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FRACTIONAL INTEGRALS AND BROWNIAN PROCESSES
by
Denis Feyel and Arnaud de La Pradelle

I. Introduction

The aim of this paper is to give a pure analytic viewpoint of the regularity of
certain random processes. Instead of looking for regularity of a given type, as
is usually done in probability, we consider a convenient Banach space of Holder
continuous functions : the classical Liouville space J, . This is the range of L?
under the Liouville fractional primitive operator

t
ISt = g | (=0 )

Then it is straightforward to check that a process satisfying the hypothesis of
Kolmogorov criterion is an Ju ,-valued LP-function.

In the case of quasi-sure analysis on the Wiener space, the Kolmogorov criterion
obviously extends by this way into a property of J, ,-valued W"P-functions.

In a second part we give as applications very simple proofs of the existence of
different a-fractional Brownian motions, with % < o < 1. Notice that the Wiener
measure is obtained for @« = 1. The so-called classical a-fractional Brownian motion
is associated to a Cameron-Martin space which is a fractional Sobolev space image
of L*(IR,dx) by a translate (due to the absence of integrability) of the Riesz
potentiel of order . Here we see that the image of L?([0,1],dx) by the Liouville
operator gives rise to a fractional Brownian motion which is easier to handle than
the classical one, though it has a very complicated covariance.

In the following section we deal with multiparameter processes. The natural
extension of the Liouville space gives rise to a non classical kind of Holder
continuity, and to a more appropriate version of the Kolmogorov lemma. This
turns out to be a good method for defining fractional Brownian sheets and also
their regularity.

A serious problem (for those who work in financial probabilities, cf. [3]) is the
fractional stochastic calculus. A first step in this direction is to start with by
defining the Wiener integral. We show that if f (resp. ¢g) is « (resp.3) Holder
continuous, then we can define [ fdg by a Riemman sum if & + 8 > 1. From this
result we get [ fdX 7, where X stands for our fractional Brownian motion, when

f is f-Hélder with a + 3 > 1. Note that X is only (o — §)-Holder, so that the

stochastic result needs a weaker hypothesis than the deterministic one.
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For completeness sake, in the last paragraph we compare the Liouville space with
the Slobodetzki space, which is another classical Banach space of Holder continuous
functions.

II. The Liouville space.
Let I =[0,1], p €]1,400[, 0 < o < 1 and (cf. for example [6])

1

° f(2) = ﬁ/o (2 — )21 f(2)dt = m/0 121 F(a — 1)t

be the primitive of order « (Liouville integral). As x5 =
integrable, the range I*(L?(I,dx)) is included in LP(I,dx). As I is one to one,
Nop(I®f) = N,(f) defines a norm on the range J, , = I%(L?). Obviously Jq,p is

a separable Banach space. The definition formally extends to the case p = +oc.

(z VvV 0)*~! is locally

Recall the very well known following facts : the map a — I®f extends into an
entire function with values in D' (the space of distributions), I® f is said to be the
“fractional primitive” of f, DYf = I~“f is the “fractional derivative”, and one

has Jet8 f = J°IP f.
1 Proposition : for « > 8 and p > 1, the embedding Juo , C Jg,p is compact.

Proof : it suffices to prove that I*=F : LP(I) — LP(I) is a compact operator.

Indeed this is the convolution operator with we_g(z) = xi_ﬁ_l/T(a — ) which
is integrable over I.

ITI. Comparison with spaces of Holder continuous functions.

Denote H, the space of a-Holder continuous functions vanishing at 0 with its
natural norm. This is not a separable space. Nevertheless we have

2 Proposition : for « > 1/p > 0 and f >~ > 0, both following inclusions hold,
and the last one is compact

Jap C Ha—l/p & Hp C Ty,00

Proof : put ¢ = p/(p — 1), and write I*f(x) = f * uq(a) with uq(x) € LI(I) for
a > 1/p. Let h > 0, and put u”(z) = us(z — h). This yields

1 () — I fla — W) < Nyl £V (ul — )
+oo
Ny(ul — o) < cap [ 10 = (o = B e < C )
0

2
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For the last inclusion, take f € Hg, and compute D7f = I~7f by analytic
continuation

1
I'(—v)

which makes sense for 3 >+ > 0. This yields || D7 f|lcc < K| f||#,.

