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FRACTIONAL INTEGRALS AND BROWNIAN PROCESSES
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Denis Feyel and Arnaud de La Pradelle

I. Introduction

The aim of this paper is to give a pure analytic viewpoint of the regularity of

certain random processes. Instead of looking for regularity of a given type, as

is usually done in probability, we consider a convenient Banach space of H�older

continuous functions : the classical Liouville space J

�;p

. This is the range of L

p

under the Liouville fractional primitive operator

I

�

f(t) =

1

�(�)

Z

t

0

(t� s)

��1

f(s)ds

Then it is straightforward to check that a process satisfying the hypothesis of

Kolmogorov criterion is an J

�;p

-valued L

p

-function.

In the case of quasi-sure analysis on the Wiener space, the Kolmogorov criterion

obviously extends by this way into a property of J

�;p

-valued W

r;p

-functions.

In a second part we give as applications very simple proofs of the existence of

di�erent �-fractional Brownian motions, with

1

2

� � � 1. Notice that the Wiener

measure is obtained for � = 1. The so-called classical �-fractional Brownianmotion

is associated to a Cameron-Martin space which is a fractional Sobolev space image

of L

2

(IR; dx) by a translate (due to the absence of integrability) of the Riesz

potentiel of order �. Here we see that the image of L

2

([0; 1]; dx) by the Liouville

operator gives rise to a fractional Brownian motion which is easier to handle than

the classical one, though it has a very complicated covariance.

In the following section we deal with multiparameter processes. The natural

extension of the Liouville space gives rise to a non classical kind of H�older

continuity, and to a more appropriate version of the Kolmogorov lemma. This

turns out to be a good method for de�ning fractional Brownian sheets and also

their regularity.

A serious problem (for those who work in �nancial probabilities, cf. [3]) is the

fractional stochastic calculus. A �rst step in this direction is to start with by

de�ning the Wiener integral. We show that if f (resp. g) is � (resp.�) H�older

continuous, then we can de�ne

R

f dg by a Riemman sum if �+ � > 1. From this

result we get

R

f dX

�

t

, where X

�

t

stands for our fractional Brownian motion, when

f is �-H�older with � + � > 1. Note that X

�

t

is only (� �

1

2

)-H�older, so that the

stochastic result needs a weaker hypothesis than the deterministic one.
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D.Feyel, A.de La Pradelle

For completeness sake, in the last paragraph we compare the Liouville space with

the Slobodetzki space, which is another classical Banach space of H�older continuous

functions.

II. The Liouville space.

Let I = [0; 1], p 2]1;+1[, 0 < � � 1 and (cf. for example [6])

I

�

f(x) =

1

�(�)

Z

x

0

(x � t)

��1

f(t)dt =

1

�(�)

Z

x

0

t

��1

f(x � t)dt

be the primitive of order � (Liouville integral). As x

��1

+

= (x _ 0)

��1

is locally

integrable, the range I

�

(L

p

(I; dx)) is included in L

p

(I; dx). As I

�

is one to one,

N

�;p

(I

�

f) = N

p

(f) de�nes a norm on the range J

�;p

= I

�

(L

p

). Obviously J

�;p

is

a separable Banach space. The de�nition formally extends to the case p = +1.

Recall the very well known following facts : the map � ! I

�

f extends into an

entire function with values in D

0

(the space of distributions), I

�

f is said to be the

\fractional primitive" of f , D

�

f = I

��

f is the \fractional derivative", and one

has I

�+�

f = I

�

I

�

f .

1 Proposition : for � > � and p > 1, the embedding J

�;p

� J

�;p

is compact.

Proof : it su�ces to prove that I

���

: L

p

(I) ! L

p

(I) is a compact operator.

Indeed this is the convolution operator with u

���

(x) = x

����1

+

=�(� � �) which

is integrable over I.

