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1 Introduction
Amongst the large variety of path-dependent options, barrier options enjoy the
feature of having been traded and discussed in the literature for quite some time.
Back in 1973, Merton o�ered in his seminal paper a pricing formula for an option
whose pay-o� is restricted by a 
oor knock-out boundary and a few years later,
Goldman, Sosin and Gatto (1979) provided closed form solutions for all types
of single barrier options. Over the last few years, barrier options have become
increasingly popular since they may produce, at a lower cost than standard options,
the appropriate hedge in a number of risk management strategies (see Reiner and
Rubinstein (1991)). Some of them combine several exotic features. For instance,
it is well known that when implied volatilities are trading at historically high
levels, going to Asian instruments reduces this volatility and the option price, as
long as the risk-adjusted drift of the underlying asset is positive or within some
interval (see Geman-Yor (1993) for a thorough discussion of this issue). As a way
to cut premium even further, the user may choose an instrument which also has a
knock-out feature; for instance, consider an American treasurer who is expecting a
series of cash-
ows denominated in deutschemarks and wants to buy Asian options
DM/$. If the current spot level is DM/$ 1.4050, the premium can be reduced by
the addition of a knock-out barrier at DM/$ 1.4850. This Asian barrier put is
still an attractive hedging tool since, if the barrier is reached, it means that the
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underlying asset is typically moving in favor of the cash position the option buyer
wants to protect.

In the same manner, by buying Asian calls on oil, a major airline company
may hedge its exposure against an increase in the cost of fuel (both because its
needs in resupplying are regularly spread over time and because the nature of oil
production, namely, the long time between extraction and delivery, entails that
oil indices are typically arithmetic averages). The company may want to reduce
the cost of its coverage by asking a down and out speci�cation on the Asian call
it will buy on the OTC markets.

French and Australian �nancial institutions have recently traded so-called
\Parisian" options, whose pay-o� is contingent on the fact that the underlying
asset remains below or above a given value for a time period longer than a �xed
number called the window (see Chesney, Jeanblanc-Picqu�e, Yor (1995) for a com-
plete description and valuation of these instruments). For a window length equal to
zero, the Parisian option reduces to a standard barrier option. When the window
is extended until maturity, the Parisian option reduces to a standard European
option. In the intermediate case, the option presents its \Parisian" feature and
becomes a 
exible �nancial tool which has some interesting properties : for in-
stance, for some values of the parameters, when the underlying asset price is close
to the barrier or when the size of the window is small, its value is a decreasing
function of the volatility. Therefore, it allows traders to bet in a simple manner on
a decrease of volatility. Last but not least, as far as down-and-out barrier options
are concerned, an in
uential agent in the market who has written such options
and sees the price approach the barrier may try to push the price further down,
even momentarily and the cost of doing so may be smaller than the option payo�.
In the the case of Parisian options, this would be more di�cult and more expen-
sive. Therefore, as in the case of Asian versus standard options, the possibility of
market manipulations is reduced.

In the \Asian Parisian" case, the excursion condition is relative to the underly-
ing asset, but the pay-o� at maturity corresponds to an Asian option. The price of
an \ Asian Parisian" option is, ceteris paribus, lower than the Asian option price.
For instance, an up-and-in \Asian Parisian" option knocks in when the underlying
price remains above a given level for a period of time at least equal to the window.
In this case, the option only represents a hedge in the worst cases, namely when
both the spot price and its average are high.

This paper addresses some of the valuation problems, in the Black and Scholes
setting of a geometric Brownian motion for the underlying asset dynamics, for
options whose pay-o� is related to the terminal price of the stock and an arithmetic
average of �xing and/or involves stopping times related to excursions. In all cases,
we are able to provide at least the Laplace transform in time of the option price
under a form whose complexity varies with the number of exotic features. A
discussion of the organisation of this paper is postponed until the end of section
2. We emphasize that we do not give closed form formulas for the general case,
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but we aim to develop a methodology which may be used in many cases.

2 The setting
We assume in this paper that the underlying asset dynamics are driven by the
equation ( dSs = Ss(� ds+ dBs)S0 = 1 ;
where (Bs; s � 0) is a standard Brownian motion under the usual risk-adjusted
probability. We have set the volatility equal to 1 in order to obtain simpler for-
mulas, the general drift � allows for dividend-paying stocks and currencies. We
denote by B(�)s = Bs+ �s the Brownian motion with drift �. In previous research,
we have been interested in options whose prices are, up to the discount factor,
de�ned by the following quantities ( t stands for the maturity)

� Asian options :
E
�
(A(�)t � k)+

�

where A(�)t = Z t
0 ds exp(2B(�)s ). Asian options are studied in Geman-Yor

(1993). See also Kemna and Vorst (1990) and Rogers and Shi (1995) for
di�erent approaches.

� Parisian options : Recall the de�nition of an up-and-out \Parisian" option:
the owner of this option loses it if the underlying asset price (Ss; s � 0)
reaches a level L before maturity t and remains constantly above this level
for a time interval longer than a �xed number c, called the option window.
If not, the owner will receive the pay-o� (St � k)+ . Therefore, we consider
excursions1 of the process (B(�)s ; s � 0) above a given barrier. In this paper,
we assume that the level L is equal to the spot price at initial time, which
implies that the excursions for the process B(�)s are at (more correctly : away
from) the level 0. The general case can easily be derived by waiting until
the �rst hitting time of the barrier and then translating that level to 0. See
Chesney et al. (1995) for more details.
Let gs be the left extremity of the excursion which straddles time s, and

H+c = inffs : 11B(�)s >0(s� gs) � cg ;
the �rst time when an excursion above 0 is \older" than the window c. The
price of an up-and-out Parisian call is given by

E
�
11H+c >t

�
exp(B(�)t )� k

�+� :
1See the Appendix for a precise de�nition.
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Our methodology applies also to other Parisian options, namely down and
knock-in options.

� Double barrier options :
E
�
11T�a;b>t

�
exp(B(�)t )� k

�+� ;
where T�a;b = inffs : B(�)s 62 [�a; b]g. Such options are studied by a num-
ber of authors, including Kunimoto and Ikeda (1992), He, Keirstead and
Rebholtz (1995) and Geman and Yor (1995).

