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Abstract

We generalize the change of variables formula for in�nite dimensional inte-

grals with respect to the Gaussian and exponential densities to the case of the

uniform measure. The presentation of the result and its interpretation in terms

of stochastic processes and anticipating stochastic calculus is uni�ed. The ex-

pression of the Radon-Nykodim density function uses a Carleman-Fredholm

determinant and a divergence operator.
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1 Introduction

The problem of the absolute continuity of the Gaussian measure in in�nite dimen-

sion has been considered in a probabilistic context as an extension of the Girsanov

theorem on the Wiener space, cf. [7], [9], [11], [18], [21]. The case of the exponential

density, cf. [17], corresponds to an anticipating Girsanov theorem on the Poisson

space, since the interjump times of the standard Poisson process are independent

identically distributed exponential random variables. These generalizations of the

Girsanov theorem to the anticipative case involve an extension of the Itô stochastic

integral, called the Skorohod integral, and the Carleman-Fredholm determinant. Our

aim is to extend the results obtained in the case of the Gaussian and exponential

densities to the case of the uniform density, and to give them a uni�ed probabilistic

interpretation in terms of stochastic processes and anticipating stochastic calculus.
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Proofs are given in the case of the uniform density if they di�er from the Gaussian or

exponential case. Let B be a Banach space of sequences with norm j � j

B

and a Borel

measure P . As shown in Th. 1, necessary conditions for the absolute continuity of

a perturbation I

B

+ F of the identity and for the expression of the density with a

divergence operator and a Carleman-Fredholm determinant are that the shift F has

to be a.s. continuously di�erentiable in the direction of l

2

(IN) on the support of

the measure, to leave invariant this support and to \vanish on its boundary" in a

sense to be made precise in Th. 1. A simple change of variables for one-dimensional

integrals shows the factorization of the density function and the boundary condition

that needs to be imposed on the shift F . We work with a probability density of the

form exp(�h(x)) with respect to the Lebesgue measure on an interval ]a; b[. In such a

case, integration by parts shows that the divergence of a smooth function F on IR is

given by div(F ) = Fh

0

�F

0

, provided that the boundary condition F (a) = F (b) = 0

holds. Now the change of variables formula gives

Z

b

a

f(x) exp(�h(x))dx

=

Z

b

a

f(x + F (x))(1 + F

0

(x)) exp(�F

0

(x)) exp(�div(F )(x))

� exp (� (h(x + F (x)� h(x)� h

0

(x)F (x))) exp(�h(x))dx

if I

B

+ F is a di�eomorphism of ]a; b[, which implies F (a) = F (b) = 0. The term

exp (� (h(x + F (x)� h(x)� h

0

(x)F (x))) has a simple expression only if h is a poly-

nomial of degree less than 2, i.e. h(x) = �

0

+ �

1

x+

1

2

�

2

x

2

. In this case, this term is

equal to exp

�

�

1

2

�

2

F (x)

2

�

, and the factorization

(1 + F

0

(x)) exp(�F

0

(x)) exp

�

�div(F )�

1

2

�

2

F (x)

2

�

of the Radon-Nykodim density corresponds to the expression (4) below which makes

use of the Carleman-Fredholm determinant. Up to linear transformations, the Gaus-

sian, exponential and uniform densities are the only ones to allow such expressions

of the Radon-Nykodim density. In the Gaussian case, exp

�

�

1

2

F (x)

2

�

corresponds

to the square norm of the perturbation in the Cameron-Martin space.

