

,

with h

1

; : : : ; h

n

2 C

1

c

(IR

+

), and F

1

; : : : ; F

n

2 S, n 2 IN.
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De�nition 2 We de�ne the linear operators r

	

: � ! � 
 L

2

(IR

+

) on S and

r

�

: �
 L

2

(IR

+

)! � on U by

r

	

t

f

�n

= �nf

0

[t

� f

�(n�1)

and r

�

(f

�n


 h) = n

�

f

�

h

�

0

� f

�(n�1)

;

f; h 2 C

1

c

(IR

+

), n 2 IN, t 2 IR

+

, and by linearity and polarization of these expressions.

Proposition 3 Both r

	

, r

�

are closable, and r

�

: � 
 L

2

(IR

+

) ! � is dual of

r

	

: �! �
 L

2

(IR

+

).

Proof. By polarization, we need to prove the following.

(r

	

f

�n

; g

�n


 h)

�
L

2

(IR

+

)

= �n

Z

1

0

(f

0

[t

� f

�(n�1)

; g

�n

)

L

2

(IR

+

)

�n

h(t)dt

= �n

2

(f

�(n�1)

; g

�(n�1)

)

L

2

(IR

+

)

�(n�1)

Z

1

0

h(t)

Z

1

t

f

0

(s)g(s)dsdt

= �n

2

(f

�(n�1)

; g

�(n�1)

)

L

2

(IR

+

)

�(n�1)

Z

1

0

f

0

(t)g(t)

�

h

(t)dt

= n

2

(f

�(n�1)

; g

�(n�1)

)

L

2

(IR

+

)

�(n�1)

Z

1

0

f(t)(

�

h

g)

0

(t)dt

= < f

�n

;r

�

(g

�n


 h) >; f; g; h 2 C

1

c

(IR

+

);

hence the relation (r

	

F; u)

�
L

2

(IR

+

)

=< F;r

�

(u) >, F 2 S, u 2 U . The closability

of r

	

and r

�

follows from this relation and from the density of S and U .

2

For h 2 L

2

(IR

+

), let a

�

h

denote the number operator de�ned by linearity and polar-

ization as

a

�

h

f

�n

= n(fh) � f

�n�1

; f 2 C

1

c

(IR

+

); n 2 IN;

and let a

	

h

, a

�

h

be de�ned as

a

	

h

f

�n

= (r

	

f

�n

; h)

L

2

(IR

+

)

; a

�

h

= r

�

(f

�n


 h); n 2 IN; f; h 2 L

2

(IR

+

):

Proposition 4 The above de�nitions give a non-commutative decomposition of a

�

h

into the sum of a gradient operator and its dual:

a

�

h

= a

	

h

+ a

�

h

; h 2 L

2

(IR

+

):

Proof. We have (r

	

f

�n

; h)

L

2

(IR

+

)

+ r

�

(f

�n


 h) = nf

�(n�1)

(fh) = a

�

h

f

�n

, n 2 IN,

f 2 C

1

c

(IR

+

).

2
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Proposition 5 The exponential vector �(f), f 2 L

2

(IR

+

), is in the domain of r

	

if and only if

R

1

0

tf

0

(t)

2

dt <1. In this case, r

	

t

�(f) = �f

0

t]

� �(f), and

k r

	

�(f) k

2

�
L

2

(IR

+

)

=

�

1

2

(f; f)

L

2

(IR

+

)

+

Z

1

0

tf

0

(t)

2

dt

�

exp

�

(f; f)

L

2

(IR

+

)

�

:

Proof. We have

k r

	

f

�n

k

2

L

2

(IR

+

)

�n


L

2

(IR

+

)

= n

2

Z

1

0

k f

0

[t

� f

�(n�1)

k

2

L

2

(IR

+

)

�n

dt

= n

2

(n� 1)!(f; f)

n�1

L

2

(IR

+

)

Z

1

0

Z

1

t

f

0

(s)

2

dsdt

+n

2

(n� 1)(n� 1)!(f; f)

n�2

L

2

(IR

+

)

Z

1

0

Z

1

t

f

0

(s)f(s)dsdt

= nn!(f; f)

n�1

Z

1

0

tf

0

(t)

2

dt+

n

2

(n� 1)n!(f; f)

n�1

;

and

k r

	

�(f) k

2

�

=

X

n�1

nn!

n!