This has led us to consider the mixed general quantities
�(�)+ (a; b; k; t) def= E

�
11�>t

�
a exp(B(�)t ) + bA(�)t � k

�+�

�(�)� (a; b; k; t) def= E
�
11��t

�
a exp(B(�)t ) + bA(�)t � k

�+� ; (1)
where � is a stopping time in the �ltration generated by (B(�)t ). We develop below
the computations related to the particular cases � = Hc;d and � = T�a;b where

Hc;d def= inffs : 11B(�)s >0(s� gs) � c or 11B(�)s <0(s� gs) � dg :
We use the concise notation

H+c def= Hc;1 = inffs : 11B(�)s >0(s� gs) � cg
H�d def= H1;d :

In the case � = H+c (resp. H�d ), only excursions above 0 (resp. below 0) are
relevant. To simplify the presentation, we also introduce

Hc = inffs : s� gs � cg ;
since this stopping time allows us to develop our methodology, without taking care
of the signs of excursions.

The case a = 0;� = t is the Asian option case; b = 0;� = H+c ; �(�)+ (resp.
b = 0;� = H+c ; �(�)� ) is the up-and-out (resp. up-and-in) Parisian option case;
b = 0;� = T�a;b is the double barrier case.

The reader will note that the computation of �(�)+ (a; b; k; t) + �(�)� (a; b; k; t) re-
duces to that of E

��
a exp(B(�)t ) + bA(�)t � k

�+�. This last expression involves the
law of the pair (B(�)t ; A(�)t ) and is computed in section 5.
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Therefore, we restrict our attention to �(�)(a; b; k; t) def= �(�)� (a; b; k; t). We de-
rive in this paper the expression of the Laplace transform of �(�) with respect to
time. This method could even be extended to the situation where the pay-o� is a
function of B(�)t and A(�)t . In the particular case a = b = 0, the Laplace transform
of � is also obtained, hence the price of the corresponding boost option2.
In fact, equality (1) covers several types of contingent claims which may be useful
in speci�c situations. For example, our method yields the price of Asian 
oat-
ing options, i.e., with pay-o� (A(�)t � expB(�)t )+, which corresponds to the case
k = 0; b = 1; a = �1;� = t and the price of Asian spread options, with pay-o�
the positive part of the di�erence between two independent Asian pay-o�s.

The paper is organised as follows: in the next section, we show that, using a
Laplace transform in time, the problem can be split into two subproblems. The
�rst one reduces to the computation of the joint law of (�; expB(�)� ; A(�)� ) and is
studied in section 4. The second one is to �nd the law of the pair (B(�)t ; A(�)t ) and
is solved in section 5. An Appendix gathers the main de�nitions and results about
the di�erent stochastic processes which are used in this paper.

3 Laplace Transform in time
As observed in previous works by the authors, the Markov property and time
changes can be used in an essential way for such computations. In what follows,
B(�) denotes a Brownian motion with drift �, assumed to be independent of the
original Brownian motion (Bs; s � 0). We want to compute the time Laplace
transform of �(�) which, thanks to the strong Markov property applied at time �,
can be written as Z 1

0 dt e��t�(�)(a; b; k; t)
= E

�
exp(���) Z 1

0 dt e��t
�
a exp(B(�)� +B(�)t )+ b [A(�)� +A(�)t exp(2B(�)� )]�k

�+ � :
Thus, clearly our original problem decomposes into two subproblems:

� Finding the joint law of (�; expB(�)� ; A(�)� ). We call this problem (JL), which
itself decomposes into

( (JL)1; for � = Hc or � = Hc;d(JL)2; for � = T�a;b ;
� Computing the resolvent type quantity

v(�)(�; a; b; k) def= E
�Z 1

0 dt e��t
�
a expB(�)t + bA(�)t � k

�+� :
We use bars to avoid confusion with the original parameters a; b; k; : : :. We
refer to this second problem as problem (V ). The particular case �a = 0

2Recall that, for a boost option, the pay-o� is proportional to the time spent in a band.
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leads to the Asian option price, whereas the case �a = ��b leads to the Asian

oating options price.

4 A solution of problem (JL)
4.1 On problem (JL)1
Here the problem is to compute the law of the triple

(Hc; expB(�)Hc ; A(�)Hc ) :
The more general case when � = Hc;d will be studied at the end of this section.

The Cameron-Martin formula allows one to reduce the problem to the case
� = 0. We recall that we are interested in excursions of the Brownian motion
away from 0 and that

gt = supfs � t; Bs = 0g ; Hc = infft : t� gt � cg :
For this purpose, we use the following3
Proposition 1
(i) The �-�eld F�gHc , the random variable �c def= sgn (BHc), and the process
fjBgHc + uj ; u � cg are independent; furthermore, �c is a symmetric random Ber-
noulli variable, and fjBgHc + uj ; u � cg is a Brownian meander with length c.
(ii) For any IR+-valued, (Ft)-predictable process (zt; t � 0), the following relation-
ship holds r�c

2 E[zgHc ] =
Z 1
0 dsE[z�s11�(�s)�c] ;

where �s = inffu : `u > sg, ` is the local time of (Bt) at 0, and
�(�s) = supu�s(�u � �u�)

is the maximum length of excursions up to time �s.
Proof : The �rst part relies on standard properties of the Brownian meander
which are recalled in the Appendix. The second part follows from the \balayage"
formula (see Revuz-Yor (1994), chap. VI, sect. 4) which states that for any
bounded, (Ft)-predictable process (zt; t � 0), the process

zgtjBtj �
Z t
0 d`u zu

3See the Appendix for the corresponding de�nitions.
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is a (Ft)-martingale; hence, by projection on (F�gt ), the process
zgt j�tj �

Z t
0 d`u zu

is a (F�gt )-martingale, where �t def= sgn (Bt)
r�
2 (t� gt) is the so-called Az�ema mar-

tingale; recall that �t and j�tj�`t are (F+gt )-martingales. Then, we use the stoppingtime theorem, at time Hc, to obtainr�c
2 E(zgHc ) = E(Z Hc

0 d`u zu) :
The �nal formula follows by making the obvious time change in the integral with
respect to d`u. 2

We now explain how to exploit the above results to proceed with the solution
of (JL)1.

a) Our aim is to compute the law of the triple (Hc; BHc ; AHc) : This problemis solved via the joint Laplace transform of this law, i.e.,
u(�; k; �; c) def= E

�
exp(�BHc � k2

2 Hc � �2
2 AHc)

�

which, from Proposition 1 (i), is equal to :
u(�; k; �; c) = ub(k; �; c) exp(�k2c

2 )um(�; �; c) ;
where

ub(k; �; c) def= E
�
exp

�
�1
2(k2gHc + �2AgHc )

��

and
um(�; �; c) def= E

�
exp(�BHc � �2

2
Z Hc
gHc du exp(2Bu))

�
:

We now explain the mnemonic for ub and um.i) We remark that the de�nition of ub involves the trajectories of the Brownian
motion between 0 and gHc , and that the law of the process ( 1

gHcBugHc ; u � 1) is
equivalent (i.e., mutually absolutely continuous with respect) to that of the Brow-
nian bridge which may be represented as ( 1gtBugt ; u � 1); however, we shall not
use, nor prove, this absolute continuity result here.
ii) The de�nition of um involves the trajectories of the Brownian meander between
gHc and Hc and the process (jBgHc + uj ; u � c) is a Brownian meander with length
c.
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Thus, again, problem (JL)1 may be split into two subproblems, which we shall
denote by (JL)1m and (JL)1b .

b) In order to solve problem (JL)1b , we use the multiplicative \master formula"of excursion theory (See Revuz-Yor, chap. XII) which implies that, for any Borel
function f : IR! IR+,

E[11�(�s)�c exp(�Af�s)] = exp(�sJ(c; f) ) ;
where Aft =

Z t
0 du f(Bu) and4

J(c; f) def= Z n(d�)
�
1� 11V (�)�c exp(�AfV (�))

�
: (2)

As a consequence of Proposition 1 (ii), one obtains the important result :
Corollary 1 Using the previous notation, for any positive measurable function fr�c

2 E[exp(�AfgHc )] = 1=J(c; f) : (3)
4.1.1 On problem (JL)1m
This consists in the computation of um(�; �; c) which can be expressed in terms of
the Brownian meander. Indeed,

um(�; �; c) = 1
2 E

�
exp

�
�pcm1 � �2c

2
Z 1
0 du exp(2pcmu)

��

+ 1
2 E

�
exp

�
��pcm1 � �2c

2
Z 1
0 du exp(�2pcmu)

��
;

where now (mu; u � 1) denotes the standard Brownian meander (i.e., with length 1).
We denote by M c the law of the Brownian meander (m(c)u ; u � c) with length c,
i.e.,

(m(c)u = pcmu=c; u � c)
on the canonical space (C(IR+; IR+);R1).Remark that, in the particular case � = 0 (\Parisian" case), the computation of
um(�; 0; c) follows from the expression of the law of m1 :

P (m1 2 dx) = x exp(�x2=2)11x>0 dx :
To compute um(�; �; c), we proceed by looking at the Laplace transform in the

variable k2
2 of c! um(�; �; c)p2�c (5); thus, we search for an expression of

��(k; �; �) def= Z 1
0

dc exp(�k2c=2)p2�c M c�exp
�
��Rc � �2

2
Z c
0 du exp(�2Ru)

��
;

4See the Appendix for the de�nitions of the Itô measure n and of the lifetime V .5Dividing by p2�c simpli�es subsequent computations; this will be clear in the next lines.
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where (Ru; u � 0) is the canonical process. We know from excursion theory (see,
e.g., Revuz-Yor, Exercise 4.18, chap. XII) that
��(k; �; �) = Z 1

0 daEa
�
exp�

�k2
2 T0 � �a+ �2

2
Z T0
0 du exp (�2Bu)

��

= Z 1
0 da exp(��a)E�a

�
exp

�
�1
2(k2T0 + �2 Z T0

0 du exp (2Bu))
��

;
where T0 denotes the �rst time Brownian motion reaches 0 and Ea denotes the ex-pectation under the law of Brownian motion starting at a. Note that the integral
with exp(a�) is �nite for � < k.

The crucial point in our solution of (JL)1m is the following
Proposition 2 Let f : IR! IR+ be a locally bounded function. Then the function

u(a) � uf(k; a) def= Ea
�
exp�

�k2
2 T0 +

Z T0
0 du f(Bu)

��
(4)

is the unique bounded solution of the Sturm-Liouville equation
1
2 u00 =

� k2
2 + f

�
u ; u(0) = 1 :

As particular examples, one has, for a � 0; k � 0; � > 0:
Ea
�
exp�12(k2T0 + �2AT0)

�
= Kk(�ea)

Kk(�) (5)+
E�a

�
exp�12(k2T0 + �2AT0)

�
= Ik(�e�a)

Ik(�) ; (5)�
where Ik and Kk are modi�ed Bessel functions.
Notation 1. In what follows, the two formulas (5)� will play an important

role; related formulas (f) involving the positive (resp. negative) level a (resp :
�a) and/or the function exp(2x) (resp. exp(�2x)) will be presented as formulas
(f)+ (resp (f)�).2. We denote by P (�)� (or, when more convenient, (d)P�) the law of the Bessel
process6 (R(�)u ; u � 0) of index � (of dimension d), starting at �.

Proof of Proposition 2 : The general statement follows from the optional
sampling theorem, Itô's formula, and/or the Feynman-Kac formula. Rather than
deducing formula (5)� directly from the general case, we shall connect these for-
mulas with computations done in Pitman-Yor (1981).

6See the Appendix for some de�nitions.
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We denote by P (0)� the law of the 2-dimensional Bessel process (R(0)u ; u � 0),
starting from � � 0. We have exhibited in previous research (Geman-Yor (1993))
the power of Lamperti's representation of a geometric Brownian Motion as a time-
changed Bessel process (see Revuz-Yor, chap. XI)

exp(Bt + �t) = R(�)A(�)t : (6)

We also introduce C(�)u = Z u
0

ds
(R(�)s )2 . Let us remark that C

(�) and A(�) are inverses
of each other, namely

C(�)u = infft jA(�)t > ug (7)
and R(�)u = exp(BC(�)u + �C(�)u ). Then, using the representation expBt = RA(0)t ,
and denoting by T1 the hitting time T1 = infft : Rt = 1g , we deduce that the
left-hand side of (5)+ is equal to

E(0)ea
�
exp�1

2
�
k2 Z T1

0
du
R2u + �2T1

��
= Kk(�ea)

Kk(�) ; (8)
the last equality being borrowed from Pitman-Yor (1981) (Proposition 2.3 ). The
same argument leads to formula (5)�. 2

Warning : In Yor (1993), points c) and d) of lemma 1, the right-hand sides
of (5)+ and (5)� have erroneously been inverted. However, this does not a�ect the
subsequent results in Yor (1993).