For the compacticity, put g = v + 3¢, choose p > 1/e, write
Hp C Tyt2e,p C Tyte,p C J+,00 and apply proposition 1.

v 7 f(x)

D7 () = / T =)~ fld+ T

3 Remarks : a) roughly speaking, this means that Holder continuous functions
are those functions wich have fractional derivatives.
b) in the last proof, we can prove that D7 f is continuous by varying 7.

IV. Vector valued functions.

Let B be a Banach space endowed with norm [.|. In the same way as in the real
case, define J, ,(B) as the space of those functions f : I — B which can be written

fo) = 515 | gt — 1)t

where g € LP(I, B). The same properties (except compacticity) as above hold. In
our case, we can define J, ,(LP(£, 11)). We have the following

4 Proposition : J, ,(LP(Q, 1)) is canonically isometrically isomorphic with
L, T p) (1 < p < +00).

Proof : it suffices to check that the two norms agree on functions f : Q@ — Ja,
with finite rank.
V. The Kolmogorov lemma revisited.

In fact, the last proposition turns out to be the functional-analysis expression of
the Kolmogorov lemma. More precisely, let (X;)ier be a process satisfying

Ny(X, — X,) < |t —s|*3
for « E]%, 1]. Applying the preceding proposition yields

5 Theorem : (Kolmogorov) for a« — 1/2 > 3 > 1/p > 0, this process has a
modification with ( — 1/p)-Hélder continuous trajectories.

3
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Proof : X — X belongs to H,_1(L?) C J3,,(LP) =~ LP(J3,p) C Lp(Hg_l/p).

1
2

Now assume that (€2, i) is a Gaussian vector space, and let W™P(§2, 1) be the (r, p)
Sobolev space endowed with the norm || fl|,, = N, ((I — L)r/2f> where L is the

Ornstein-Uhlenbeck operator. In view of the above proposition, we obviously get

ja,p(Wr’p(Q7 ILL)) ~ Wr’p(Q7 ILL7 ja’p)-
Recall [4] that the capacity ¢, ,(g) for an lLs.c. function ¢ > 0 on 2 is defined by

crplg) = Inf{ [|f]]rp ‘ f =g}

and, for every h,

crp(h) = Inf{ crp(g) | g Ls.c. > |A}

6 Definition : we say that a process Y; is a strong modification of X, if for every
t one has p({Yy # X{}) =0 and Y; is ¢, ,-quasi-continuous.

7 Theorem : assume that (X;) satisfies || Xy — X ||, < |t — 3|a_% for
a—1/2> 3 >1/p. Then X; has a strong modification Y; with (8 — 1/p)-Hélder
continuous trajectories.

In addition, for every ¢ > 0 there exists a compact K C § such that ¢, ,(Q\K) < ¢
and such that (t,w) — Y(w) is continuous on K and uniformly Hélder in t.

Proof : in fact we have
X —-X, ¢ Ha_%(wr,p) C jﬁ,p(Wr’p) ~ Wr’p(jﬁ,]?)

We have WP (T3 ,) C L' (¢rp, T3 ,p)- The last spaceis included in £ ¢y, Hg_1/,),
so the proof is complete (cf. [4]).

8 Corollary : (see also [1] and [2]) let (2, ) be the Wiener space, and let

X, = fot usdWy be a stochastic integral where ug is a predictable process belonging
to LP(I,dt, W"P(Q, pn)). Then for 1/2 —1/p > 3 > 1/p, the process X belongs to
LP(Q, i, Js,p), and then ¢, ,-quasi-every trajectory is Holder continuous.

Proof : write
b
Y =(I-L)Y"*Xy—X,) = / (2T — L) uy) dWy

By Burkholder’s inequality, we get

N,(Y)<e

/ab Np(vt)zdt] :

4
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with v, = (I — L)r/zut. This yields
1/p
N,(Y) <elb—al” [/ |vt(w)|pdtdw]

with vy =1/2 —1/p. [

9 Remark : if t — u4 is bounded with values in W"? (i.e. belongs to L>(W"P),
then we can get better estimates (1/2 > > 1/p).