2

(f; f)

n�1

L

2

(IR

+

)

�

Z

1

0

tf

0

(t)

2

dt+

n� 1

2

�

=

�

1

2

(f; f)

L

2

(IR

+

)

+

Z

1

0

tf

0

(t)

2

dt

�

exp

�

(f; f)

L

2

(IR

+

)

�

: 2

4 Wiener space interpretation

Let (W;L

2

(IR

+

); �) denote the classicalWiener space, with Brownian motion (B

t

)

t2IR

+

.

Multiple stochastic integrals are de�ned as

^

I

n

(f

n

) = n!

Z

1

0

Z

t

n

0

� � �

Z

t

2

0

f

n

(t

1

; : : : ; t

n

)dB

t

1

� � �dB

t

n

;

f

n

2 L

2

(IR

+

)

�n

. These integrals provide an isometric isomorphism between L

2

(W;�)

and �, since

E

h

^

I

n

(f

n

)

^

I

m

(g

m

)

i

= 1

fn=mg

(f

n

; g

m

)

L

2

(IR

+

)

�n

; f

n

2 L

2

(IR

+

)

�n

; g

m

2 L

2

(IR

+

)

�m

:

This identi�cation will be assumed throughout this section. We are interested here

in the properties of r

	

in the Wiener interpretation of �. We recall that r

�

is

identi�ed to a derivation operator which satis�es

(r

�

F; h)

L

2

(IR

+

)

= lim

"!0

F

�

B

�

+

R

�

0

h(s)ds

�

� F

"

; F 2 S; h 2 L

2

(IR

+

);

cf. e.g. [4], [10] and the references therein.
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Lemma 1 On the Wiener space, r

	

satis�es the relation

r

	

t

(FG) = Fr

	

t

G+Gr

	

t

F �r

�

t

Fr

�

t

G; t 2 IR

+

; F; G 2 S: (1)

Proof. We are using the multiplication formula for the Wiener multiple integrals:

^

I

n

(f

�n

)

^

I

1

(g) =

^

I

n+1

(f

�n

� g) + n(f; g)

L

2

(IR

+

)

^

I

n�1

(f

�n�1

); f; g 2 L

2

(IR

+

); n 2 IN:

We �rst show that

r

	

�

^

I

n

(f

�n

)

^

I

1

(g)

�

= r

	

�

^

I

n+1

(f

�n

� g) + n(f; g)

^

I

n�1

(f

�(n�1)

)

�

= �

^

I

n+1

(g

0

[t

� f

�n

)� n

^

I

n+1

(f

0

[t

� g � f

�(n�1)

)� n(n� 1)(f; g)

L

2

(IR

+

)

^

I

n�1

(f

0

[t

� f

�(n�2)

)

= �n

^

I

n+1

(f

0

[t

� f

�(n�1)

� g)� n(g; f

0

[t

)

L

2

(IR

+

)

^

I

n�1

(f

�(n�1)

)�

^

I

n+1

(f

�n

� g

0

[t

)

�n(n� 1)(f; g)

L

2

(IR

+

)

^

I

n�1

(f

�(n�2)

� f

0

[t

)� n(f; g

0

[t

)

L

2

(IR

+

)

^

I

n�1

(f

�(n�1)

)

+n(f

0

[t

; g)

L

2

(IR

+

)

^

I

n�1

(f

�(n�1)

) + n(g

0

[t

; f)

L

2

(IR

+

)

^

I

n�1

(f

�(n�1)

)

= �n

^

I

n

(f

0

[t

� f

�(n�1)

)

^

I

1

(g)�

^

I

n

(f

�n

)

^

I

1

(g

0

[t

)� nf(t)g(t)

^

I

n�1

(f

�(n�1)

)

