
Stochastic Calculus of Variations for Martingales

N. PRIVAULT

Equipe d'Analyse et Probabilit�es, Universit�e d'Evry-Val d'Essonne

Boulevard des Coquibus, 91025 Evry Cedex, France

The framework of the stochastic calculus of variations on the standard Wiener

and Poisson space is extended to certain martingales, consistently with other ap-

proaches. The method relies on changes of times for the gradient operators. We

study the transfer of the structures of stochastic analysis induced by these time-

changed operators, in particular the chaotic decompositions.

Key words. Stochastic Calculus of Variations, Chaotic Calculus,

Martingales.

Mathematics Subject Classi�cation. 60G44, 60H05, 60H07.

1 Introduction

The stochastic calculus of variations for the Wiener process, initiated in Malli-

avin

12

, aims to obtain conditions for the regularity of the density of Wiener

functionals given by the values of di�usion processes. It also developed as an

extension to anticipating processes of the Itô calculus, by means of the Skoro-

hod integral, cf. Nualart-Pardoux

14

,

�

Ust�unel

25

. In the case of point processes

we can refer for instance to Bass-Cranston

1

, Bichteler et al.

2

, Bismut

3

, for the

absolute continuity of functionals of a Poisson measure, and to Carlen-Pardoux

5

, Nualart-Vives

15

, Privault

21

for the anticipative stochastic calculus for the

standard Poisson process on the positive real line. The chaotic decompositions

and the chaotic representation property played a central role in each of these

approaches. The aim of this work is to extend those constructions to the case

of martingales with a continuous part and a �nite number of jump sizes which

can be obtained by time changes from independent Wiener and Poisson pro-

cesses. This approach is consistent with previous constructions and allows to

unify them.

2 Stochastic calculus of variations on the standard Wiener and

Poisson spaces

The aim of this section is to review some facts and de�nitions that will serve

as starting points for the next sections. Let (B

t

)

t2IR

+

and (N

t

)

t2IR

+

be not

1



necessarily independent Wiener and Poisson processes on the real line, de�ned

on a probability space (
;F ; P ), with associated �ltrations

�

F

B

t

�

and (F

~

N

t

),

F = F

B

1

_F

~

N

1

, F

B

= F

B

1

and F

~

N

= F

~

N

1

, where

~

N

t

= N

t

�t is the compensated

Poisson process. Let (h

k

)

k2IN

be an orthonormal Hilbert basis of L

2

(IR

+

), and

let (e

k

)

k2IN

be the canonical basis of l

2

(IN ). We can de�ne two collections

of independent identically distributed Gaussian, resp. exponential random

variables by �

k

=

R

1

0

h

k

(t)dB

t

and �

k

= T

k+1

� T

k

, k 2 IN , where T

k

=

infft � 0 : N

t

= kg, k � 1, is the kth jump time of the Poisson process

(N

t

)

t2IR

+

, and T

0

= 0. Let P denote the set of functionals of the form

F = f(�

0

; : : : ; �

n

; �

0

; : : : ; �

n

)

where f 2 C

1

b

(IR

2n+2

), n 2 IN . We know that P is dense in L

p

(
;F ; P ),

p � 1. Gradient operators

@

B

; @

~

N

: L

2

(
)! L

2

(
) 
 l

2

(IN )

are de�ned as

@

B

F =

k=n

X

k=0

e

k

@

k

f(�

0

; : : : ; �

n

; �

0

; : : : ; �

n

);

@

~

N

F =

k=n

X

k=0

e

k

@

n+1+k

f(�

0

; : : : ; �

n

; �

0

; : : : ; �

n

); F 2 P:

Such gradient operators can be expressed by an in�nitesimal perturbation of

the trajectories of (B

t

)

t2IR

+

and (N

t

)

t2IR

+

. Let F 2 P be F

B

-measurable, i.e.