To proceed further, we shall use the Hartman distributions, the de�nition of
which we now present. Let 0 < r < R < 1. P. Hartman (1976) showed from a
purely analytical viewpoint, the existence of two positive integrable functions h"r;Rand h#r;R such that

Ik(r)
Ik(R) =

Z 1
0 exp(�k2

2 t)h"r;R(t) dt
and Kk(R)

Kk(r) = Z 1
0 exp(�k2

2 t)h#r;R(t) dt :
Now, using Proposition 2 together with the de�nition of the Hartman densities

h"r;R and h#r;R , we obtain
�+(k; �; �) = Z 1

0 da exp(�a) Kk(�ea)
Kk(�)

= Z 1
0 da exp(�a) Z 1

0 dc exp(�k2c
2 )h#�;�ea(c)
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and
��(k; �; �) = Z 1

0 da exp(��a) Ik(�e�a)Ik(�)
= Z 1

0 da exp(��a) Z 1
0 dc exp(�k2c

2 )h"�e�a;�(c) :

Next, recalling that ��(k; �; �) is a Laplace transform with respect to k2=2,
which involves (M c; c > 0), we obtain
1p2�c M c�exp

�
��Rc � �2

2
Z c
0 du exp(�2Ru)

��
= Z 1

0 da e��a h"�e�a;�(c)
and
1p2�c M c�exp

�
�Rc � �2

2
Z c
0 du exp(2Ru)

��
= Z 1

0 da e�a h#�;�ea(c) :
These formulas yield a complete solution of problem (JL)1m:
Proposition 3 The function um(�; �; c) is given by

um(�; �; c) =
r�c

2
Z 1
0 da (e��a h"�e�a;�(c) + e�a h#�;�ea(c) ) :

where the Hartman densities h"r;R and h#r;R are de�ned, via Laplace transform, by
Ik(r)
Ik(R) =

Z 1
0 exp(�k2

2 t)h"r;R(t) dt
and Kk(R)

Kk(r) = Z 1
0 exp(�k2

2 t)h#r;R(t) dt :
These formulas are still valid in the case � = 0, using equivalent expressions for
the Bessel functions (See the Appendix).
4.1.2 More results about Hartman densities
In order to understand better the Hartman densities, we desintegrate formula (4)
with respect to the law of T0.
Proposition 4 Using the notation introduced in Proposition 2, we have

uf(k; a) = Z 1
0 dt exp(�k2t

2 )Hf(t; a) ;
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where
Hf(t; a) = ap2�t3 exp(�a2

2t ) (3)E0
�
exp� Z t

0 du f(Ru)
����Rt = a

�
(9)

and (3)P0 denotes the law of the 3-dimensional Bessel process starting from 0. As
particular examples, one has, for any a > 0,

ap2�c3 exp(�
a2
2c) (3)E0

�
exp

�
��2
2
Z c
0 du exp(�2Ru)

� ����Rc = a
�
= h"�e�a;�(c) (10)�

ap2�c3 exp(�
a2
2c) (3)E0

�
exp

�
��2
2
Z c
0 du exp(2Ru)

�����Rc = a
�
= h#�;�ea(c) : (10)+

Proof : The right-hand side of (4) may be written as
Z 1
0 dt ap2�t3 exp(�a2

2t ) exp(�
k2t
2 )Ea[exp�

Z T0
0 du f(Bu))jT0 = t] :

Furthermore, using Williams' time reversal and conditioning with respect to La =supft : Rt = ag, we obtain
Ea
�
exp� Z T0

0 du f(Bu)
����T0 = t

�
= (3)E0

�
exp� Z t

0 du f(Ru)
����Rt = a

�
: 2

Now, we investigate limits in formulas (9) and (10)� as a ! 0. In particular,
we �nd that

h"�(c) def= lima!0+
1
ah"�e�a;�(c) and h#�(c) def= lima!0+

1
ah#�;�ea(c)

exist and satisfy
h"�(c) = 1p2�c3

(3)E0
�
exp

�
��2
2
Z c
0 du exp(�2Ru)

�����Rc = 0
�

(11)�
and

h#�(c) = 1p2�c3
(3)E0

�
exp

�
��2
2
Z c
0 du exp(2Ru)

�����Rc = 0
�
: (11)+

More generally, we obtain the following
Proposition 5 Using the notation of Propositions 2 and 4 , one obtains the ex-
istence of Kf(t) def= lima!0+ Hf(t; a)

a and the equality
Kf(t) = 1p2�t3

(3)E0
�
exp� Z t

0 du f(Ru)
����Rt = 0

�
:

Furthermore, this function Kf is characterized via the following Laplace transform:
� @
@a
�����a=0+ u

f(k; a) = k + Z 1
0

dtp2�t3 exp(�
k2t
2 )

�
1�p2�t3Kf(t)

�

= Z 1
0

dtp2�t3
�
1� exp(�k2t

2 ) (3)E0
�
exp� Z t

0 ds f(Rs)
����Rt = 0

��
:

12



In particular, one obtains that
Z 1
0

dtp2�t3
�
1� exp(�k2t

2 ) (3)E0
�
exp

�
��2
2
Z t
0 ds exp(�2Rs)

�����Rt = 0
��

is equal to �Kk+1(�)
Kk(�) � k = �Kk�1(�)

Kk(�) + k ; (12)�
and

Z 1
0

dtp2�t3
�
1� exp(�k2t

2 ) (3)E0
�
exp

�
��2
2
Z t
0 ds exp(2Rs)

�����Rt = 0
��

is equal to �Ik�1(�)
Ik(�) � k = �Ik+1(�)

Ik(�) + k : (12)+
Proof:
1) We divide by a the two sides of the equality

uf(k; a)� 1 = (uf(k; a)� e�ka) + (e�ka � 1) :
Then, using

e�ka = Z 1
0

dtp2�t3 a exp[�
1
2(k2t+

a2
t )] ;

we obtain
� @
@a
�����a=0+ u

f(k; a) = k+Z 1
0

dtp2�t3 exp(�
k2t
2 )

�
1� (3)E0

�
exp(� Z t

0 ds f(Rs))
����Rt = 0

��
:

We also note that k = Z 1
0

dtp2�t3
�
1 � exp(�k2t

2 )
�
, which leads to the second

form of the derivative of uf(k; a).
2) To obtain (12)�, we apply the previous result together with the recurrence
relations between Bessel functions and their derivatives (see Lebedev (1972), p.
110) 8>>><

>>>:

�Kk+1(�)
Kk(�) � k = �Kk�1(�)

Kk(�) + k
�Ik�1(�)
Ik(�) � k = �Ik+1(�)

Ik(�) + k
and 8>><

>>:
Kk+1(�) = �K 0k(�) + k

�Kk(�)
Ik�1(�) = I 0k(�) + k

� Ik(�)
:

In particular, we deduce from formulas (11)� and (12)� some analytic representa-
tion of h"� and h#� :

13



Corollary 2 One has for �; k > 0
1 + @

@k
�
�Ik+1(�)Ik(�)

�
= k Z 1

0 dt exp(�k2t
2 ) t h#�(t)

1 + @
@k
�
�Kk�1(�)
Kk(�)

�
= k Z 1

0 dt exp(�k2t
2 ) t h"�(t) :