=

^

I

1

(g)r

	

t

^

I

n

(f

�n

) +

^

I

n

(f

�n

)r

	

t

^

I

1

(g)�r

�

t

^

I

1

(g)r

�

t

^

I

n

(f

�n

); t 2 IR

+

:

Using the fact that on Wiener space r

�

is a derivation, we can now work by induc-

tion to show that the formula holds for functionals that are polynomials in Wiener

multiple stochastic integrals. Assume that for some k � 1, and t 2 IR

+

,

r

	

t

(

^

I

n

(f

�n

)

^

I

1

(g)

k

) =

^

I

n

(f

�n

)r

	

t

�

^

I

1

(g)

k

�

+

^

I

1

(g)

k

r

	

t

^

I

n

(f

�n

)�r

�

t

^

I

n

(f

�n

)r

�

t

�

^

I

1

(g)

k

�

:

Then

r

	

t

(

^

I

n

(f

�n

)

^

I

1

(g)

k+1

)

=

^

I

1

(g)r

	

t

(

^

I

n

(f

�n

)

^

I

1

(g)

k

) +

^

I

n

(f

�n

)

^

I

1

(g)

k

r

	

t

^

I

1

(g)�r

�

t

^

I

1

(g)r

�

t

(

^

I

1

(g)

k

^

I

n

(f

�n

))

=

^

I

1

(g)

�

^

I

1

(g)

k

r

	

t

^

I

n

(f

�n

) +

^

I

n

(f

�n

)r

	

t

�

^

I

1

(g)

k

�

�r

�

t

�

^

I

1

(g)

k

�

r

�

t

^

I

n

(f

�n

)

�

+

^

I

n

(f

�n

)

^

I

1

(g)

k

r

	

t

^

I

1

(g)�r

�

t

^

I

1

(g)

�

^

I

1

(g)

k

r

�

t

^

I

n

(f

�n

) +

^

I

n

(f

�n

)r

�

t

�

^

I

1

(g)

k

��

=

^

I

1

(g)

k+1

r

	

t

^

I

n

(f

�n

) +

^

I

n

(f

�n

)r

	

t

�

^

I

1

(g)

k+1

�

�r

�

t

�

^

I

1

(g)

k+1

�

r

�

t

^

I

n

(f

�n

);

t 2 IR

+

. 2.

For h 2 L

2

(IR

+

), with sup

x2IR

+

j h(x) j< 1, let �

h

(t) = t+

R

t

0

h(s)ds, t 2 IR

+

.

De�nition 3 We de�ne a mapping T

h

:W !W , t; " 2 IR

+

, as

T

h

(!) = ! � �

�1

h

; h 2 L

2

(IR

+

); sup

x2IR

+

j h(x) j< 1: (2)
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The transformation T

h

acts on the trajectory of (B

s

)

s2IR

+

by change of time. Al-

though T

h

is not absolutely continuous with respect to the Wiener measure, the

functional F �T

h

is well-de�ned for F 2 S, since elements of S are de�ned trajectory

by trajectory.

Proposition 6 We have for F 2 S, under the Wiener identi�cation of �:

Z

1

0

h(t)

�

r

	

t

+

1

2

r

�

t

r

�

t

�

Fdt = � lim

"!0

1

"

(F � T

"h

� F ):

Proof. We �rst notice that as a consequence of Lemma 1, the operator r

	

t

+

1

2

r

�

t

r

�

t

is a derivation operator on S, t 2 IR

+

. Moreover, T

"h

is multiplicative, hence we only

need to treat the particular case of F =

^

I

1

(f). We have

^

I

1

(f) � T

"h

�

^

I

1

(f) =

Z

t

0

f(s)dB(�

�1

"h

(s))�

^

I

1

(f)

=

Z

1

0

f(s)f(�

"h

(s))dB

s

�

Z

1

0

f(s)dB

s

=

Z

1

0

�

f

�

t + "

Z

t

0

h(s)ds

�

� f(t)

�

dB

t

:

After division by " > 0, this converges in L

2

(W;�) as "! 0 to

Z

1

0

f

0

(t)

Z

t

0

h(s)dsdB

t

=

Z

1

0

h(t)