F is a Wiener functional. If we represent by ! = (�

k

)

k2IN

a trajectory of the

Wiener process, then

(@

B

F; h)

l

2

(IN)

=

d

d"

F (! + "h) j

"=0

; h 2 l

2

(IN ); F 2 P:

On the other hand, if ! = (�

k

)

k2IN

denotes the sequence of interjump times of

the Poisson process and if F 2 P is F

~

N

-measurable, then

(@

~

N

F; h)

l

2

(IN)

=

d

d"

F (! + "h) j

"=0

:

Let

U =

(

k=n

X

k=0

u

k

e

k

: u

1

; : : : ; u

n

2 P; n 2 IN

)

;

2



and

U

~

N

=

(

1

X

k=0

u

k

e

k

2 U : u

k

= 0 on f�

k

= 0g; k 2 IN

)

:

The adjoint operators @

B

�

, @

~

N

�

of @

B

and @

~

N

are closable operators

@

B

�

; @

~

N

�

: L

2

(
) 
 l

2

(IN )! L

2

(
)

such that

E[F@

B

�

(u)] = E[(u; @

B

F )

l

2

(IN)

]; u 2 U ; F 2 P;

E[F@

~

N

�

(u)] = E[(u; @

~

N

F )

l

2

(IN)

]; u 2 U

~

N

; F 2 P:

At this stage it can be noted that the composition @

B

�

@

B

gives the Ornstein-

Uhlenbeck operator on the Wiener space, cf. Watanabe

26

, and that the gra-

dient @

B

can be used to state a great number of results in Malliavin calculus

that involve the Ornstein-Uhlenbeck operator and the norm of the gradient on

the Wiener space. However this construction does not take into account an

important property of the Gaussian measure, namely the fact that the adjoint

of the gradient on Wiener space can be an extension of the Wiener stochastic

integral, cf. Gaveau-Trauber

9

, which can not be the case for @

B

�

. An analog

property exists on the Poisson space, and can not be veri�ed by @

~

N

�

as it acts

on discrete-time processes. De�ne two operators

i

B

; i

~

N

: l

2

(IN )! L

2

(IR

+

)

by i

B

(e

k

) = h

k

and i

~

N

(e

k

) = �1

]T

k

;T

k+1

]

, k 2 IN , and let

D

B

= i

B

� @

B

; D

~

N

= i

~

N

� @

~

N

:

Let j

B

and j

~

N

be the adjoint operators of i

B

and i

~

N

, a.s. de�ned as

(i

B

(u); v)

L

2

(IR

+

)

= (u; j

B

(v))

l

2

(IN)

;

(i

~

N

(u); v)

L

2

(IR

+

)

= (u; j

~

N

(v))

l

2

(IN)

;

u 2 L

2

(IR

+

); v 2 l

2

(IN ). An explicit description of j

B

and j

~

N

is given as

j

B

k

(u) =

Z

1

0

u(t)h

k

(t)dt; j

~

N

k

(u) =

Z

T

k+1

T

k

u(t)dt; k 2 IN:

3



The introduction of i

B

and j

B

gives another interpretation of D

B

as a deriva-

tive. For F 2 P and h 2 L

2

(IR

+

), with ! = (�

k

)

k2IN

,

(D

B

F; h)

L

2

(IR

+

)

= (@

B

F; j

B

(h))

l

2

(IN)

=

d

d"

F (! + "j

B

(h)) j

"=0

=

d

d"

F

��

Z

1

0

(h

k

(t) + "h(t))dB

t

�

k2IN

�

j

"=0

=

d

d"

F

�

B

�

+ "

Z

�

0

h

s

ds

�

j

"=0

:

Let

V = i

B

(U) =

(

k=n

X

k=0

u

k

h

k

: u

0

; : : : ; u

n

2 P; n 2 IN

)

;

and �

B

= @

B

�

� j

B

, �

~

N

= @

~

N

�

� j

~

N

. We have j

~

N

(V) � U

~

N

, hence �

~

N

is de�ned

on V.

Proposition 1 If u 2 V, then for X = B;

~

N ,

�

X

(u) =

Z

1

0

u

t

dX

t

�

Z

1

0

D

X

t

u

t

dt:

Proof. cf. Nualart-Pardoux

14

, Privault

21

.

�

The adjoint operators �

B

= @

B

�

� j

B

and �

~

N

= @

~

N

�

� j

~

N

of D

B

and D

~

N

extend

respectively the Wiener and compensated Poisson stochastic integrals on the

predictable square-integrable processes:

Proposition 2 Let u 2 L

2

(
)
 L

2

(IR

+

). If u is (F

X

t

)-predictable, then

�

X

(u) =

Z

1

0

u(t)dX

t

;

where X = B;

~

N .