4.1.3 On problem (JL)1b
We are now interested in the computation of ub(k; �; c), which, from formula (3),
amounts to the computation of

J�(c;m) def= Z n�(d�)
�
1� 11V (�)�c exp(�m2

2
Z V (�)
0 du exp(2�u) )

�
;

where n� is the Itô measure of positive (negative) excursions (details of this re-
duction will be given below).
Proposition 6 The following formulas hold, for � > 0 and m > 0

Z 1
0 dc exp(��2c

2 ) J+(c;m) =
�mK�+1(m)

K�(m) � �
� 1
�2 (13)+

Z 1
0 dc exp(��2c

2 ) J�(c;m) =
�mI��1(m)

I�(m) � �
� 1
�2 : (13)�

Proof: We �rst remark that using Fubini's theorem, we obtain
�2
2
Z 1
0 dc exp(��2c

2 ) J�(c;m)

= Z n�(d�)(1� exp(�m2
2
Z V (�)
0 du exp(2�u) � �2

2 V (�))) : (14)�
On the other hand, we use formulas a) and b) from Lemma 1 of Yor (1993)

E[exp�1
2(�2�+s +m2A+�s)] = exp�s

2(
mK�+1(m)
K�(m) � �)

E[exp�1
2(�2��s +m2A��s)] = exp�s

2(
mI��1(m)
I�(m) � �) ;

where
A�t = Z t

0 ds exp(2Bs) 11Bs2IR� ; ��s = Z �s
0 du 11Bu2IR� :

Then, the master multiplicative formula implies that the right-hand sides of (14)�are respectively equal to
1
2(
mK�+1(m)
K�(m) � �) ; 12(

mI��1(m)
I�(m) � �) :

14



This proves, in particular, formulas (13)�. 2
We now explain how the computation of ub(k; �; c) may be reduced to that of

J�(c;m). Indeed, from formula (3), one has ub(k; �; c) = 1=J(c; k; �) where
J(c; k; �) = Z n(d�)

�
1� 11V (�)�c exp[�1

2(�2
Z V (�)
0 du exp(2�u) + k2V (�)) ]

�
;

then, we write
exp(�k2V

2 ) = k2
2
Z 1
V dx exp(�xk2

2 )
which, plugged into the previous formula, yields

J(c; k; �) =
k2
2
Z 1
0 dx exp(�xk2

2 ) Z n(d�)
�
1� 11V (�)�c 11V (�)�x exp[��2

2
Z V (�)
0 du exp(2�u)]

�
:

Therefore, J(c; k; �) may be written in terms of J�(c; �)
J(c; k; �) = k2

2
Z 1
0 dx exp(�xk2

2 )
�
J+(c ^ x; �) + J�(c ^ x; �)

�
:

Therefore, the (JL)1b problem is solved:
Proposition 7 The function ub(k; �; c) is de�ned by

ub(k; �; c) =
�k2
2
Z 1
0 dx exp(�xk2

2 )
�
J+(c ^ x; �) + J�(c ^ x; �)

���1 ;
where J�(c; �) are given, via Laplace transform by

Z 1
0 dc exp(��2c

2 ) J+(c;m) =
�mK�+1(m)

K�(m) � �
� 1
�2Z 1

0 dc exp(��2c
2 ) J�(c;m) =

�mI��1(m)
I�(m) � �

� 1
�2 :

Let us remark that the particular case � = 0 follows from the equalities
J�(x; 0) = J+(x; 0) = 1p2�x :

15



4.1.4 A general remark
Let us consider again formulas (13�), and de�ne
J(c;m) = J+(c;m)+J�(c;m) = Z n(d�)

�
1�11V (�)�c exp[�m2

2
Z V (�)
0 du exp(2�u)]

�
:

With the help of the formula
�mK�+1(m)

K�(m) + mI��1(m)
I�(m) � 2�

��1 = I�(m)K�(m) ;
(see, e.g., bottom of p. 29 in Yor (1993) ) we obtain

Z 1
0 dc exp(��2c

2 ) J(c;m) = 1
�2I�(m)K�(m) : (15)

On the other hand (cf. Yor (1993), formula (17)), we have
�2
2
Z 1
0 dt exp(��2t

2 )E[exp(�m2
2 Agt)] = 2�I�(m)K�(m) : (16)

Therefore,
��2
2
Z 1
0 dt exp(��2t

2 )E[exp(�m2
2 Agt)]

���2
2
Z 1
0 dc exp(��2c

2 ) J(c;m)
�
= � :

The purpose of the next lines is to show (quite simply, indeed) that this identity
holds in a general setting.
Lemma 1 For any Borel function f : IR! IR+,

�2
2
Z 1
0 dt exp(��2t

2 )E[exp(�Afgt)] = � Z 1
0 dsE[exp�(Af�s + �2

2 �s)] :
This equality follows directly from excursion theory. Nevertheless, instead of giving
an excursion theoretical proof, we present a proof based on \balayage" formula
with the help of the following lemma.
Lemma 2 Let (zt; t � 0) be a positive (Ft)-predictable process and Sk an expo-
nential variable with parameter k2=2, independent of (Ft). Then,

E(zgSk ) = kE
�Z 1

0 ds exp(�k2
2 �s)z�s

�
:

Proof of lemma 2: We assume that z is bounded. Then, from the balayage
formula

E
�
zgSk jBSk j

�
= E

�Z Sk
0 d`u zu

�
= E

�Z `Sk
0 ds z�s

�

= E
�Z 1

0 ds 11Sk��s z�s
�
;

16



and it follows that
E
�
zgSk jBSk j

�
= E

�Z 1
0 ds z�s exp

�
�k2

2 �s
��

:
Since jBSk j is independent of FgSk and jBSk j law= `Sk with common exponential
distribution with parameter k, the left-hand side of the previous equality equals

E
�
zgSk

�
E
�
jBSk j

�
= E

�
zgSk

�
E(`Sk) = 1

kE
�
zgSk

�
:

The result follows. 2
Proof of lemma 1: It follows from lemma 2 by taking zt = exp�Aft . 2

Recall that from (2)
J(c; f) = Z n(d�)

�
1� 11V (�)�c exp�AfV (�)

�
:

The Laplace transform of J is given by
�2
2
Z 1
0 dc exp(��2c

2 ) J(c; f) = Z n(d�)
�
1� exp�(AfV (�) + �2

2 V (�))
�
: (17)

On the other hand, from the master multiplicative formula
Z 1
0 dsE[exp�(Af�s + �2

2 �s)] =
�Z n(d�)

�
1� exp�(AfV (�)+ �2

2 V (�))
� ��1 ; (18)

so that the comparison between (18) and (17) yields
��2
2
Z 1
0 dt exp(��2t

2 )E[exp(�Afgt)]
���2

2
Z 1
0 dc exp(��2c

2 ) J(c; f)
�
= � :