Z

1

t

f

0

(s)dB

s

dt

= �

Z

1

0

h(t)r

	

t

^

I

1

(f)dt

= �

Z

1

0

h(t)

�

r

	

t

+

1

2

r

�

t

r

�

t

�

^

I

1

(f)dt: 2

5 Poisson space interpretation

Before dealing with the Poisson interpretation of r

	

, we will need to compute the

explicit chaotic decomposition of functionals of the Poisson process jump times. Let

T

k

=

P

i=k�1

i=0

�

i

, k � 1, denote the sequence of jump times of a standard Poisson

process (N

t

)

t2IR

+

on a probability space (
;F ; P ). The Poisson multiple stochastic

integral of h

n

2 L

2

(IR)

�n

, space of symmetric square-integrable functions on IR

n

, can

be written as

~

I

n

(h

n

) = n!

Z

1

0

Z

t

�

n

0

� � �

Z

t

�

2

0

h

n

(t

1

; :::; t

n

)d(N

t

1

� t

1

) � � �d(N

t

n

� t

n

): (1)

As on the Wiener space, we have the isometry

(

~

I

n

(f

n

);

~

I

m

(g

m

))

L

2

(B)

= 1

fn=mg

(f

n

; g

m

)

L

2

(IR

+

)

�n

; f

n

2 L

2

(IR

+

)

�n

;

8



which provides an isometric isomorphism between L

2

(B) and �. This identi�cation

will be used in the remaining of this paper. From [5], the operator r

�

satis�es

r

t

F = F (N

�

+ 1

[t;1[

)� F (N

�

); t 2 IR

+

; F 2 S; (2)

hence

r

�

(FG) = Fr

�

G+Gr

�

F +r

�

Fr

�

G; F;G 2 S: (3)

There exists a di�erent approach to the calculus of variations on Poisson space, cf.

[2], [6], which consists in de�ning a closable operator

~

D : L

2

(B)! L

2

(B)
 L

2

(IR

+

)

by time changes:

(

~

DF; h)

L

2

(IR

+

)

= � lim

"!0

F � T

"h

� F

"

; h 2 L

2

(IR

+

);

where the transformation T

"h

is de�ned as in (2), by application of a time change to

the Poisson process trajectories. This is equivalent to

~

DF = �

k=n

X

k=0

@

k

f(T

1

; :::; T

n

)1

[0;T

k

]

; F 2 S; (4)

for F = f(T

1

; : : : ; T

n

). The following proposition extends to functionals of jump

times the result of [6] which was only proved for jump times.

Proposition 7 For k � 1, the chaotic development of f(T

k

) is given as

f(T

k

) = E[f(T

k

)] +

X

n�1

1

n!

~

I

n

(f

k

n

);

where f

k

n

(t

1

; : : : ; t

n

) = �

k

n

(f)(t

1

_ � � � _ t

n

), t

1

; : : : ; t

n

2 IR

+

, and

�

k

n

(f)(t) = �

Z

1

t

f

0

(s)@

n�1

p

k

(s)ds; (5)

= f(t)@

n�1

p

k

(t) + (f; 1

[t;1[

@

n

p

k

)

L

2

(IR

+

)

; t 2 IR

+

; n � 1: (6)

Lemma 2 We have for f 2 C

1

c

(IR) and n � 1

r

�

t

~

D

s

f(T

n

) =

~

D

s_t

f(T

n�1

)�

~

D

s_t

f(T

n

)�1

fs<tg

1

[T

n�1

;T

n

]

(s_t)f

0

(s_t); a:s:; s; t 2 IR

+

:

Proof. We have

r

�

t

~

D

s

f(T

n

) = �1

[0;T

n�1

]

(t)

�

1

[0;T

n�1

]

(s)f

0

(T

n�1

)� 1

[0;T

n

]

(s)f

0

(T

n

)

�

�1

[T

n�1

;T

n

]

(t)

�

1

[0;t]

(s)f

0

(t)� 1

[0;T

n

]

(s)f

0

(T

n

)

�

= 1

ft<sg

�

1

[0;T

n

]

(s)f

0

(T

n

)� 1

[0;T

n�1

]