VI. Fractional Brownian motions
A general setup

Let 1° be the white noise measure on L*(I,dx) or on L*(IR,dx). Let V : L?* — C
an injective continuous linear mapping. Note u = V(u?) the image (pro-) measure
(or cylindrical measure) on C. Denote W, the evaluation at ¢.

10 Proposition : assume « E]%, 1]. Then the following are equivalent
a) the estimate holds

(1) B, (Wi —Wo)*) < cft — s[**7
b) V(L) C H,_s.

Proof : first inequality makes sense for a (pro-) measure u on C, because the
function to be integrated is cylindrical. Now, for every ¢, there exists Ky € L? such

that Wy(V f) = (K4, f)r2. We get

E, (W; — W,)?) = No( Ky — K,

(2) V() =V = (f, Ki = Ko)? < eNo(f)* |t = s[P27

Then V(L?) C Ha_%. Conversely, by the closed graph theorem, the map V : L? —
H,_, is confinuous, so there exists ¢ such that (2) holds, and then (1) holds.

«

Note that the (pro-) measure y is the canonical (pro-) measure of the Hilbert space

V(L?) endowed with the norm |V f|| = Na(f).

Now we can get the following result which follows from the Kolmogorov lemma

11 Theorem : for 3 < a—1/2 the (pro-) measure u extends into a Borel Gaussian
measure on Jg p.
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Proof : let Q D V(L?) be a carrying space for a Borel extension of . The map
t — W, € V(L?) extends into a map t — W, € N,LP(L, i), which satisfies the
Kolmogorov condition.

12 Remark : putting X; = Wi[V(w)]|, one gets Xy(w) = fot K(s,t)dWs(w)
(Wiener integral), so the law of the process X; under p is the law of Wy under u®.

Liouville fractional Brownian motion.

Take V = I*. Note p® = I*(p°). For a > 1, I® is Hilbert-Schmidt from L? to L?,
so that ;% extends into a measure on L%, and we can take = L%. Note that u!
is the Wiener measure. An easy computation yields

t2a—1
(2a — 1)I'(«)?

(W) = [ Wedut -

The covariance kernel is given by

Cove(Wy, Wy) = a7 /05 (s — u)a—l(t — u)a—l du

which is not an elementary function. Nevertheless, we have the estimates
4+ oo

D PR (W= WoR) < [ (157 =y —al+ 057

— 0

Eo (W = W.)*) < calt — sl

Then according to last theorem, for 1/p < g < a — 1/2 p® is carryied by
jﬁ,p C Hﬁ—l/p-

13 Remarks : a) For a = 1 we have obttain an alternative construction of the
Wiener measure.
b) Note that I% is a semi-group family of operators verifying I%(u?) = u*+5.

Fourier fractional Brownian bridge.

Now we deal with kernels

Ka(:zj,y) — Z Sn(l’)sn(y)

TN
n>1

6
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where s,(t) = v/2sinnt. For f € L*(I,dx), put

0 st) = [ Koty
The operator U® is the (symmetric) fractional power of U!. One verifies that
Ky(x,y)=ax ANy —uay
so p' = U(u?) is the Brownian bridge measure. For a <1 put u® = U*(u?).

As above, U® is Hilbert-Schmidt for o > %

Now the Cameron-Martin space U%(L?) is a classical fractional Sobolev space.

By the same arguments as above, we are led to compute

COVQ(WS, Wt) = / WSWtd/,La = IX’QQ(S,t)
Q

Sn sp(t)]? R s—t s—1
a1, = W2 = Y PO <o, (5557

7T2an2a 2
n>1

For v = 2a > 1 and small  we have

71t sin? re [ el +1 L dt
K — —nt —
xy(:z;, :1;) / 7r71“ § , er(fy) /0 et —1 Cosh t — cos 27z
> t7hdt
2 ! -1
< Cyx /0 (1+ ;)m = Cha”
Then Eo [W, — W.[> < CJt — s[>

Then for 1/p < 8 < a —1/2, u® is carried by J5,, C Hg—1/p-

14 Remark : Again we obtained a semi-group family of operators U® satisfying
U (uP) = poFP. But here the U® are symmetric operators.

Fourier fractional Wiener measure.