Proof. cf. Carlen-Pardoux

5

, Nualart-Pardoux

14

.

�

Remark. The operators j

B

and j

~

N

can also be used to give a uni�ed formula-

tion of the anticipating Girsanov theorems on the Wiener and Poisson spaces.

Let u : 
! L

2

(IR

+

) be F

B

-measurable and satisfy the hypothesis of Th. 6.4.

of Kusuoka

11

, and denote again by ! = (�

k

)

k2IN

a trajectory of the Wiener

4



process. Then for any F

B

-measurable and bounded f : 
! IR,

E[f ] = E

�

f

�

! + j

B

(u)

�

�det

2

�

I

l

2

(IN)

+ @

B

j

B

(u)

�

exp

�

��

B

(u)�

1

2

j u j

2

L

2

(IR

+

)

��

;

where det

2

is the Carleman-Fredholm determinant. If ! = (�

k

)

k2IN

denotes a

discrete interjump times trajectory of the Poisson process, then for any F

~

N

-

measurable and bounded f : 
! IR,

E[f ] = E

h

f

�

! + j

~

N

(u)

�

det

2

�

I

l

2

(IN)

+ @

~

N

j

~

N

(u)

�

exp

�

��

~

N

(u)

�i

;

provided that j

~

N

(u) is F

N

-measurable and satis�es the hypothesis of Th. 1 in

Privault

19

.

�

If Y is either a compensated Poisson or Wiener process, de�ne for f

p

2

L

2

(IR

+

)

�p

symmetric and square-integrable

I

Y

p

(f

p

) = p!

Z

1

0

Z

t

�

p

0

� � �

Z

t

�

2

0

f

p

(t

1

; : : : ; t

p

)dY (t

1

) � � �dY (t

p

):

If Y = B, such integrals can be expressed with the Hermite polynomials

(H

n

)

n2IN

as

I

B

n

(h

�n

1

k

1

� � � � � h

�n

d

k

d

) =

p

n

1

! � � �n

d

!H

n

1

(�

k

1

) � � �H

n

d

(�

k

d

);

n

1

+ � � �+n

d

= n, k

1

6= � � � 6= k

d

, where \�" denotes the symmetric tensor prod-

uct. In case Y =

~

N , the Charlier polynomials replace the Hermite polynomials,

cf. Surgailis

24

. An annihilation operator r

Y

: L

2

(
) ! L

2

(
) 
 L

2

(IR

+

) is

de�ned as

r

Y

I

Y

n

(f

n

) = nI

Y

n�1

(f

n

); n � 1;

and r

Y

c = 0 if c 2 IR. A creation operator r

Y

�

: L

2

(
)
L

2

(IR

+

)! L

2

(
) is

de�ned as

r

Y

�

I

Y

n

(f

n+1

) = I

Y

n+1

(

^

f

n+1

); f

n+1

2 L

2

(IR

+

)

�n


 L

2

(IR

+

);

where

^

f

n+1

is the symmetrization of the function f

n+1

in its n + 1 variables.

The operator L

Y

= �

Y

D

Y

is a number operator, i.e.

L

Y

I

Y

n

(f

n

) = nI

Y

n

(f

n

); n 2 IN; f

n

2 L

2

(IR

+

)

�n

:

5



Proposition 3 The operator r

Y

�

coincides with the stochastic integral with

respect to Y on the predictable square-integrable processes.

Proof. In the Gaussian case, D

B

= r

B

, and this result is identical to Prop. 2.

In the Poisson case, this can be found in Nualart-Vives

15

.