III. Comparison with spaces of H�older continuous functions.

Denote H

�

the space of �-H�older continuous functions vanishing at 0 with its

natural norm. This is not a separable space. Nevertheless we have

2 Proposition : for � > 1=p � 0 and � > 
 � 0, both following inclusions hold,

and the last one is compact

J

�;p

� H

��1=p

& H

�

� J


;1

Proof : put q = p=(p � 1), and write I

�

f(x) = f � u

�

(x) with u

�

(x) 2 L

q

(I) for

� > 1=p. Let h > 0, and put u

h

�

(x) = u

�

(x � h). This yields

jI

�

f(x) � I

�

f(x � h)j � N

p

(f)N

q

(u

h

�

� u

�

)

N

q

(u

h

�

� u

�

)

q

� c

�;p

Z

+1

0

jx

��1

� (x � h)

��1

+

j

q

dx � C

�;p

h

q(��1=p)
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Fractional integrals and Brownian processes

For the last inclusion, take f 2 H

�

, and compute D




f = I

�


f by analytic

continuation

D




f(x) =

1

�(�
)

Z

x

0

t

�
�1

[f(x � t)� f(x)] dt+

x

�


f(x)

�(1� 
)

= h(x) +

x

�


f(x)

�(1 � 
)

which makes sense for � > 
 > 0. This yields kD




fk

1

� Kkfk

H

�

.

For the compacticity, put � = 
 + 3", choose p > 1=", write

H

�

� J


+2";p

� J


+";p

� J


;1

and apply proposition 1.

3 Remarks : a) roughly speaking, this means that H�older continuous functions

are those functions wich have fractional derivatives.

b) in the last proof, we can prove that D




f is continuous by varying 
.

IV. Vector valued functions.

Let B be a Banach space endowed with norm j:j. In the same way as in the real

case, de�ne J

�;p

(B) as the space of those functions f : I ! B which can be written

f(x) =

1

�(�)

Z

x

0

g(t)(x � t)

��1

dt

where g 2 L

p

(I;B). The same properties (except compacticity) as above hold. In

our case, we can de�ne J

�;p

(L

p

(
; �)). We have the following

4 Proposition : J

�;p

(L

p

(
; �)) is canonically isometrically isomorphic with

L

p

(
; �;J

�;p

) (1 < p < +1).

Proof : it su�ces to check that the two norms agree on functions f : 
 ! J

�;p

with �nite rank.

V. The Kolmogorov lemma revisited.

In fact, the last proposition turns out to be the functional-analysis expression of

the Kolmogorov lemma. More precisely, let (X

t

)

t2I

be a process satisfying

N

p

(X

t

�X

s

) � cjt� sj

��

1

2

for � 2]

1

2

; 1]. Applying the preceding proposition yields

5 Theorem : (Kolmogorov) for � � 1=2 > � > 1=p > 0, this process has a

modi�cation with (� � 1=p)-H�older continuous trajectories.

3
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Proof : X �X

0

belongs to H

��

1

2

(L

p

) � J

�;p

(L

p

) � L

p

(J

�;p

) � L

p

(H

��1=p

).

Now assume that (
; �) is a Gaussian vector space, and letW

r;p

(
; �) be the (r; p)

Sobolev space endowed with the norm kfk

r;p

= N

p

�

(I �L)

r=2

f

�

where L is the

Ornstein-Uhlenbeck operator. In view of the above proposition, we obviously get

J

�;p

(W

r;p

(
; �)) �W

r;p

(
; �;J

�;p

).

Recall [4] that the capacity c

r;p

(g) for an l.s.c. function g � 0 on 
 is de�ned by

c

r;p

(g) = Inff kfk

r;p

�

�

f � gg

and, for every h,

c

r;p

(h) = Inff c

r;p

(g)

�

�

g l.s.c. � jhjg

6 De�nition : we say that a process Y

t

is a strong modi�cation of X

t

if for every

t one has �(fY

t

6= X

t

g) = 0 and Y

t

is c

r;p

-quasi-continuous.

7 Theorem : assume that (X

t

) satis�es kX

t

� X

s

k

r;p

� cjt � sj

��

1

2

for

�� 1=2 > � > 1=p. Then X

t

has a strong modi�cation Y

t

with (� � 1=p)-H�older

continuous trajectories.