Here we deal with kernels
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where 7, = (n + %)ﬂ' and s,(t) = /2sinm,t. For f € L*(I,dz), put

0o fr) = / Kol ) f(y)dy

The operator U is the (symmetric) fractional power of U'. As above we easily

check that
Ky(w,y) =z Ny
so that u' = U(u?) is the Wiener measure. For o < 1 put pu® = U*(u°).

Note that U® is Hilbert-Schmidt for o > %
Now the Cameron-Martin space is U®(L?), and this is a classical fractional Sobolev
space.

By the same arguments as above, we are led to compute
Cov (W, W) = Kaa(s,1)

2 |sn(s) — sn(t)]? . s—1 s—1t
IEoz|Wt - Ws| - ;) ﬂ_%a S 2I&2a T, 5

For v = 2a > 1 and small x we get

1 (. @)
K (z,z)= / 7L dt Z e t/2 emnt sp()?

”VP(’V) 0 0

1 i -1 —nt/2 1" -1
§m/o 7 dtZe /(1—COS7TTL$)§C,Y|$|’Y
n>1
Hence B, W — W,|? < cqlt — s>

Then the Fourier-Wiener fractional measure p® is carried by the space 73 .

15 Remarks : a) Once more we have obtained a semi-group family of operators
U satisfying U®(pu?) = pot?.

b) For a = 1 we have obtained another construction of the Wiener measure.

Bessel fractional Brownian motion.

On IR, consider the fractional A-Bessel potential kernel

GS(x) = m /OOO /21 e =AMt ge(x)dt

8
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1 ( x? )
exp(——
27t P 2t

is the density of the classical Gaussian semi-group.
For f € L*(IR,dz), put V¥ f(z) = [ GS(x — y)f(y)dy. For A > 0, we obtain a
semi-group family of operators (V¥ )a>0 on L*(IR, dx).

where ge(x) =

We denote p§ the image Gaussian (pro)-measure V,*(u’). The Cameron-Martin

space is V\*(L?), and it is well known that it does not depend on A > 0. This is

again a classical fractional Sobolev space H*(IR), and it is included in C(IR) for
1

o> 5.

Then we may consider
Cove(W,, W) = /Gf(:p —2)G(z —y)dz

and compute

Eo|W, — W, > = Ny(®g — ®,)? = 27 Ny(Bg — By )

.2 .2
:Qﬁ/wdmgﬁ/wdhwm_l
(O +a22)° PR

where u = 2 —y, ®u(2) = GS(u — z), ® denotes the Fourier transform, and Ny is
the norm in L%(IR, dz). Localizing these results, we get that for 1/p < < a—1/2,
pS lies on the space of 3-Holder continuous functions on IR.

The classical so-called fractional Brownian motion.

First, for & > %, the variance IE,|W,|? = AzmapZe—1D (g — I/ (T(a)V2r)
converges to +00 as A — 0. On the other hand, IE,[(W, — W, )?] < caly — 2|?*7!
remains bounded. Then we replace p§ with vy = To(uS), where (Tp(w))(z) =
w(z) — w(0). The covariance is unchanged, and the variance becomes < ¢, |z[**~!
which is bounded as A — 0. Every v{ is carried by the Fréchet space jg’p(IR) of
functions w vanishing at 0, and belonging to every Js ,([—R, R]) R > 0 endowed

with the obvious semi-norms ||w||g,p,r; and 1/p < f < a — %

16 Proposition : as A — 0, v{ narrowly converges to a measure v® on the Fréchet
space J3 p(]0, +o0[) for 1/p < f < a — % We have

Covye (W, Wy) = ca(|:Jc|2O‘_1 + |y|2a_1 — 2z — y|2a_1)

Proof : the canonical injection j%p<[0,—|—oo[> C jg,p<[0,—|—oo[> is compact for

a—1/>7 > fand [ HwHZ’p’Rdl/i‘(w) is bounded, so the Prokhorov condition

is satisfied on jg,p<[0,—|—oo[>. Then v§ narrowly converges to a measure v® on

jﬂ,P<[07 +OOD
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VII. The double-parameter case.