�

A consequence of Prop. 2 and 3 is the following formula, cf. Privault

21

. For

F 2 Dom(D

~

N

) \Dom(r

~

N

),

E[D

~

N

t

F j F

~

N

t

�

] = E[r

~

N

t

F j F

~

N

t

�

]; dt
 dP a:e:

For Y = B;

~

N , the space L

2

(
;F

Y

1

) admits the orthogonal decomposition

L

2

(
;F

Y

1

) =

M

n�0

C

n

;

where C

n

= fI

Y

n

(f

n

) : f

n

2 L

2

(IR

+

)

�n

g is the nth order chaos, generated

by the multiple stochastic integral I

Y

n

. If Y = B, resp. Y =

~

N , we refer

to this decomposition as the Wiener-Hermite, resp. Poisson-Charlier chaotic

decomposition. We now mention a transfer principle which allows to state on

the Poisson space most results of the Malliavin calculus, using the operators

D

~

N

and �

~

N

. Assume until the end of this section that (B

t

)

t2IR

+

and (N

t

)

t2IR

+

are not independent, but linked by the following relation:

�

k

=

�

2

2k

+ �

2

2k+1

2

; k 2 IN; (1)

which does not change anything to the fact that (N

t

)

t2IR

+

is a Poisson process,

since the half sum of the squares of two Gaussian normal random variables

is exponentially distributed. Then the following properties are satis�ed, cf.

Privault

20

.

Proposition 4 We have for F 2 P

�

B

D

B

F = 2�

~

N

D

~

N

F; and j D

B

F j

2

L

2

(IR

+

)

= 2 j D

~

N

F j

2

L

2

(IR

+

)

; a:s:

As a consequence, any result that uses the norm of D

B

and the operator �

B

D

B

can be stated on the Poisson space, using the norm of D

~

N

and �

~

N

D

~

N

.

Let us now write the Wiener-Hermite chaotic decomposition of F 2 P, F

measurable with respect to F

~

N

(i.e. F is a Poisson functional):

F = E[F ] +

X

n�1

I

B

n

(f

n

):

6



The Laguerre polynomials are de�ned as

L

n

(x) =

k=n

X

k=0

C

k

n

(�x)

k

k!

; x 2 IR

+

;

they are orthogonal for the exponential density.

Proposition 5 The space of Poisson functionals in the 2nth Wiener chaos

C

2n

is the completion of the vector space generated by

(

i=d

Y

i=1

I

B

2n

i

 

k=n

i

X

k=0

�

n

i

k

�

h

�2k

2k

i

� h

�2n

i

�2k

2k

i

+1

!

: n

1

+ � � �+ n

d

=

n

2

; k

1

6= � � � 6= k

d

; d 2 IN

o

;

and

C

2n+1

\

L

2

�


;F

~

N

�

= f0g; n 2 IN:

For even n, if I

B

n

(f

n

) is a Poisson functional it can be represented in terms of

multidimensional Laguerre polynomials as the linear combination

I

B

n

(f

n

) =

X

n

1

+ � � �+ n

p

= n

k

1

6= � � � 6= k

p

g(k

1

; : : : ; k

p

)L

n

1

(�

k

1

) � � �L

n

p

(�

k

p

):

Proof. The proof relies on the following relation between the Laguerre and

Hermite polynomials:

n!L

n

�

x

2

+ y

2

2

�

=

(�1)

n

2

n

k=n

X

k=0

n!

k!(n� k)!

p

(2k)!(2n� 2k)!H

2k

(x)H

2n�2k

(y);

cf. Erd�elyi

8

, and the fact that the set fL

n

(�

k

) : k; n 2 INg is total in

L

2

(
;F).

�

A consequence of this proposition is that the projection on the 2nth order

Wiener chaos of a Poisson functional can be represented as a discrete stochastic

integral, de�ned below.

De�nition 1 We de�ne J

n

: l

2

(IN )

�n

! L

2

�


;F

~

N

�

as a linear functional

with

J

n

(e

�n

1

k

1

� � � � � e

�n

p

k

p

) = n

1

! � � �n

p

!L

n

1

(�

k

1

) � � �L

n

p

(�

k

p

); (2)

n

1

+ � � �+ n

p

= n, k

1

6= � � � 6= k

p

.

7



The maps J

n

: l

2

(IN )

�n

! L

2

(
;F

~

N

; P ) are linear, bounded, and J

n

(g

n

) is

orthogonal to J

m

(g

m

) for n 6= m. Moreover, each square-integrable Poisson

functional has the decomposition

F =

X

n2IN

J

n

(g

n

); g

k

2 l

2

(IN )

�k

; k 2 IN; (3)

referred to as the Poisson-Laguerre chaotic decomposition. On the Wiener

space, it is known that the notions of derivation de�ned by in�nitesimal per-

turbations and by annihilation coincide, i.e. D

B

= r

B

and �

B

= r

B

�

. The sit-

uation is di�erent on the Poisson space, and more generally for point processes.