In addition, for every " > 0 there exists a compact K � 
 such that c

r;p

(
nK) < "

and such that (t; !)! Y

t

(!) is continuous on K and uniformly H�older in t.

Proof : in fact we have

X �X

0

2 H

��

1

2

(W

r;p

) � J

�;p

(W

r;p

) �W

r;p

(J

�;p

)

We haveW

r;p

(J

�;p

) � L

1

(c

r;p

;J

�;p

). The last space is included inL

1

(c

r;p

;H

��1=p

),

so the proof is complete (cf. [4]).

8 Corollary : (see also [1] and [2]) let (
; �) be the Wiener space, and let

X

t

=

R

t

0

u

s

dW

s

be a stochastic integral where u

s

is a predictable process belonging

to L

p

(I; dt;W

r;p

(
; �)). Then for 1=2� 1=p > � > 1=p, the process X belongs to

L

p

(
; �;J

�;p

), and then c

r;p

-quasi-every trajectory is H�older continuous.

Proof : write

Y = (I � L)

r=2

(X

b

�X

a

) =

Z

b

a

�

(2I � L)

r=2

u

t

�

dW

t

By Burkholder's inequality, we get

N

p

(Y ) � c

"

Z

b

a

N

p

(v

t

)

2

dt

#

1

2

4



Fractional integrals and Brownian processes

with v

t

= (I �L)

r=2

u

t

. This yields

N

p

(Y ) � cjb� aj




�

ZZ

jv

t

(!)j

p

dtd!

�

1=p

with 
 = 1=2� 1=p.

9 Remark : if t! u

t

is bounded with values in W

r;p

(i.e. belongs to L

1

(W

r;p

),

then we can get better estimates (1=2 > � > 1=p).

VI. Fractional Brownian motions

A general setup

Let �

0

be the white noise measure on L

2

(I; dx) or on L

2

(IR; dx). Let V : L

2

! C

an injective continuous linear mapping. Note � = V (�

0

) the image (pro-) measure

(or cylindrical measure) on C. Denote W

t

the evaluation at t.

10 Proposition : assume � 2]

1

2

; 1]. Then the following are equivalent

a) the estimate holds

(1) IE

�

�

(W

t

�W

s

)

2

�

� cjt� sj

2��1

b) V (L

2

) � H

��

1

2

.

Proof : �rst inequality makes sense for a (pro-) measure � on C, because the

function to be integrated is cylindrical. Now, for every t, there exists K

t

2 L

2

such

that W

t

(V f) = hK

t

; fi

L

2
. We get

IE

�

�

(W

t

�W

s

)

2

�

= N

2

(K

t

�K

s

)

2

(2) jV f(t) � V f(s)j

2

= hf;K

t

�K

s

i

2

� cN

2

(f)

2

jt� sj

2��1

Then V (L

2

) � H

��

1

2

. Conversely, by the closed graph theorem, the map V : L

2

!

H

��

1

2

is continuous, so there exists c such that (2) holds, and then (1) holds.

Note that the (pro-) measure � is the canonical (pro-) measure of the Hilbert space

V (L

2

) endowed with the norm kV fk = N

2

(f).

Now we can get the following result which follows from the Kolmogorov lemma

11 Theorem : for � < ��1=2 the (pro-) measure � extends into a Borel Gaussian

measure on J

�;p

.

5
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Proof : let 
 � V (L

2

) be a carrying space for a Borel extension of �. The map

t ! W

t

2 V (L

2

)

0

extends into a map t ! W

t

2 \

p

L

p

(
; �), which satis�es the

Kolmogorov condition.

12 Remark : putting X

t

= W

t

[V ( _!)], one gets X

t

(!) =

R

t

0

K(s; t)dW

s

(!)

(Wiener integral), so the law of the process X

t

under � is the law of W

t

under �

�

.

Liouville fractional Brownian motion.