(s)f

0

(T

n�1

);

�

+1

fs<tg

�

1

[0;T

n

]

(t)f

0

(T

n

)� 1

[0;T

n�1

]

(t)f

0

(T

n�1

)� 1

[T

n�1

;T

n

]

(t)f

0

(t)

�

;

P -a.s.
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2

Proof of Prop. 7. Since the dual of

~

D extends the stochastic integral, cf. [2], [6], we

can apply Prop. 2 with U =

~

D. Let us �rst assume that f 2 C

1

c

(IR

+

). We have

f

1

(t) = E[

~

D

t

f(T

k

)] = �E[1

[0;T

k

]

(t)f

0

(T

k

)] = �

Z

1

t

p

k

(s)f

0

(s)ds:

Now, from Lemma 2, for n � 2 and 0 � t

1

< � � � < t

n

,

r

�

t

1

� � �r

�

t

n�1

~

D

t

n

f(T

k

) = r

�

t

1

� � �r

�

t

n�2

(

~

D

t

n

f(T

k�1

)�

~

D

t

n

f(T

k

));

hence

f

k

n

(t

1

; : : : ; t

n

) = f

k�1

n�1

(t

1

; : : : ; t

n�2

; t

n

)� f

k

n�1

(t

1

; : : : ; t

n�2

; t

n

);

and we can show (5) by induction, for n � 2:

f

k

n

(t

1

; : : : ; t

n

) = f

k�1

n�1

(t

1

; : : : ; t

n�2

; t

n

)� f

k

n�1

(t

1

; : : : ; t

n�2

; t

n

);

= �

Z

1

t

n

f

0

(s)@

n�2

p

k�1

(s)ds+

Z

1

t

n

f

0

(s)@

n�2

p

k

(s)ds

= �

Z

1

0

f

0

(s)@

n�1

p

k

(s)ds:

The conclusion is obtained by density of the C

1

c

functions in L

2

(IR

+

; p

k

(t)dt), k � 1.

2

We note the relation

d

dt

�

k

n

(f)(t) = �

k

n

(f

0

)(t)� �

k

n+1

(f)(t); t 2 IR

+

: (7)

We now prove that r

	

+ r

�

is identi�ed to the operator

~

D under the Poisson

identi�cation of � and L

2

(B).

Lemma 3 On the Poisson space, r

	

satis�es the relation

r

	

t

(FG) = Fr

	

t

G+Gr

	

t

F �r

�

t

Fr

�

t

G; t 2 IR

+

; F; G 2 S: (8)

Note that r

	

and r

�

satisfy the same relation on Wiener space, cf. (1).

Proof. We need the following multiplication formula for Poisson multiple stochastic

integrals, known as the Kabanov formula:

~

I

n

(f

�n

)

~

I

1

(g) =

~

I

n+1

(f

�n

� g) + n(f; g)

~

I

n

(f

�n�1

) + n

~

I

n

((fg) � f

�n�1

); f; g 2 L

4

(IR

+

):

We �rst show that

r

	

t

�

~

I

n

(f

�n

)

~

I

1

(g)

�

=

~

I

n

(f

�n

)r

	

t

~

I

1

(g)+

~

I

1

(g)r

	

t

~

I

n

(f

�n

)�r

�

t

~

I

1

(g)r

�

t

~

I

n

(f

�n

); t 2 IR

+

;

10



with f; g 2 C

1

c

(IR

+

) and (f; f)

L

2

(IR

+

)

= 1. We have

~

I

n

(f

�n

)r

	

t

~

I

1

(g) +

~

I

1

(g)r

	

t

~

I

n

(f

�n

)

= �n

~

I

1

(g)

~

I

n

(f

0

[t

� f

�(n�1)

)�

~

I

n

(f

�n

)

~

I

1

(g

0

[t

)

= �n

�

~

I

n+1

(f

0

[t

� f

�(n�1)

� g) + (n� 1)

~

I

n

((fg) � f

0

[t

� f

�(n�2)

) +

~

I

n

((gf

0

[t

) � f

�(n�1)

)

+(f

0

[t

; g)

L

2

(IR

+

)