4.1.5 Separating positive and negative excursions
We now go back to the initial case of Parisian options, where we consider only
excursions above level 0.
For the reader's convenience, we recall that

Hc;d def= inffs : 11B(�)s >0(s� gs) � c or 11B(�)s <0(s� gs) � dg ;
and

H+c = Hc;1 = inffs : 11B(�)s >0(s� gs) � cg :
Proposition 1 (i) extends to the stopping time H+c :
Proposition 8 The process fBgH+c + u ; u � cg is a Brownian meander with
length c, independent of the �-�eld F+gHc .
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Our aim is to compute
u+(�; k; �; c) def= E

�
exp(�BH+c � k2

2 H+c � �2
2 AH+c )

�

which, from Proposition 8, is equal to :
u+(�; k; �; c) = u+b (k; �; c) exp(�k2c

2 )u+m(�; �; c) ;
where

u+b (k; �; c) def= E[exp�1
2(k2gH+c + �2AgH+c )]

and
u+m(�; �; c) def= E

�
exp(�BH+c � �2

2
Z H+c
gH+c

du exp(2Bu))
�
:

The corresponding (JL)1+m problem reduces to the computation of
E[exp(�pcm1 � �2c

2
Z 1
0 du exp(2pcmu))] ;

which is done in subsection 4.1.1. Thus, we are looking at the (JL)1+b problem.
Taking care to the positive (resp. negative) excursions, the proof of Proposition

1 leads us to the (F+gt )-martingales
��t zgt � 1

2
Z t
0 d`uzu ;

where (zt) is any bounded (Ft)-previsible process, and (�+t ) (resp. (��t )) is thepositive (resp. negative) part of Az�ema's martingale. We now use the (F+gt )-stopping time Hc;d, and, since �+Hc;d = 0 if Hc;d = H�d , we obtain
r�c

2 E
�
zgHc;d11H+c =Hc;d

�
= 1

2E
�Z Hc;d

0 d`uzu
�

s�d
2 E

�
zgHc;d11H�d =Hc;d

�
= 1

2E
�Z Hc;d

0 d`uzu
�
:

The usual change of time yields
E
�Z Hc;d

0 d`uzu
�
= Z 1

0 dsE
�
z�s11�+(�s)�c 11��(�s)�d

�
;

where ��(�s) is the maximum length of positive (resp. negative) excursions up to
time �s.We now apply the above computation to zu = exp(�Afu).The multiplicative master formula implies that

E
�
z�s11�+(�s)�c 11��(�s)�d

�
= exp(�sK(c; d; f)) ;
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where
K(c; d; f) def= Z n(d�)

�
1� 11V +(�)�c ; V �(�)�d exp(�AfV (�))

�

and V + (resp. V �) is the lifetime for positive (resp. negative) excursions. We
split n into n+ and n�; thus,
K(c; d; f) = Z n+(d�)

�
1�11V (�)�c exp(�AfV (�))

�
+Z n�(d�)

�
1�11V (�)�d exp(�AfV (�))

�
:

It follows that
E(11H+c =Hc;d exp(�AfgHc;d )) = 1p2�cK(c; d; f)
E(11H�d =Hc;d exp(�AfgHc;d )) = 1p2�dK(c; d; f) ;

so, adding the members of these equalities, we get
E(exp(�AfgHc;d ) ) = 1

K(c; d; f)
� 1p2�c +

1p2�d
�
:

It remains to observe that
K(c; d; f) = J+(c; f) + J�(d; f) :

In particular, the value of u+b is obtained by choosing f(x) = 1
2(k2 + �2 exp(2x))

and letting d!1.
4.2 On problem (JL)2
We return to the general case of a Brownian motion with drift equal to � ; we
recall that here � = T�a;b. Let us denote m = exp(�a) and M = exp b, and
assume that m < M . We introduce the stopping times for the Bessel process
T� = infft � 0 jR(�)t = �g and we denote T � = Tm ^ TM .

From the representation (6), and from (7), we deduce that, in this case,
(�; expB(�)� ; A(�)� ) (law)= (C(�)T � ; R(�)T � ; T �) :

The strong Markov property and the following proposition (see Revuz-Yor, chap.
XI, 1.22 p 433 for a proof) will lead us to the solution.
Proposition 9 Let � > 0 and T be an (Rs)-stopping time such that E(0)� (T �) <1
for any � > 0. Then, for each �; � � 0, and for each (RT+)-measurable random
variable Y � 0,

E(�)� [Y ( �RT )
� exp�k2

2 CT ] = E(�)� [Y ( �RT )
�] ; (19)

where � = p�2 + k2.
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The strong Markov property enables us to compute
E(�)� [exp(��2

2 T �) ; RT � = m]
using the Laplace transforms of Tm and TM which are obtained from (8), namely,

E(�)� [exp(��2
2 T �) ; RT � = m] = (m� )� I�(M�)K�(��)� I�(��)K�(M�)

I�(M�)K�(m�)� I�(m�)K�(M�) :

In the same way, we obtain E(�)� [exp(��2
2 T �) ; RT � = M ] by interverting the pa-

rameters m and M in the right-hand side. Then, from (19) (see also Pitman-Yor
(1980))
� �
m
�� E(�)� [exp(�k2

2 CT ���2
2 T �) ; RT � = m] =

� �
m
��E(�)� [exp(��2

2 T �) ; RT � = m] ;
which characterizes the Laplace transform of the joint law of (C(�)T � ; R(�)T � ; T �) and,since
E0
�
exp(�k2

2 ��
�2
2 A(�)� ) ;B(�)� = �a

�
= E(�)1 [exp(�k2

2 CT � � �2
2 T �) ; RT � = e�a] ;

we obtain
Proposition 10 In the case � = T�a;b, when exp(�a) < exp b, the joint law of
(�; expB(�)� ; A(�)� ) is given by

E0
�
exp(�k2

2 ��
�2
2 A(�)� ) ;B(�)� = �a

�

= exp(��a) I�(eb�)K�(�)� I�(�)K�(eb�)
I�(eb�)K�(e�a�)� I�(e�a�)K�(eb�) ;

where � = p�2 + k2, and analogous formula for B(�)� = b.
These formulas are still valid in the case � = 0, using equivalent expressions for
the Bessel functions (See the Appendix).