The operators D

~

N

and �

~

N

are related to the Wiener-Hermite decomposition

by the isometry property Prop. 4, and to the Poisson-Laguerre decomposition

by the relations, cf. Privault

21

:

(@

~

N

J

n

(g

n

); e

i

)

l

2

(IN)

=

k=n�1

X

k=0

n!

k!

J

k

(g

n

(�; i : : : ; i)); g

n

2 l

2

(IN )

�n

;

@

~

N

�

J

n

(g

n+1

) = J

n+1

(ĝ

n+1

)� nJ

n

(ĝ

1

n+1

); g

n+1

2 l

2

(IN )

�n


 l

2

(IN )

where ĝ denotes the symmetrization of g and g

1

n+1

is the contraction de�ned

as

g

1

n+1

(k

1

; : : : ; k

n

) = ĝ

n+1

(k

1

; : : : ; k

n

; k

n

); k

1

; : : : ; k

n

:

3 A generalization to certain martingales by change of time

Consider a real square-integrable martingale on a �ltered probability space

(
; (F

t

);F

1

; P ) with a continuous part X

0

and independent compensated

sums X

1

; : : : ; X

d

of jumps of sizes z

1

; : : : ; z

d

2 IR respectively:

M = X

0

+

k=d

X

k=1

X

k

� �

k

:

Let �

0

=< X

0

> denote the quadratic variation of X

0

. Assume also that

(F

t

) is generated by M , that the processes X

0

; X

1

; : : : ; X

d

are independent,

and that lim

t!1

�

k

(t) = 1, k = 0; : : : ; d, P -a.s. We know, cf. Ikeda-

Watanabe

10

, that there is a Brownian motion B and N

1

; : : : ; N

d

indepen-

dent standard Poisson processes such that X

0

= B

�

0

, X

k

= z

k

N

k

�

k

, k =

1; : : : ; d. Let us call (F

0

t

), (F

1

t

); : : : ; (F

d

t

) the �ltrations generated by (B

t

)

t2IR

+

,

8



(N

1

t

)

t2IR

+

; : : : ; (N

d

t

)

t2IR

+

. Denote by �

�1

0

; � � � ; �

�1

d

the right-continuous in-

verses of �

0

; : : : ; �

d

:

�

�1

k

(t) = inffs � 0 : �

k

(s) > tg; k = 0; : : : ; d:

We make the following hypothesis:

(H1) The processes �

�1

0

; : : : ; �

�1

d

are respectively (F

0

t

); : : : ; (F

d

t

)-adapted.

(H2) The trajectories of �

�1

0

; : : : ; �

�1

d

are continuous and strictly increasing.

Two consequences of those hypothesis are stated in the lemma below.

Lemma 1 We have F

1

= F

0

1

_ � � � _ F

d

1

, and

F

�

�1

k

(t)

� F

0

1

_ � � � _ F

k�1

1

_ F

k

t

_ F

k+1

1

_ � � � _ F

d

1

; k = 0; : : : ; d:

Proof. It is su�cient to prove this result for d = 0. In this case, M = B

�

0

implies F

t

� F

0

�

0

(t)

since (F

t

) is generated by M , and F

1

= F

0

1

. We also

have F

�

�1

0

(t)

� F

0

�

0

(�

�1

0

(t))

. If A 2 F

0

�

0

(�

�1

0

(t))

, then A =

S

s2Q

A \ f�

�1

0

(t) �

s � �

�1

0

(u)g, u > t. Hence A 2 F

0

t

by right-continuity of the �ltration (F

0

t

).