~

I

n�1

(f

�(n�1)

) + (n� 1)(f; g)

L

2

(IR

+

)

~

I

n�1

(f

0

[t

� f

�(n�2)

)

�

�

~

I

n+1

(g

0

[t

� f

�n

)� n

~

I

n

((g

0

[t

f) � f

�(n�1)

)� n(g

0

[t

; f)

L

2

(IR

+

)

~

I

n�1

(f

�(n�1)

)

= �n

~

I

n+1

(f

0

[t

� f

�(n�1)

� g)�

~

I

n+1

(g

0

[t

� f

�n

)� n(n� 1)

~

I

n

(f

0

[t

� (fg) � f

�(n�2)

)

�n

~

I

n

((gf

0

[t

) � f

�(n�1)

)� n

~

I

n

((fg

0

[t

) � f

�(n�1)

)

+nf(t)g(t)

~

I

n�1

(f

�(n�1)

)� n(n� 1)(f; g)

L

2

(IR

+

)

~

I

n�1

(f

0

[t

� f

�(n�2)

)

= r

	

t

�

~

I

n+1

(f

�n

� g) + n

~

I

n

(f

�(n�1)

� (fg)) + n(f; g)

L

2

(IR

+

)

~

I

n�1

(f

�(n�1)

)

�

+nf(t)g(t)

~

I

n�1

(f

�(n�1)

)

= r

	

t

(

~

I

n

(f

�n

)

~

I

1

(g)) +r

�

t

~

I

1

(g)r

�

t

~

I

n

(f

�n

); f; g 2 C

1

c

(IR

+

):

We now make use of (3) to prove the result on S by induction. Assume that (8)

holds for F =

~

I

n

(f

�n

) and G =

~

I

1

(g)

k

for some k � 1. Then

r

	

t

(

~

I

n

(f

�n

)

~

I

1

(g)

k+1

)

=

~

I

1

(g)r

	

t

(

~

I

n

(f

�n

)

~

I

1

(g)

k

) +

~

I

n

(f

�n

)

~

I

1

(g)

k

r

	

t

~

I

1

(g)�r

�

t

~

I

1

(g)r

�

t

(

~

I

1

(g)

k

~

I

n

(f

�n

))

=

~

I

1

(g)

�

~

I

1

(g)

k

r

	

t

~

I

n

(f

�n

) +

~

I

n

(f

�n

)r

	

t

�

~

I

1

(g)

k

�

�r

�

t

�

~

I

1

(g)

k

�

r

�

t

~

I

n

(f

�n

)

�

+

~

I

n

(f

�n

)

~

I

1

(g)

k

r

	

t

~

I

1

(g)�r

�

t

~

I

1

(g)

�

~

I

1

(g)

k

r

�

t

~

I

n

(f

�n

) +

~

I

n

(f

�n

)r

�

t

�

~

I

1

(g)

k

��

�r

�

t

~

I

1

(g)r

�

t

~

I

1

(g)

k

r

�

t

~

I

n

(f

�n

)

=

~

I

1

(g)

k+1

r

	

t

~

I

n

(f

�n

) +

~

I

n

(f

�n

)r

	

t

�

~

I

1

(g)

k+1

�

�r

�

t

�

~

I

1

(g)

k+1

�

r

�

t

~

I

n

(f

�n

);

t 2 IR

+

. 2

Proposition 8 Under the Poisson probabilistic interpretation of �,

~

D = r

	

+r

�

.

Proof. From Lemma 3, we know that (r

	

+r

�

) is a derivation operator. Thus it

is su�cient to show that (r

�

+r

	

)f(T

k

) =

~

Df(T

k

), k � 1. We have from Prop. 7

(r

�

t

+r

	

t

)f(T

k

) = (r

�

t

+r

	

t

)

X

n2IN

1

n!

~

I

n

(f

k

n

);

=

X

n�1

1

(n� 1)!

~

I

n�1

(f

k

n

(�; t))�

X

n�1

1

(n� 1)!

~

I

n

(�

[t


 I


(n�1)

d

@

1

f

k

n

)

=

X

n2IN

1

n!