Take V = I

�

. Note �

�

= I

�

(�

0

). For � >

1

2

, I

�

is Hilbert-Schmidt from L

2

to L

2

,

so that �

�

extends into a measure on L

2

, and we can take 
 = L

2

. Note that �

1

is the Wiener measure. An easy computation yields

IE

�

(W

2

t

) =

Z




W

2

t

d�

�

=

t

2��1

(2� � 1)�(�)

2

The covariance kernel is given by

Cov

�

(W

t

;W

s

) =

1

�(�)

2

Z

s^t

0

(s� u)

��1

(t� u)

��1

du

which is not an elementary function. Nevertheless, we have the estimates

�(�)

2

IE

�

�

(W

t

�W

s

)

2

�

�

Z

+1

�1

[t

��1

+

� (jy � xj + t)

��1

+

]

2

dt

IE

�

�

(W

t

�W

s

)

2

�

� c

�

jt� sj

2��1

Then according to last theorem, for 1=p < � < � � 1=2 �

�

is carryied by

J

�;p

� H

��1=p

.

13 Remarks : a) For � = 1 we have obttain an alternative construction of the

Wiener measure.

b) Note that I

�

is a semi-group family of operators verifying I

�

(�

�

) = �

�+�

.

Fourier fractional Brownian bridge.

Now we deal with kernels

K

�

(x; y) =

X

n�1

s

n

(x)s

n

(y)

�

�

n

�

6



Fractional integrals and Brownian processes

where s

n

(t) =

p

2 sin�nt. For f 2 L

2

(I; dx), put

U

�

f(x) =

Z

1

0

K

�

(x; y)f(y)dy

The operator U

�

is the (symmetric) fractional power of U

1

. One veri�es that

K

2

(x; y) = x ^ y � xy

so �

1

= U

1

(�

0

) is the Brownian bridge measure. For � � 1 put �

�

= U

�

(�

0

).

As above, U

�

is Hilbert-Schmidt for � >

1

2

.

Now the Cameron-Martin space U

�

(L

2

) is a classical fractional Sobolev space.

By the same arguments as above, we are led to compute

Cov

�

(W

s

;W

t

) =

Z




W

s

W

t

d�

�

= K

2�

(s; t)

IE

�

jW

t

�W

s

j

2

=

X

n�1

js

n

(s) � s

n

(t)j

2

�

2�

n

2�

� 2K

2�

�

s� t

2

;

s� t

2

�

For 
 = 2� > 1 and small x we have

K




(x; x) =

Z

1

0

t


�1

dt

�




�(
)

X

n�1

e

�nt

s

n

(x)

2

=

sin

2

�x

�




�(
)

Z

1

0

e

t

+1

e

t

�1

t


�1

dt

Cosh t� cos 2�x

� C




x

2

Z

1

0

(1 +

2

t

)

t


�1

dt

t

2

+ x

2

� C

0




x


�1

Then IE

�

jW

t

�W

s

j

2

� C

0

�

jt� sj

2��1

Then for 1=p < � < �� 1=2, �

�

is carried by J

�;p

� H

��1=p

.

14 Remark : Again we obtained a semi-group family of operators U

�

satisfying

U

�

(�

�

) = �

�+�

. But here the U

�

are symmetric operators.

Fourier fractional Wiener measure.

Here we deal with kernels

K

�

(x; y) =

X

n�0

s

n

(x)s

n

(y)

�

�

n

7
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where �

n

= (n+

1

2

)� and s

n

(t) =

p

2 sin�

n

t. For f 2 L

2

(I; dx), put

U

�

f(x) =

Z

1

0

K

�

(x; y)f(y)dy

The operator U

�

is the (symmetric) fractional power of U

1

. As above we easily

check that

K

2

(x; y) = x ^ y

so that �

1

= U

1

(�

0

) is the Wiener measure. For � � 1 put �

�

= U

�

(�

0

).

Note that U

�

is Hilbert-Schmidt for � >

1

2

.

Now the Cameron-Martin space is U

�

(L

2

), and this is a classical fractional Sobolev

space.