�

We de�ne an extension of the notion of Cameron-Martin space as

H =

(

u : IR

+

! IR

d+1

measurable : j u j

2

H

=

k=d

X

k=0

Z

1

0

u

2

k

(t)d�

k

(t) <1

)

;

and denote by H its equivalence classes for j � j

H

. Similarly, let

L

2

(M ) =

n

u : 
� IR

+

! IR

d+1

measurable : E[j u j

2

H

] <1

o

;

and denote by L

2

(M ) the equivalence classes of L

2

(M ). No adaptedness re-

quirement is made on the elements of L

2

(M ). We now turn to the de�nition

of the gradient by change of time. If X is a point process with jumps of size

z 2 IR and compensator �, written as X = N

�

, de�ne i

X��

: l

2

(IN )! L

2

(IR

+

)

as

i

X��

t

(u) = zi

~

N

�(t)

(u) t 2 IR

+

:

If X is a continuous martingale with quadratic variation �, written as X = B

�

,

let

i

X

t

(u) = i

B

�(t)

(u); t 2 IR

+

:

If M = M

0

+ � � �+M

d

is a sum of d+ 1 independent martingales of the above

type, de�ne i

M

: l

2

(IN; IR

d+1

)! L

2

(IR

+

; IR

d+1

) as

i

M

t

(u) =

�

i

M

1

t

(u

0

); : : : ; i

M

d

t

(u

d

)

�

;

9



u = (u

0

; : : : ; u

d

), t 2 IR

+

. The operator i

M

is easily extended to stochastic

processes.

De�nition 2 De�ne an operator D

M

: P ! L

2

(M ) by D

M

= i

M

�D.

We notice that

j D

M

F j

2

H

=j D

B

F j

2

L

2

(IR

+

)

+

k=d

X

k=1

z

2

k

j D

N

k

F j

2

L

2

(IR

+

)

; F 2 P; (4)

hence D

M

: L

2

(
)! L

2

(M ) is closable. We call ID

M

2;1

its domain.

Remark. This de�nition is consistent with that of Bismut

3

, Decreusefond

6

.

For instance, if M = X

1

� �

1

and F 2 P with F = f(T

1

; : : : ; T

n

),

(D

M

F; h)

L

2

(IR

+

)

= �

k=n

X

k=1

@

k

f(T

1

; : : : ; T

n

)

Z

�

�1

1

(T

k

)

0

h(t)d�

1

(t);

which means that (D

M

F; h)

L

2

(IR

+

)

is de�ned by perturbation of the kth jump

time �

�1

1

(T

k

) of X

1

into

�

�1

1

 

Z

�

�1

1

(T

k

)

0

(1 + "h(t))d�

1

(t)

!

:

�

Let j

M

: L

2

(IR

+

; IR

d+1

) ! l

2

(IN; IR

d+1

) be the random dual operator of i

M

with respect to (�; �)

H

, satisfying

(j

M

(u); v)

l

2

(IN;IR

d

)

= (i(u); v)

H

:

We have

j

M

(u) =

�

j

B

(u

0

� �

�1

0

); j

~

N

1

(u

1

� �

�1

1

); : : : ; j

~

N

d

(u

d

� �

�1

d

)

�

:

The adjoint �

M

of D

M

is de�ned below. Let

V

M

= i

M

(U)

=

(

k=n

X

k=0

(u

0

k

h

k

� �

0

; : : : ; u

d

k

h

k

� �

d

) : u

i

k

2 P; i = 0; : : : ; d; n 2 IN

)

:

De�nition 3 We de�ne �

M

: V

M

! L

2

(
) by

�

M

(u) = �

B

�

u

0

� �

�1

0

�

+

k=d

X

k=1

z

k

�

~

N

k

�

u

k

� �

�1

k

�

:

10



It is clear that

E

�

F�

M

(u)

�

= E

�

(D

M

F; u)

H

�

; F 2 P; u 2 V

M

;

hence �

M

is closable and adjoint of D

M

. Moreover, the operator �

M

coincides

with the stochastic integral with respect toM on square-integrable predictable

processes:

Proposition 6 If u = (u

0

; : : : ; u

d

) 2 L

2

(M ) with u

k

(F

k

t

)-predictable, k =

0; : : : ; d, then

�

M

(u) =

Z

1

0

u

0

(t)dX

0

(t) +

k=d

X

k=1

Z

1

0

u

k

(t)d(X

k

(t)� �

k

(t)):