~

I

n

�

f

k

n+1

(�; t)� n�

[t


 I


(n�1)

d

@

1

f

k

n

�

:
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Now from (7),

f

k

n+1

(t; t

1

; : : : ; t

n

)� n�

[t


 I


(n�1)

d

@

1

f

k

n

(t

1

; : : : ; t

n

)

= �

k

n+1

(f)(t

1

_ � � � _ t

n

_ t)� 1

ft<t

1

_���_t

n

g

�

�

k

n

(f

0

)� �

k

n+1

(f)

�

(t

1

_ � � � _ t

n

)

= �

k

n+1

(f)1

ft

1

_���_t

n

<tg

� �

k

n

(f

0

)(t

1

_ � � � _ t

n

)1

ft

1

_���_t

n

>tg

= �

k

n

(�f

0

[t

)(t

1

_ � � � _ t

n

); n � 1;

hence r

�

+r

	

=

~

D.

2

Proposition 9 On the Poisson space, we have for f 2 L

2

(IR

+

) absolutely continuous

R

1

0

tf

0

(t)

2

dt <1:

~

D

t

�(f) =

�

Z

1

t

f

0

(s)

1 + f(s)

1

ff(s)6=�1g

d(N

s

� s) + log(1 + f(t))

�

�(f); t 2 IR

+

:

Proof. We have for f 2 C

1

c

(IR

+

):

�(f) = exp

�

�

Z

1

0

f(s)ds

�

Y

k�1

(1 + f(T

k

));

hence

~

D

t

�(f) = exp

�

�

Z

1

0

f(s)ds

�

X

i�1

1

[0;T

i

]

(t)f

0

(T

i

)

Y

k 6=i

(1 + f(T

k

))

= exp

�

�

Z

1

0

f(s)ds

�

Z

1

t

1

ff(s)6=�1g

f

0

(s)

1 + f(s)

Y

k�1

(1 + f(T

k

))dN

s

:

From Prop. 5 the result is extended by density to a general f .

2

As an application of this calculus, we obtain the following absolute continuity crite-

rion for Poisson stochastic integrals.

Proposition 10 Let f 2 L

2

(IR

+

) such that

R

1

0

tf

0

(t)

2

dt <1 and

lim

n!1

Z

ff

0

=0g

p

n

(t)dt = 0: (9)

Then the law of

R

1

0

f(t)d(N

t

�t) is absolutely continuous with respect to the Lebesgue

measure.

12



This condition is satis�ed in particular ff

0

= 0g has �nite Lebesgue measure.

Proof. From Prop. 5,

~

I

1

(f) 2 Dom(

~

D). We have

�

~

D

t

~

I

1

(f)

�

2

=

 

1

X

k=1

1

[0;T

k

]

(t)

i=k

X

i=1

f

0

(T

i

)

!

2

=

 

1

X

k=0

1

]T

k

;T

k+1

]

(t)

1

X

i=k+1

f

0

(T

i

)

!

2

=

1

X

k=0

1

]T

k

;T

k+1

]

(t)

 

1

X

i=k+1

f

0

(T

i

)

!

2

; t 2 IR

+

;

hence

k

~

D

~

I

1

(f) k

2

L

2

(IR

+

)

=

1

X

k=0

�

k

 

1

X

i=k+1

f

0

(T

i

)

!

2

:

If the law of

~

I

1

(f) were not absolutely continuous, then according to the criterion

of [1], (cf. [7] for its Poisson space version), there would exist A 2 F such that

P (A) > 0 and k

~

D

~

I

1

(f) k

L

2

(IR

+

)

= 0, everywhere on A. The above calculation implies

then that f

0

(T

k

) = 0 on A, k � 1. Hence T

n

(A) � ff

0

= 0g, n � 1, and from (9),

lim

n!1

Z

1

0

1

T

n

(A)

(t)p

n

(t)dt = 0:

This contradicts the fact that

Z

1

0

1

T

n

(A)

(t)p

n

(t)dt = P (f! 2 
 : T

n

(!) 2 T

n

(A)g) � P (A) > 0; n � 1: 2
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