By the same arguments as above, we are led to compute

Cov (W

s

;W

t

) = K

2�

(s; t)

IE

�

jW

t

�W

s

j

2

=

X

n�0

js

n

(s) � s

n

(t)j

2

�

2�

n

� 2K

2�

�

s� t

2

;

s� t

2

�

For 
 = 2� > 1 and small x we get

K




(x; x) =

1

�




�(
)

Z

1

0

t


�1

dt

X

n�0

e

�t=2

e

�nt

s

n

(x)

2

�

1

�




�(
)

Z

1

0

t


�1

dt

X

n�1

e

�nt=2

(1� cos�nx) � C

00




jxj


�1

Hence IE

�

jW

t

�W

s

j

2

� c

�

jt� sj

2��1

Then the Fourier-Wiener fractional measure �

�

is carried by the space J

�;p

.

15 Remarks : a) Once more we have obtained a semi-group family of operators

U

�

satisfying U

�

(�

�

) = �

�+�

.

b) For � = 1 we have obtained another construction of the Wiener measure.

Bessel fractional Brownian motion.

On IR, consider the fractional �-Bessel potential kernel

G

�

�

(x) =

1

�(�=2)

Z

1

0

t

�=2�1

e

��t

g

t

(x)dt

8



Fractional integrals and Brownian processes

where g

t

(x) =

1

p

2�t

exp(�

x

2

2t

)

is the density of the classical Gaussian semi-group.

For f 2 L

2

(IR; dx), put V

�

�

f(x) =

R

G

�

�

(x � y)f(y)dy. For � > 0, we obtain a

semi-group family of operators (V

�

�

)

��0

on L

2

(IR; dx).

We denote �

�

�

the image Gaussian (pro)-measure V

�

�

(�

0

). The Cameron-Martin

space is V

�

�

(L

2

), and it is well known that it does not depend on � > 0. This is

again a classical fractional Sobolev space H

�

(IR), and it is included in C(IR) for

� >

1

2

.

Then we may consider

Cov

�

(W

x

;W

y

) =

Z

G

�

�

(x� z)G

�

�

(z � y)dz

and compute

IE

�

jW

x

�W

y

j

2

= N

2

(�

0

� �

u

)

2

= 2�N

2

(

b

�

0

�

b

�

u

)

2

= 2�

Z

sin

2

ux=2

(� + x

2

)

�

dx � 2�

Z

sin

2

ux=2

jxj

2�

dx = c

�

juj

2��1

where u = x� y, �

u

(z) = G

�

�

(u� z),

b

� denotes the Fourier transform, and N

2

is

the norm in L

2

(IR; dz). Localizing these results, we get that for 1=p < � < ��1=2,

�

�

�

lies on the space of �-H�older continuous functions on IR.

The classical so-called fractional Brownian motion.

First, for � >

1

2

, the variance IE

�

jW

x

j

2

= �

1

2

��

t

2��1

�(� �

1

2

)=(�(�)

p

2�)

converges to +1 as �! 0. On the other hand, IE

�

[(W

x

�W

y

)

2

] � c

�

jy � xj

2��1

remains bounded. Then we replace �

�

�

with �

�

�

= T

0

(�

�

�

), where (T

0

(!))(x) =

!(x)� !(0). The covariance is unchanged, and the variance becomes � c

�

jxj

2��1

which is bounded as � ! 0. Every �

�

�

is carried by the Fr�echet space J

0

�;p

(IR) of

functions ! vanishing at 0, and belonging to every J

�;p

([�R;R]) R > 0 endowed

with the obvious semi-norms k!k

�;p;R

; and 1=p < � < ��

1

2

.

16 Proposition : as �! 0, �

�

�

narrowly converges to a measure �

�

on the Fr�echet

space J

�;p

([0;+1[) for 1=p < � < ��

1

2

. We have

Cov

�

�

(W

x

;W

y

) = c

�

(jxj

2��1

+ jyj

2��1

� 2jx� yj

2��1

)

Proof : the canonical injection J


;p

�

[0;+1[

�

� J

�;p

�

[0;+1[

�

is compact for

� � 1= > 
 > � and

R

k!k

p


;p;R

d�

�

�

(!) is bounded, so the Prokhorov condition

is satis�ed on J

�;p

�

[0;+1[

�

. Then �

�

�

narrowly converges to a measure �

�

on

J

�;p

�

[0;+1[

�

.