Another common property of the Gaussian, exponential and uniform densities is that

they admit orthogonal sequences of polynomials, respectively the Hermite, Laguerre

and Legendre polynomials, which satisfy the di�erential equation

�(x)y

00

+ �(x)y

0

(x) + �y = 0; (1)
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where � is a polynomial of degree less than 2, � is a polynomial of degree at most

1, and � 2 IN . Up to trivial transformations, these polynomials are the only ones

to satisfy (1), cf. [10]. They are orthogonal on an interval ]a; b[ with respect to a

density � such that (��)

0

= �� and

�(x)�(x)x

k

j

x=a;b

= 0; k 2 IN:

This paper is organized as follows. In Sect. 2, we present a uni�ed framework for

the stochastic calculus of variations, the Sobolev spaces and the integration by parts

formulas for the Gaussian, exponential and uniform density measures, taking into

account boundary conditions when constructing test function spaces. Sect. 3 contains

the main theorem, followed by technical lemmata. Sect. 4 deals with the probabilistic

interpretation of the change of variables formula, and Sect. 5 is devoted to the proof of

a generalization of Th. 1. For other approaches to the generalization of the stochastic

calculus of variations, we can refer for instance to [2], [19].

To end this introduction, we state a more general problem which gives another

motivation for this work. Let � be a probability density on IR. If j � j

B

is a suitable

norm on IR

1

, � can be extended as a probability measure P on the Borel �-algebra

F of B = fx 2 IR

1

: j x j

B

<1g, from its values on cylinder sets. In this case, can

we �nd

� a stochastic process (Y

t

)

t2IR

+

on (B;P ),

� a �ltration (F

t

)

t2IR

+

on (B;P ),

� a closable gradient operator

~

D : L

2

(B)! L

2

(B)
 L

2

(IR

+

) de�ned by pertur-

bations of the trajectories of (Y

t

)

t2IR

+

,

� and an integration by parts formula

E

h

(

~

DF; u)

L

2

(IR

+

)

i

= E

h

F

~

�(u)

i

; F 2 Dom(

~

D); u 2 Dom(

~

�);

such that:

�

~

� is an extension of the stochastic integral with respect to the compensated

process

~

Y de�ned from Y , i.e.

~

�(u) =

Z

1

0

u(t)d

~

Y

t

for u 2 L

2

(B)
 L

2

(IR

+

), u being (F

t

)-adapted,
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� if G : B ! l

2

(IN) is a mapping satisfying some regularity conditions, then

E[f(I

B

+G) j �

G

j] = E[f ]

for f bounded measurable on B, where the Radon-Nykodim j �

G

j density is

expressed with the operators

~

D and

~

�.

Moreover, one can ask for the spectral decomposition of the operator

~

�

~

D and the

chaotic decomposition of L

2

(B;P ).

2 Calculus of variations and integration by parts

We consider the separable Banach space B = IR

1

with a metric d and Borel �-

algebra F , such that a probability P can be de�ned on (B;F) via its expression on

cylinder sets:

P (fx 2 B : (x

0

; : : : ; x

n

) 2 Eg) = �


n+1

(E);

n 2 IN and E Borel set in IR

n+1

, where � is a Gaussian, exponential or uniform

probability measure on an interval ]a; b[, a; b 2 IR [ f�1g. We refer to [1], [8] for

the Gaussian case. In the case of the exponential or uniform density, we can choose

the metric d to be de�ned respectively as

d(x; y) = sup

k�0

j x

k

� y

k

j =(k + 1);

or

d(x; y) = sup

k�0

j x

k

� y

k

j;

cf. [14], [15]. The coordinate functionals

�

k

: B �! IR k 2 IN;

are independent identically �-distributed random variables. As mentioned above,

the measure � and the interval ]a; b[ can be one of the following:

i) �(dx) = exp(�x

2

=2)dx=

p

2�, i.e. �

0

= �

1

= 0, �

2

= 1, ]a; b[= IR,

ii) �(dx) = 1

[0;1[

(x) exp(�x)dx, i.e. �

0

= �

2

= 0, �

1

= 1, [a; b[= [0;1[,

iii) �(dx) = 1

[�1;1]

dx=2, i.e. �

0

= �

1

= �

2

= 0, [a; b] = [�1; 1].