5 A solution of problem (V )
5.1 The joint law of (B(�)t ; A(�)t )
Thanks to formula (6), we obtain

v(�)(�; a; b; k) = E[Z 1
0

du
(R(�)u )2 exp(��C(�)u ) (aR(�)u + bu� k)+] :
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Next, we use the absolute continuity relationship between the laws of di�erent
Bessel processes, i.e.,

P (�)� jRt =
�Rt
�
�� exp(��2

2
Z t
0
ds
R2s ) � P

(0)� jRt ;
which was already recalled in Proposition 9, and where P (�)� denotes the law (on
the canonical space) of the Bessel process of index �, starting at �. Thus if we
de�ne � = p2�+ �2, we obtain

v(�)(�; a; b; k) = Z 1
0 duE(�)1

�(aRu + bu� k)+
R2+���u

�
;

In order to compute this quantity, we need to know
E(�)1 (11Ru > q

R2mu ) = Z 1
q

d�
u�2m ��+1 exp(�1 + �2

2u ) I�(�u) ; (20)

where q = (k � bu)+
a for a > 0. We have no closed form formulas for these integrals

except in the Asian case, i.e., for a = 0, which simpli�es the computation since
q = 0. In that case, we have the alternative expression to (20)

E(�)1 ( 1
R2mu ) = 1

�(m)
Z 1=2u
0 dv e�vvm�1 (1� 2uv)��m (21)

= 1
�(m)

Z 1
0

dw
(2u)m exp(� w

2u)wm�1(1� w)��m

= �(1 + � �m)
�(1 + �) (2u)m�(m; 1 + �;� 1

2u)
where �(�; 
; z) denotes the hypergeometric function with parameters � and 

(see Lebedev (1972), p. 266); formula (21) is found in Yor (1993), p. 28, and
the identity between (20) and (21) for q = 0, follows from exercise 12, p. 278 in
Lebedev (1972) together with the relation �(�; 
; z) = ez�(
 � �; 
;�z).

In the case a > 0; b > 0, using obvious changes of variables, we obtain
v(�)(�; a; b; k) = a Z 1

0 du�(�; u) + b Z 1
0 du u�(� � 1; u)� k Z 1

0 du�(� � 1; u) ;

where
8>>>>><
>>>>>:

�(�; u) = exp(� 1
2u)

Z 1
0 d� �� exp(� �2

2u)I�(
�
u) foru > k

b
= exp(� 1

2u)
Z 1
k�buau d� �� exp(� �2

2u)I�(
�
u) foru < k

b :
In the case u > k

b , �(�; u) can be evaluated from (21), in the other case, we are
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lead to use the incomplete Gamma function �(x; �) = Z 1
x dt e�tt��1 and the series

expansion of the Bessel function I�.In the general case the integral may be evaluated, for some numerical values of
the parameters, by computer system (e.g., Mapple or Mathematica).
5.2 Further research
To illustrate the 
exibility of this method, we remark that it also allows to obtain
the price of spread Asian options, or \Asian chooser" options, whose pay-o� is
(aA(�)t + ~a ~A(~�)t ) where the two Asian payments are related to di�erent underlying
assets, with independent Brownian motions. In fact, our method enables to obtain
the joint Laplace transform

v(�;~�)(�; ~�; a; ~a; k) = E
�Z 1

0 dt Z 1
0 ds e��te�~�s

�
aA(�)t + ~a ~A(~�)s � k

�+

= Z 1
0 du Z 1

0 dv E(�)1
� 1
R2+���u

�
E(~�)1

� 1
R2+~��~�v

�
(au+ ~av � k)+ ;

hence, this double integral can be evaluated (at least, in principle ...) thanks to
formula (21).

6 Conclusion
The probabilistic tools used in this paper (Bessel processes and Excursions the-
ory) have been intensively studied by mathematicians for at least thirty years.
Although fairly new in �nance, their power appears in various applications such
as exotic options pricing and interest rate derivative securities in particular in the
Cox-Ingersoll-Ross framework.

The �nal numerical results associated with the formulas derived throughout
the paper depend on the inversion of Laplace transforms. This problem has been
solved in Geman and Eydeland (1995) for Asian options, in Geman-Yor (1995) for
double barrier options. An approximation has been proposed for Parisian options
in Cornwall et al. (1995).

As illustrated brie
y at the end of section 5, the versatility of di�usion and
excursion theories makes it possible to consider a much larger class of options; to
illustrate further, our method could be extended to more general stopping times
than Hc;d, e.g.,

H� = infft : �+t � �+(`t) or ��t � ��(`t)g ;
where �t denotes the Az�ema martingale (related with t� gt), (`t) is the local timeof the Brownian motion at 0, and �� are Borel functions, but this is perhaps
getting a little too far ahead from currently traded options.

22



References
Cornwall, M.J., G.W. Kentwell, M. Chesney, M. Jeanblanc-Picqu�e, and M. Yor
(1995) \Parisian Barrier Options: a discussion," To appear in Risk magazine. 1996
Chesney, M., M. Jeanblanc-Picqu�e, and M. Yor (1995) \Brownian Excursions and
Parisian Barrier Options," To appear in Adv. Appl. Proba. March 1997.
Chung, K.L. (1976) \Excursions in Brownian motion," Ark. f�ur Math., 14, p.
155-177.
Dellacherie, C., B. Maisonneuve, and P.A. Meyer (1992) Probabilit�es et Potentiel,
Processus de Markov (�n), Compl�ements de calcul stochastique. Hermann. Paris.
Geman, H., and A. Eydeland (1995) \Domino E�ect : Inverting the Laplace Trans-
form," Risk, March.
Geman, H., and M. Yor (1993) \Bessel Processes, Asian Options and Perpetu-
ities," Mathematical Finance, 3, p. 349-375.
Geman, H., and M. Yor (1995) \Pricing and hedging Double-barrier Options: a
Probabilistic Approach,"Preprint, submitted.
Goldman, M., H. Sosin, and M. Gatto (1979) \Path dependent Options : Buy at
the low, sell at the high," Journal of Finance, 34, p.111-127.
Hartman, P. (1976) \Completely monotone families of solutions of n-th order linear
di�erential equations and in�nitely divisible distributions," Ann. Scuola Norm.
Sup. Pisa IV, Vol III, p. 267-287.
He, H., W. Keirstead, and J. Rebholtz (1995) \Double lookback options," Preprint.
Kemna, A.G.Z., and A.C.F. Vorst (1992) \A pricing method for options based on
average asset values," Journal of Banking and Finance, 14, p. 373-387.
Kunimoto, N., and M. Ikeda (1992)\ Pricing Options with curved Boundaries,"
Mathematical Finance, 4, p. 275-298.
Lebedev, N. (1972) Special Functions and their Applications. Dover Publications.
New-York.
Merton, R. (1973) \Theory of Rational Option Pricing,"Bell Journal of Economics
and Management Science, 4, p. 141-183.
Pitman, J.W., and M. Yor (1980) \Inversion du temps et processus de Bessel,"
Unpublished manuscript.
Pitman, J.W., and M. Yor (1981) \Bessel processes and in�nitely divisible laws,"
In D. Williams (ed.). Stochastic Integrals. Durham Proceedings. Lecture Notes in
Maths. Vol. 851. Springer. p. 285-369.
Reiner, E., and M. Rubinstein (1991) \Breaking down the Barriers," Risk Septem-
ber, p.28-35.
Revuz, D., and M. Yor (1994) Continuous Martingales and Brownian Motion.
Second edition. Springer Verlag. Berlin.
Rogers, C., and Z. Shi (1995) \ The value of an Asian Option," Journal of Applied
Prob., 32, p. 1077-1088.
Yor, M. (1980) \Loi de l'indice du lacet Brownien, et distribution de Hartman-
Watson," Zeitschrift f�ur Wahr., 53, p. 71-95.