9
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VII. The double-parameter case.

For 0 < �; � � 1, put

I

�;�

f(x; y) =

1

�(�)�(�)

Z

x

0

Z

y

0

s

��1

t

��1

f(x � s; y � t)dsdt

Note J

�;�;p

= I

�;�

(L

p

([0; 1]

2

)) endowed with the norm N

�;�;p

(I

�;�

(f)) = N

p

(f).

We have two obvious canonical isomorphisms of J

�;�;p

on the two vector valued

function spaces J

�;p

(J

�;p

) and J

�;p

(J

�;p

).

We get the same compact inclusions as in section I :

For

�

1 � � > � > 0

1 � �

0

> �

0

> 0

then J

�;�

0

;p

� J

�;�

0

;p

Moreover for �;�

0

> 1=p � 0, � > 
 > 0 and �

0

> 


0

> 0

J

�;�

0

;p

� H

��1=p;�

0

�1=p

& H

�;�

0

� J


;


0

;p

where H

�;�

0

stands for H

�

(H

�

0

) � H

�

0

(H

�

).

Now we are in a position to claim a multiparameter lemma \�a la Kolmogorov"

17 Lemma : : let X

s;t

be a double parameter process satisfying

N

p

(X

s;t

�X

u;v

) � cjs� uj

��

1

2

jt� vj

��

1

2

for �; � 2]

1

2

; 1]. Then for � � 1=2 > �

0

> 1=p; � � 1=2 > �

0

> 1=p, this process

has a modi�cation with double H�older continuous trajectories.

Proof : as above, write

X �X

0

2 H

��

1

2

;��

1

2

(L

p

) � J

�

0

;�

0

;p

(L

p

) � L

p

(J

�

0

;�

0

;p

(L

p

)) � L

p

(H

�

0

�1=p;�

0

�1=p

)

18 Remark : in the case of a Gaussian vector space (
; �), it is straightforward

to get strong modi�cations for W

r;p

-valued processes. (cf. [5]).
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Fractional Brownian sheet.

As in section VI, put �

�;�

= I

�;�

(�

0;0

) where �

0;0

is the white noise measure on

L

2

(I

2

; dxdy). We have

IE

�;�

(W

2

s;t

) =

ZZ

W

2

s;t

d�

�;�

=

s

2��1

t

2��1

(2� � 1)(2� � 1)�(�)

2

�(�)

2

As in section VI, with h = js� tj; k = jx� yj, we have the estimate

�(�)

2

�(�)

2

IE

�;�

�

(W

s;t

�W

x;y

)

2

�

�

ZZ

IR

2

[(u

��1

+

�(h+u)

��1

+

)(v

��1

+

�(k+v)

��1

+

)]

2

dudv

IE

�;�

�

(W

s;t

�W

x;y

)

2

�

� c

�;�

js� xj

2��1

jt� yj

2��1

Hence, by the same arguments as in section VI, this yields

IE

�;�

(N

p

�

0

;�

0

;p

) =

Z




N

p

�

0

;�

0

;p

(!)d�

�;�

(!) < +1

for �

0

< � � 1=2 and �

0

< � � 1=2. Hence �

�;�

lies on J

�

0

;�

0

;p

� H

�

0

�1=p;�

0

�1=p

for �

0

^ �

0

> 1=p.

VIII. Application of Liouville spaces to Riemann-Stieltjes sums

19 Lemma : let f and g be C

1

-functions, f(0) = 0. Then

�

�

�

�

Z

a

0

f(t)dg(t)dt

�

�

�

�

� Ckfk

�

kgk

�

a

1+"

where k:k

�

stands for the H�older norm on [0; 1], 0 < " < � + � � 1.