We denote by B

[a;b]

, B

]a;b[

, B

c

[a;b]

the subsets of B de�ned as

B

[a;b]

= f! 2 B : a � !

k

� b; k 2 INg ;
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B

]a;b[

= f! 2 B : a < !

k

< b; k 2 INg ;

B

c

[a;b]

= f! 2 B : 9 k 2 IN with !

k

=2 [a; b]g :

Let S be the set of functionals on B of the form f(�

k

1

; :::; �

k

n

) on B

[a;b]

where n 2 IN ,

k

1

; :::; k

n

2 IN , and f is a polynomial or f 2 C

1

c

([a; b]

n

). This set is dense in L

2

(B;P ),

cf. [8], [14], [15]. We denote by (e

k

)

k�0

the canonical basis of H = l

2

(IN). Let X be

a real separable Hilbert space with orthonormal basis (h

i

)

i2IN

, and let H
X denote

the completed Hilbert-Schmidt tensor product of H with X. De�ne a set of smooth

vector-valued functionals as

S(X) =

(

i=n

X

i=0

Q

i

h

i

: Q

0

; : : : ; Q

n

2 S; n 2 IN

)

:

For u 2 S(H 
X), we write u =

P

1

k=0

u

k

e

k

, u

k

2 S(X), k 2 IN . Let

U(X) =

n

v 2 S(H 
X) : v

k

= 0 on �

�1

k

(fa; bg); k 2 IN

o

;

and U=U(IR). The set �

�1

k

(fa; bg) is of zero probability, but the elements of U(X)

are well-de�ned since they are continuous. In the Gaussian case, one has simply

U(X) = S(X). It can be shown that U(X) is dense in L

2

(B � IN ;X), cf. [8], [14],

[15].

De�nition 1 We de�ne a gradient D : S(X)! L

2

(B � IN ;X) by

(DF (!); h)

H

= lim

"!0

F (! + "h)� F (!)

"

; ! 2 B; h 2 H:

This proposition contains the integration by parts formula (2), cf. [12], [15], cf. [14].

Proposition 1 The operator D : L

2

(B;X)! L

2

(B� IN ;X) is closable and has an

adjoint operator � : U(X)! L

2

(B;X), with

E [(DF; u)

H
X

] = E [(�(u); F )

X

] ; u 2 U(X); F 2 S(X); (2)

and

�(u) =

X

k2IN

(�

1

+ �

2

�

k

)u

k

�D

k

u

k

; u 2 U :

The ingredients of the proof are the boundary condition imposed on the test func-

tions in U(X) and the density of U(X) in the space of X-valued square-integrable

functionals. Let Dom(�;X) denote the domain of the closed extension of � for p = 2.

De�nition 2 For p � 1, we call
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� D

p;1

(X) the completion of S(X) with respect to the norm

k F k

D

p;1

(X)

=kj F j

X

k

L

p

(B)

+ kj DF j

H
X

k

L

p

(B)

;

� D

U

p;1

(H) the completion of U with respect to the norm k � k

D

p;1

(H)

,

� D

1;1

(X), resp. D

U

1;1

(H) the subset of D

2;1

(X), resp. D

U

2;1

(H) made of the

random variables F for which k F k

D

1;1

(X)

, resp. k F k

D

1;1

(H)

is bounded.

In case � is Gaussian, we have D

U

2;1

(H) = D

2;1

(H).

Proposition 2 The norm de�ned by

k F k

D

U

2;1

(H)

=kj DF j

H

k

L

2

(B)

+�

2

k F k

L

2

(B)

;

is equivalent to k F k

D

2;1

(H)

on D

U

2;1

(H).