23



Yor, M. (1993) \ From planar Brownian windings to Asian options," Insurance
Mathematics and Economics, 13, p. 23-34.

24



Appendix: some de�nitions
We recall here some de�nitions and results about Bessel Processes, Brownian me-
ander and Excursion theory. For a precise study of Bessel processes and Brownian
Excursions, the reader can refer to chapter XI and chapter XII of Revuz-Yor
(1994); some results about the Brownian meander are given in exercise 3.8 chap-
ter XII of that book. The seminal paper of Chung (1976) contains a number
results about the Brownian meander. Most of the results about slow �ltrations
and \balayage" formulas are found in Dellacherie, Maisonneuve and Meyer (1992).
A.1 Bessel processes
A Bessel Process with index � � 0 (7)is a di�usion process which takes values in
IR+ and has in�nitesimal generator

1
2
d2
dx2 +

2� + 1
2x

d
dx :

The number d = 2(� + 1) is called the dimension of the Bessel process.
The Bessel process with dimension d starting at � satis�es the equation

Rt = � +Bt + d� 1
2

Z t
0

1
Rs ds ;

where Bt is a Brownian motion. On the canonical space 
 = C(IR+; IR+), wedenote by R the canonical map Rt(!) = !(t), by Rt = �(Rs; s � t) the canon-
ical �ltration and by P (�)� (or (d)P�) the law of the Bessel process of index � (of
dimension d), starting at �, i.e., such that P (�)� (R0 = �) = 1. The Bessel process
of index � has a transition density de�ned by

p(�)t (�; �) = �
t
� �
�
�� exp(��2 + �2

2t )I�(��t ) ;
where I� is the usual modi�ed Bessel function with index �.

Both functions I� and K� satisfy the Bessel di�erential equation
x2u00(x) + xu0(x)� (x2 + �2)u(x) = 0

and are given by :
I�(z) =

�z
2
�� 1X

n=0
z2n

22n n! �(� + n+ 1) ; K�(z) = �(I��(z)� I�(z))
2 sin �� :

7In this paper, when we consider a negative index �, the corresponding Bessel process is onlytaken care of up to its �rst hitting time of zero. For simplicity, we do not discuss this case here.
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In particular, I�(z) z!0� 1
�(� + 1)

�z
2
�� and K�(z) z!0� �(�)

2
�z
2
��� .

(More results on I� and K� are found in Lebedev (1972).) For each pair
(�; �) 2 IR+ � IR, and for each t > 0, one has

E(�)� [exp��2
2
Z t
0
ds
R2s jRt = �] = I�(��t )

I�(��t ) ;

where � = p�2 + �2.
A.2 Some �-�elds associated with random times
Let us denote by (Ft; t � 0) the natural �ltration of the Brownian motion (Bt; t �0).
If L is an almost surely strictly positive random variable, we de�ne the �-�eld F�Lof the past up to L as the �-algebra generated by the variables �L, where � is a
predictable process.
Let t be given. The excursion which straddles t evolves between its left extremity
gt = supfs � t : Bs = 0g and its right extremity dt = inffs � t : Bs = 0g. Recall
that gt is not a Ft-stopping time. We denote by (F+gt ; t � 0) the extended \slow
Brownian �ltration" (F+gt = F�gt _ (sgn(Bt); t � 0), a sub�ltration of Ft.
A.3 The Brownian meander
We denote by g = g1 = supfs � 1 : Bs = 0g the left extremity of the excursion
which straddles time 1. The Brownian meander is de�ned as the process

mu = 1p1� g jBg + u(1� g)j ; u � 1 :
The process m is a Brownian scaled part of the (normalized) Brownian excursion
which straddles time 1. The process m is independent of F�g .Using Brownian scaling, we remark that for �xed time t, the process

m(t)u = 1pt� gt jBgt + u(t� gt)j ; u � 1
is a Brownian meander independent of the �-�eld F+gt ; in particular, the law ofm(t)
does not depend on t. For each (F+gt )-stopping time � , in particular for � = Hc,m(�) is a meander. Remark that the de�nition of Hc implies that Hc � gHc = c.
The Az�ema martingale �t def= sgn(Bt)

r�
2 (t� gt) is the projection of Bt on the

�ltration F+gt . Let `t be the local time at 0 of the Brownian motion. The projectionof jBtj � `t on the �ltration (F+gt ), and, in fact, also on the �ltration (F�gt ) is equalto j�tj � `t.
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A.4 The Itô measure of Brownian excursions
Let (Bt; t � 0) be a Brownian motion and (�s) be the inverse of the local time (`t)at level 0. The set f[s�0]�s�(!); �s(!)[ g is (almost surely) equal to the complementof the zero set fu : Bu(!) = 0g. The excursion process (es; s � 0) is de�ned as

es(!)(t) = 11ft � �s � �s�gB�s� + t ; t � 0:
This is a path-valued process e : IR+ ! 
�, where


� = f� : IR+ ! IR : 9V (�) <1; with �(V (�) + t) = 0; 8t � 0
�(u) 6= 0; 8 0 < u < V (�); �(0) = 0; � is continuous g :

Hence, V (�) is the lifetime of �.
The excursion process is a Poisson Point Process, and n(�) is de�ned as the

intensity of the Poisson process
N�t def= X

s�t 11es2� ;

i.e., the positive real 
 such that N�t � t
 is an (F�t)-martingale.The Itô-Williams' description of the measure n is
n(d�) = Z 1

0 nV (dv) 12(�v+ +�v�) (d�)

where nV (dv) = dvp2�v3 is the law of the lifetime V under n and �v+ (resp. �v�) is
the law of the Bessel Bridge (resp. the law of its opposite) with dimension 3 and
length v.
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