Proof : we can assume that g(a) = 0. Put h(t) = g(a�t), then J =

R

a

0

f(t)g

0

(t)dt =

(f � h)

0

(a). Choose �

0

< �, �

0

< �, �

0

+ �

0

= 1+ ". There exists ' 2 L

1

,  2 L

1

satisfying f = I

�

0

', h = I

�

0

 . Then

jJ j = jI

"

(' �  )(a)j � ca

1+"

N

1

(')N

1

( ) � c

0

a

1+"

N

�

0

;1

(f)N

�

0

;1

(h) � c

00

a

1+"

kfk

�

kgk

�

20 Corollary : let �

n

= f0 = t

0

< t

1

< � � � < t

n

= 1g. We have

�

�

�

�

�

Z

b

a

f(t)dg(t) �

n�1

X

i=0

f(t

i

) (g(t

i+1

)� g(t

i

))

�

�

�

�

�

� c�

"

kfk

�

0

kgk

�

0

where � = Sup

i

jt

i+1

� t

i

j.

11
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Proof : replacing f with f � f(t

i

), we get

�

�

�

�

Z

t

i+1

t

i

fdg � f(t

i

) (g(t

i+1

)� g(t

i

))

�

�

�

�

� c�

1+"

i

kfk

�

0

kgk

�

0

�

�

�

�

X

Z

t

i+1

t

i

fdg � f(t

i

)(g(t

i+1

)� g(t

i

))

�

�

�

�

� ckfk

�

0

kgk

�

0

Sup

i

�

"

i

X

i

�

i

� c

0

�

"

kfk

�

0

kgk

�

0

21 Theorem : let f 2 H

�

and g 2 H

�

on [0; a] with �+ � > 1, then

Z

a

0

fdg = Lim

X

i

f(t

i

)(g(t

i+1

)� g(t

i

))

converges when the subdivision re�nes inde�nitely.

Proof : choose �

0

< �, �

0

< �. Then f (resp. g) belongs to the closure of C

1

0

in

H

�

0

(resp. H

�

0

). Applying the inequality of the last corollary gives the result.

22 Proposition : F (a) =

R

a

0

fdg is H�older continuous of order �.

Proof : jF (a+h)�F (a)� f(a)(g(a+h)� g(a))j is majorized by Ckfk

�

kgk

�

h

1+"

,

so jF (a+ h)� F (a)j � Kh

�

23 Corollary : fg = F +G with F 2 H

�

, G 2 H

�

.

Proof : by the chain rule it su�ces to take F (x) =

R

x

0

f(t)dg(t), G(x) =

R

x

0

g(t)df(t).

Application to stochastic Riemann sums

Let � 2]

1

2

; 1[, and consider the Wiener integral

X

t

=

1

�(�)

Z

t

0

(t � s)

��1

dW

s

We have IE(X

2

t

) =

t

2��1

(2�� 1)�(�)

2

. Let ' be a �-H�older continuous function with

�+ � > 1. De�ne

Z =

Z

1

0

(

e

I

��1

('� '(1))(s)dW

s

+ '(1)X

1

where

e

I

��1

is the adjoint operator of I

��1

. It is easily checked as in section III

that '� '(1) =

e

I

1��

f with f 2 L

2

([0; 1]).

12
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24 Proposition : let

X

i

'(t

i

)(X

t

i+1

�X

t

i

)

be Riemann sums. These converge in a weak sense to Z, that is,

IE(MZ) = Lim IE

 

M

X

i

'(t

i

)(X

t

i

+1

�X

t

i

)

!

for every \continuous" Gaussian martingale that is of the form

M

t

=

Z

t

0

 (s)dW

s

where  is a continuous function on [0; 1].