For 0 < a,f <1, put

1 oy
aaﬁ T e Sa_l 6_1 X — S — de
I f(ey) F(Oé)T(ﬂ)/o /0 A Y~ E)dods

Note Ju 5. = I*P(L?(]0,1]?)) endowed with the norm Ny g,(I*?(f)) = N,(f).
We have two obvious canonical isomorphisms of J, 3, on the two vector valued
function spaces Jo p(J3,p) and T3 p(Ta,p)-

We get the same compact inclusions as in section I :

1>2a >4 >0
For {120/>ﬂ’>0

then ja,a/,p C jﬂ’ﬂ/,p
Moreover for a, o' > 1/p >0, f>~v>0and §' >~" >0
joz,oz’,p - Ha—l/p,a’—l/p & Hﬁ,ﬁ/ - ‘77’7/’19

where Hp g stands for Hg(Hg ) ~ Ha (Hp).

Now we are in a position to claim a multiparameter lemma “a la Kolmogorov”
17 Lemma : : let X, ; be a double parameter process satisfying
Np(Xot = Xuo) < els —ul* |t — o)~

for a, 3 E]%,l]. Then for « —1/2 > o' > 1/p, —1/2 > ' > 1/p, this process
has a modification with double Holder continuous trajectories.

Proof : as above, write

X =Xo € Hooy 51 (LF) C Tw g0 p(L0) % LV Tar 5, p(L7)) C L (Har—1/p, -1 /)

18 Remark : in the case of a Gaussian vector space (€2, i), it is straightforward
to get strong modifications for W"P-valued processes. (cf. [5]).

10
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Fractional Brownian sheet.

As in section VI, put u®? = I*P(;%9) where ;%0 is the white noise measure on

L2(I?,dxdy). We have

, 5 2a ltZﬂ 1
Ea (W2, // W2idp? = (2a — 1)(28 — 1)T'(a)2T(5)2

As in section VI, with h = |s — t|, k = |x — y|, we have the estimate

(P B (W = We ) < [ [0 =207 ) e

Eas (Wi = Wey)?) < capls — a7t =y 77

Hence, by the same arguments as in section VI, this yields

Bo (V2 ) = [ Vo)) < o
for o/ < o —1/2 and B < B —1/2. Hence u®? lies on Jur 1 p C Hear—1/p,5'—1/p

for o' A ' > 1/p.

VIII. Application of Liouville spaces to Riemann-Stieltjes sums

19 Lemma : let f and g be C'-functions, f(0) = 0. Then

/ f(t)dg(t)dt‘ < C)lflallgllsa™*

where ||.|o stands for the Holder norm on [0,1],0 < e < a4+ — 1.
Proof : we can assume that g(a) = 0. Put h(t) = g(a—t), then J = foa f)g'(H)dt =

(f*h)(a). Chooseoz < «, ﬂ' < fB,a + 3 =1+c¢e. There exists ¢ € L™= ¢ € L™
satisfying f = I v, h = Iﬂ Y. Then
7| = II°(¢ * )(a)] < ca ™ Nee(9)Noo(t) < ¢'a’ *Nov oo (f)Ng 00(h) < a7 fllallglls

20 Corollary : let 7, = {0 =1ty < t; <---<t, =1}. We have

/ F(t)dg(t) zf (tivr) — g(t:)| < o1 Fllar ]l

where 6 = Sup; |tiy1 — t4].

11
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Proof : replacing f with f — f(¢;), we get

[ g g (st - g(tn)\ < e8| Flla gl

i

tit1
\Z | g = sttt - g(tn)\ < ellfllrllgllr Sup &f 3 85 < 8l gl

21 Theorem : let f € H, and g € Hpg on [0,a] with a+ > 1, then
| £ =Lim 3 gt — ot
0 ;

converges when the subdivision refines indefinitely.

Proof : choose o' < «, 3' < 3. Then f (resp. ¢) belongs to the closure of C} in
Hor (resp. Hgr). Applying the inequality of the last corollary gives the result.

22 Proposition : F(a) = foa fdg is Hélder continuous of order 3.

Proof : [F(a+h) — Fla) — f(a)(g(a+ ) — g(a))| is majorized by C|f]lagllsh+*,
so |F(a+h)— F(a)| < Kh®

23 Corollary : fg =F +G with FF € H,, G € Hp.
Proof : by the chain rule it suffices to take F(x) = fOI f(t)ydg(t), Glz) =
fox g(t)df(t).