Proof. We will show that in the case of the exponential or uniform density,

k F k

L

2

(B)

� 2 kj DF j

H
H

k

L

2

(B)

; F 2 D

U

2;1

(H):

If � has the exponential density, it is su�cient to notice that for u 2 C

1

c

(IR) with

u(0) = 0,

Z

1

0

u(x)

2

e

�x

dx = 2 j

Z

1

0

u(x)u

0

(x)e

�x

dx j

� 2

�

Z

1

0

u

2

(x)e

�x

dx

�

1=2

�

Z

1

0

(u

0

(x))

2

e

�x

dx

�

1=2

;

hence

E[u(�

k

)

2

] � 4

Z

1

0

(u

0

(x))

2

e

�x

dx = 4E[(D

k

u(�

k

))

2

]:

For the uniform density, let u 2 C

1

c

(IR) with u(�1) = u(1) = 0. Then

Z

1

�1

u(x)

2

dx=2 = j

Z

1

�1

u(x)u

0

(x)xdx j�

Z

1

�1

j u(x)u

0

(x) j dx

� 2

�

Z

1

�1

(u(x))

2

dx=2

�

1=2

�

Z

1

�1

(u

0

(x))

2

dx=2

�

1=2

;

hence

E[u(�

k

)

2

] � 4

Z

1

�1

(u

0

(x))

2

dx=2 = 4E[(D

k

u(�

k

))

2

]:

If F 2 U , we proceed in both cases by integration with respect to the remaining

variables to obtain E[F

2

k

] � 4E[(D

k

F

k

)

2

], and then by summation on k 2 IN .

�
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Proposition 3 The operator � is continuous from D

U

2;1

(H) into L

2

(B) with

k �(u) k

L

2

(B)

�k u k

D

U

2;1

(H)

; u 2 D

U

2;1

(H): (3)

Proof. We only need to rewrite the results of [14], [15], [18] with the norm k � k

D

U

2;1

(H)

.

�

The following result says that the operators D and � are local, cf. [3] in the Wiener

space case. Its proof is identical to the proof of the analog statement in [12], [17].

Proposition 4 Let F 2 D

2;1

(X), resp. u 2 Dom(�;X). Then DF = 0 a.s. on

fF = 0g, resp. �(u) = 0 a.s. on fu = 0g.

De�nition 3 Let 1 � p � 1. We say that F 2 D

loc

p;1

(X), resp. D

U ;loc

p;1

(H) if there

is a sequence (F

n

; A

n

)

n2IN

such that F

n

2 D

p;1

(X), resp. F

n

2 D

U

p;1

(X), A

n

is

measurable,

S

n2IN

A

n

= B a.s., and F

n

= F a.s. on A

n

, n 2 IN .

3 Nonlinear transformations of the Gaussian, ex-

ponential and uniform measures

Let K be a Hilbert-Schmidt operator with eigenvalues (�

k

)

k2IN

, counted with their

multiplicities. The Carleman-Fredholm determinant of I

H

+K is de�ned as

det

2

(I

H

+K) =

1

Y

i=0

(1 + �

i

) exp(��

i

);

cf. [6]. The application det

2

(I

H

+ � ) : H
H �! IR is continuous, with j det

2

(I

H

+

K) j� (1+ j K j

H
H

) exp(1+ j K j

2

H
H

). Since from Prop. 3, D

U

2;1

(H) � Dom(�),

we can de�ne

�

F

= det

2

(I

H

+DF ) exp

�

��(F )�

1

2

�

2

j F j

2

H

�

; F 2 D

U ;loc

2;1

(H): (4)

Our main result is the following. Its generalization to non-invertible transformations

is proved in Sect. 5, following [17], [21]. The image measure of P by I

B

+ F with

F : B �! H measurable is denoted by (I

B

+ F )

�

P .

Theorem 1 Let F : B ! H be such that h 7! F (!+h) is continuously di�erentiable

on fh 2 H : ! + h 2 B

[a;b]

g, for a.s. !. Assume that

� F (k) = 0 on �

�1

k

(fa; bg), k 2 IN ,

7



� I

B

+ F is a.s. bijective,

� I

H

+DF is a.s. invertible,

� (I

B

+ F )

�

B

]a;b[

�

= B

]a;b[

.

Then

E [f ] = E [f � (I

B

+ F ) j �

F

j]

for f measurable bounded.