Proof. In the case d = 0. If u

0

is (F

0

t

)-predictable, then u

0

� �

0

is (F

B

t

)-

predictable and

�

M

(u) = �

B

(u

0

� �

0

) =

Z

1

0

u

0

(�

0

(t))dB

t

=

Z

1

0

u

0

(t)dM

t

:

�

In particular, if u 2 L

2

(M ) is (F

t

)-predictable with

E

"

k=d

X

k=0

Z

1

0

u(t)

2

d�

k

(t))

#

<1;

then

�

M

(u) =

Z

1

0

u(t)dM

t

:

Proposition 7 In the anticipative case, we have for u 2 V

M

:

�

M

(u) =

Z

1

0

u

0

(t)dX

0

(t) +

k=d

X

k=1

Z

1

0

u

k

(t)d(X

k

(t)� d�

k

(t))

�

Z

1

0

D

X

0

t

(u

0

(�

�1

0

(t)))d�

0

(t)�

k=d

X

k=1

Z

1

0

D

X

k

��

k

t

(u

k

(�

�1

k

(t)))d�

k

(t):

Proof. We apply Prop. 1.

�
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For f

n

0

;:::;n

d

2 L

2

(IR

+

)

�n

0

� l

2

(IN )

�n

1

� � � � � l

2

(IN )

�n

d

, de�ne the Wiener-

Hermite-Laguerre integral J

n

(f

n

0

;:::;n

d

) as

J

n

(f

n

0

� f

n

1

� � � � � f

n

d

) = I

B

n

0

(f

n

0

)J

1

n

1

(f

n

1

) � � �J

d

n

d

(f

n

d

):

Where J

k

n

k

(f

n

k

) is de�ned as in Def. 1, for the Poisson process

~

N

k

. Then any

square-integrable functional on 
 has the decomposition

F =

X

n

0

;:::;n

d

�0

J

n

(f

n

0

;:::;n

d

);

f

n

0

;:::;n

d

2 L

2

(IR

+

)

�n

0

� l

2

(IN )

�n

1

� � � � � l

2

(IN )

�n

d

. Next, we notice that this

decomposition is preserved by the operator �

M

D

M

:

Proposition 8 We have �

M

D

M

= �

B

D

B

+

P

k=d

k=1

z

2

k

�

N

k

D

N

k

. Consequently,

�

M

D

M

J

n

(f

n

0

;:::;n

d

) =

 

k=d

X

k=0

n

k

z

2

k

!

J

n

(f

n

0

;:::;n

d

); (5)

where n = n

0

+ � � �+ n

d

, and f

n

0

;:::;n

d

2 L

2

(IR

+

)

�n

0

� l

2

(IN )

�n

1

+���+n

d

. (We

let z

0

= 1).

4 Absolute continuity results

The aim of this section is to show that from Prop. 4, absolute continuity

results can be obtained with D

M

and �

M

as consequences of their Wiener

space counterparts. Sobolev spaces are de�ned as follows. Let k � k

p;k

be

the norm de�ned as k F k

p;k

=k (I + L

M

)

k=2

F k

p

, and denote by ID

M

p;k

the

completion of P with respect to k � k

p;k

, and

ID

M

1

=

\

p>1;k2ZZ

ID

M

p;k

:

A number of results in stochastic analysis can be expressed with the operators

�

M

and D

M

. For the sake of simplicity, those results are stated in the case

of IR-valued functionals, but can also be obtained in the �nite dimensional

vector-valued case.

Theorem 1 (Meyer

13

) There exists two constants A;B > 0 such that for any

F 2 P,

A kj D

M

F j

2

H

k

p

�k F k

p;k

� B kjD

M

F j

H

k

p

:

12



Theorem 2 (Watanabe

26

) Let F 2 ID

M

1

such that

j D

M

F j

�1

H

2 \

p>1

L

p

(
;F):

Then F has a C

1

density with respect to the Lebesgue measure.

Theorem 3 (Bouleau-Hirsch

4

) Let F 2 ID

M

2;1

such that j D

M

F j

H

> 0 a.s.

Then F has a density with respect to the Lebesgue measure.

Those results are directly obtained from their Wiener space counterparts, using

the isometry property, cf. Prop. 4, and relations (4), (5) .