Application to stochastic Riemann sums

Let o €]3,1[, and consider the Wiener integral

1 t
X, = —/ t—s)*HdW,
t I(a) Jo ( )
t2a—1
We have IE(X?) = Za — T (af’ Let ¢ be a #-Holder continuous function with

o + 3 > 1. Define
Z= [ = )T+ o1,y

where I°~! is the adjoint operator of %71, It is easily checked as in section III

that o — (1) = I'=° f with f € L*([0,1]).

12



Fractional integrals and Brownian processes

24 Proposition : let

Z S‘Q(ti)(XtH—l - Xti)

be Riemann sums. These converge in a weak sense to Z, that is,

E(MZ) = LimIE (M D (i) Xigr — Xti)>
for every “continuous” Gaussian martingale that is of the form

M, = /Ot b(s)dW,

where 1 is a continuous function on [0, 1].

Proof : write
E (Moot Xs, — X1,) = 9(tOIE (M Xiy,) — T (Myy, X,
On the other hand we get
1 ! a—1 @
(M X0) = g [ (= s = (170
Then we get
B (M, o(ti) (X, — Xe)) = @) [T (tigr) — I0(t:)]
In view of lemma 19 the sum of these terms converges to
1
/0 (5)d(T)(s)

25 Proposition : let Y} = fote_)‘(t_s) dW the Ornstein-Uhlenbeck process of
parameter A > 0. We have

: [e) dA 1
7 s1n7ra/ _/ c,o(s)dYs)‘
o A% Jo

™

Proof : this a straightforward computation.

13
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IX. The Slobodetzki space.

The Slobodetzki (semi)-norm of a Borel function f on I = [0,1] is defined by

) = F@)l 1
HfHCV,P // |[L' . y|1+pa d dy

The Slobodetzki space S, is the closure in this norm of C'-functions vanishing
at 0.

26 Proposition : (Hardy type inequality) for « > 0 and ¢ = p/(p—1) there holds

Nla ) < N

Proof : let g(x) = I(a)a~™*I%f(x). Then g = fol to= fodt with fi(z) = f(x — at)

Vo) < [N < N [ et iy DR

27 Theorem: forl >a > 3>~ >6>0and 3 > 1/p > 0 the following compact
inclusions hold

Sap CTpp C Typ C Ssp
Proof : first recall that D® = I=% can be defined by analytic extension by

’ 7P fla =B f( g
Dﬂf(x) - I‘(iﬂ) /0 t_ﬁ_l[f(x - t) - f(l')]dt + P(lii(ﬂ)) = h(l‘) + P(liji(ﬂ))
for every f € C! vanishing at 0.
ence _ P(l/Q) 8
i (1 T(l—ﬁ)I‘(ﬂ_|_1/q)>Np(D f) < Ny(h)

The coefficient in the left-hand member is positive, in view of lemma 28.

Then there exists a constant ¢, o 3 such that

|[f(z) = f(y)|" dedy

o = yl+re

Npp(f)P = Np(Dﬁf)p < Cp,a,ﬁ/

I2

Now turn to the last inclusion. Write

17 1% —2/ th&/ I7f(x) = I f(z — )P da
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' v v P v Np(f) ~ 71 v—1 v
(/t I f(x) = I f(x — ) dx) < T [Tt e < eyt

» , Leevdt o,
1P A1, < N | e < Nyl
Choosing ' €]3, a] or 7' €]6, 7] and applying proposition 1 gives compactness.

It remains to prove

28 Lemma : if a, 3 €]0,1[ and o + § > 1, then I'(3) < I'(a + 8)T(1 — «)

Proof : one has & + 8 — 1 > 0 then t*t#~! < 1, and hence

TP [ty oty [ ey ot e
T(Oé+ﬂ)_/ot (1—1) dt</0t (1—1)2"'dt = D(a)[(1 — @)

29 Remark : if f is Borel and || f]|«,p is finite, one can prove the existence of a
constant ¢ such that f — ¢ € Sy, (hence ¢ = f(0)).
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