Proof : write

IE

�

M

t

i+1

; '(t

i

)(X

t

i+1

�X

t

i

)

�

= '(t

i

)[IE

�

M

t

i+1

;X

t

i+1

�

� IE (M

t

i

;X

t

i

)]

On the other hand we get

IE (M

t

;X

t

) =

1

�(�)

Z

t

0

(t� s)

��1

 (s)ds = (I

�

 (t))

Then we get

IE

�

M

t

i+1

; '(t

i

)(X

t

i+1

�X

t

i

)

�

= '(t

i

)[I

�

 (t

i+1

)� I

�

 (t

i

)]

In view of lemma 19 the sum of these terms converges to

Z

1

0

'(s)d(I

�

 )(s)

25 Proposition : let Y

�

t

=

R

t

0

e

��(t�s)

dW

s

the Ornstein-Uhlenbeck process of

parameter � > 0. We have

Z =

sin��

�

Z

1

0

d�

�

�

Z

1

0

'(s)dY

�

s

Proof : this a straightforward computation.
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IX. The Slobodetzki space.

The Slobodetzki (semi)-norm of a Borel function f on I = [0; 1] is de�ned by

kfk

�;p

=

h

ZZ

I

2

jf(x) � f(y)j

p

jx� yj

1+p�

dxdy

i

1=p

The Slobodetzki space S

�;p

is the closure in this norm of C

1

-functions vanishing

at 0.

26 Proposition : (Hardy type inequality) for � > 0 and q = p=(p�1) there holds

N

p

(x

��

I

�

f) �

�(1=q)

�(� + 1=q)

N

p

(f)

Proof : let g(x) = �(�)x

��

I

�

f(x). Then g =

R

1

0

t

��1

f

t

dt with f

t

(x) = f(x � xt)

N

p

(g) �

Z

1

0

t

��1

N

p

(f

t

)dt � N

p

(f)

Z

1

0

t

��1

(1� t)

�1=p

dt =

�(�)�(1=q)

�(� + 1=q)

N

p

(f)

27 Theorem : for 1 � � > � > 
 > � > 0 and � > 1=p > 0 the following compact

inclusions hold

S

�;p

� J

�;p

� J


;p

� S

�;p

Proof : �rst recall that D

�

= I

��

can be de�ned by analytic extension by

D

�

f(x) =

1

�(��)

Z

x

0

t

���1

[f(x � t)� f(x)]dt +

x

��

f(x)

�(1� �)

= h(x) +

x

��

f(x)

�(1 � �)

for every f 2 C

1

vanishing at 0.

Hence

�

1�

�(1=q)

�(1 � �)�(� + 1=q)

�

N

p

(D

�

f) � N

p

(h)

The coe�cient in the left-hand member is positive, in view of lemma 28.

Then there exists a constant c

p;�;�

such that

N

�;p

(f)

p

= N

p

(D

�

f)

p

� c

p;�;�

ZZ

I

2

jf(x) � f(y)j

p

dxdy

jx � yj

1+p�

Now turn to the last inclusion. Write

kI




fk

p

�;p

= 2

Z

1

0

dt

t

1+p�

Z

1

t

jI




f(x) � I




f(x � t)j

p

dx
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�

Z

1

t

jI




f(x) � I




f(x � t)j

p

dx

�

1=p

�

N

p

(f)

�(
)

Z

1

0

jx


�1

�(x�t)


�1

+

jdx � c:N

p

(f)t




kI




fk

p

�;p

� c

0

N

p

(f)

p

Z

1

0

t

p


dt

t

1+p�

� c

00

N

p

(f)

p

Choosing �

0

2]�; �[ or 


0

2]�; 
[ and applying proposition 1 gives compactness.

It remains to prove

28 Lemma : if �; � 2]0; 1[ and �+ � > 1, then �(�) < �(� + �)�(1 � �)

Proof : one has �+ � � 1 > 0 then t

�+��1

< 1, and hence

�(�)�(�)

�(� + �)

=

Z

1

0

t

��1

(1� t)

��1

dt <

Z

1

0

t

��

(1 � t)

��1

dt = �(�)�(1 � �)

29 Remark : if f is Borel and kfk

�;p

is �nite, one can prove the existence of a

constant c such that f � c 2 S

�;p

(hence c = f(0)).
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