5 Clark formula and chaotic calculus

Functionals in L

2

(
) have a Wiener-Hermite-Charlier chaotic decomposition.

If Y

1

; : : : ; Y

p

are compensated Poisson orWiener processes, with Y

i

independent

of Y

j

if Y

i

6= Y

j

, i; j 2 f1; : : : ; pg, de�ne for f

p

2 L

2

(IR

+

)

�p

symmetric and

square-integrable

I

Y

1

;:::;Y

p

p

(f

p

) = p!

Z

1

0

Z

t

�

p

0

� � �

Z

t

�

2

0

f

p

(t

1

; : : : ; t

p

)dY

1

(t

1

) � � �dY

p

(t

p

):

With the notation Y

0

= B, Y

k

(t) = N

k

(t)� t, k = 1; : : : ; d, any F 2 L

2

(
) can

be written as

F = E[F ] +

X

n�1

X

�2�

n

I

Y

�(1)

;:::;Y

�(n)

n

(f

�

);

where �

n

is the set of all applications from f1; : : : ; ng into f0; : : : ; dg, cf. Del-

lacherie et al.

7

. We can de�ne an operator

r

M

: L

2

(
)! L

2

(
)
 L

2

(IR

+

; IR

d+1

)

by r

M

F = i

M

� rF . The adjoint of this operator is given by

r

M

�

(u) = r

B

�

(u

0

� �

�1

0

) +

i=d

X

i=1

z

i

r

~

N

i

�

(u

i

� �

�1

i

):

This operator extends the stochastic integral with respect to M on the pre-

dictable processes in L

2

(M ) as in Prop. 6, and the compositionr

M

�

r

M

satis�es

r

M

�

r

M

I

Y

�(1)

;:::;Y

�(n)

n

(f

n

) =

 

k=n

X

k=0

z

2

�(k)

!

I

Y

�(1)

;:::;Y

�(n)

n

(f

n

):

The Clark formula can also be written with the operator D

X

or r

X

.

13



Proposition 9 Let F 2 Dom(D

M

). We have if F 2 F

B

1

:

F = E[F ] +

Z

1

0

E[D

X

0

t

F j F

t

]dX

0

(t):

If F is F

k

1

measurable,

F = E[F ] +

Z

1

0

E[D

X

k

��

k

t

F j F

t

� ]d(X

k

(t)� d�

k

(t)):

If F 2 Dom(r

M

) and is F

k

1

-measurable,

F = E[F ] +

Z

1

0

E[r

X

k

t

F j F

t

�
]d(X

k

(t) � d�

k

(t)):

Proof. We do the proof for d = 0. Let us write the Clark formula on Wiener

space, cf. Ocone

16

:

F = E[F ] +

Z

1

0

E[D

B

t

F j F

0

t

]dB

t

;

and notice that by de�nition of the adapted projection, cf. Revuz-Yor

23

,

E[D

B

�

0

(t)

F j F

0

�

0

(t)

] = E[D

B

�

F j F

0

�

](�

0

(t)):

The same argument holds in case d > 0 for the predictable projection.

�

Remark. Consider the space 
 = ([�1; 1]; dx=2)


1

. Denote by �

k

the kth

canonical projection, and by Y the process

Y

t

=

X

k�0

1

[2k+1+�

k

;1[

; t 2 IR

+

;

with compensator

d�(t) =

X

k�0

1

2k + 2� t

1

[2k;2k+1+�

k

[

(t)dt:

The hypothesis H2 is not ful�lled. If, instead of d�

t

we use dt as a compensator,

it can be shown, cf. Privault

18

that the de�nition of the gradient should be

~

DF =

X

k�0

�((1� �

k

)1

]2k;2k+1+�

k

]

� (1 + �

k

)1

]2k+1+�

k

;2k+2]

)@

k

f(�

0

; : : : ; �

n

);

which is a variation of Def. 2. Let

~

� denote the adjoint of

~

D in L

2

(B)
L

2

(IR

+

).

The spectral decomposition of

~

�

~

D is then given by the Legendre polynomials

evaluated in the �

k

's, instead of the Laguerre or Hermite polynomials as in

Prop. 8.
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