More generally, the perturbations of I

B

that we consider are of the following form,

cf. [21]:

De�nition 4 A random variable F : B ! H is said to be H � C

1

loc

if there is

a random variable Q with Q > 0 a.s. such that h ! F (! + h) is continuously

di�erentiable on

n

h 2 H : j h j

H

< Q(!) and ! + h 2 B

[a;b]

o

;

for any ! 2 B

[a;b]

.

Proposition 5 A su�cient condition for F 2 H � C

1

loc

to be in D

U ;loc

1;1

(H) is that

F (k) = 0 on �

�1

k

(fa; bg); k > n

0

;

for some n

0

2 IN .

Proof. It su�ces to cover B with a countable collection of sets given below in

Lemma 3.

�

De�nition 5 If A � B is measurable, let for ! 2 B

�

A

(!) = inf

h2H

fj h j

H

: ! + h 2 Ag

and �

A

(!) =1 if ! =2 A+H.

We notice that as in [11], �

A

(!) = 0, ! 2 A. The proof of the following result is

directly adapted from [4], [11], [13], [17], replacingW

2;1

�

IR

n+1

;

1

p

2�

n+1

e

�(x

2

0

+���+x

2

n

)=2

�

with W

2;1

(]a; b[

n+1

; �


n+1

). Let F

n

denote the �-algebra generated by �

0

; : : : ; �

n

.

Lemma 1 Let F 2 L

2

(B;X). Then

8



� F 2 D

2;1

(X) if and only if F

n

= E[F j F

n

] 2 D

2;1

(X) 8n 2 IN and (DF

n

)

n2IN

converges in L

2

(B;H 
X). In this case,

j DF

n

j

H
X

�j DF j

H
X

; a:s:; n 2 IN:

� F

n

belongs to D

2;1

if and only if there exists

f 2 W

2;1

(]a; b[

n+1

; �


n+1

)

such that F

n

= f(�

0

; : : : ; �

n

). In this case, DF

n

= (@

k

f(�

0

; : : : ; �

n

))

k2IN

.

� Assume that for some c > 0 and for any h 2 H,

j F (! + h)� F (!) j

X

� c j h j

H

for !; ! + h 2 B

[a;b]

. Then F 2 D

2;1

(X) and j DF j

H
X

� c, a.s.

Let � 2 C

1

c

(IR) with k � k

1

� 1, such that � = 0 on [2=3;1[, � = 1 on [0; 1=3] and

k �

0

k

1

< 4. If A �-compact, then

j �(�

A

(! + h))� �(�

A

(!)) j

H

�k �

0

k

1

j h j

H

; ! 2 B; h 2 H;

hence �(�

A

) 2 D

1;1

with j D�(�

A

) j

H

�k �

0

k

1

. Denote by �

n

the application

�

n

: B �! H de�ned by �

n

(!) =

�

!

k

1

fk�ng

�

k2IN

. The following lemma is stated in

the general case, and its proof is done in the case of the uniform density, cf. [15],

[21] for the exponential and Gaussian cases.

Lemma 2 Let F : B ! H measurable with kj F j

H

k

1

<1, such that

F (k) = 0 on �

�1

k

(fa; bg); k 2 IN;

and for some c > 0

j F (! + h)� F (!) j

H

< c j h j

H

h 2 H, and !; !+ h 2 B

[a;b]

. Then F 2 D

U

1;1

, and there is a sequence (�

n

)

n2IN

� U

that converges to F in D

U

2;1

(H) with for n 2 IN :

(i) kj �

n

j

H

k

1

�kj F j

H

k

1

.

(ii) kj D�

n

j

H
H

k

1

� c:

Assume moreover that �

k

+F (k) 2 [a; b] a.s., k > n

0

, for some n

0

2 IN

S

f1g. Then

the sequence (�

n

)

n2IN

can be chosen to verify

(iii) �

k

+ �

n

(k) 2 [a; b], k > n

0

, n 2 IN .
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Proof. Let F

n

= �

n

E[F j F

n

], n 2 IN . The sequence (F

n

)

n2IN

converges to F in

D

2;1

(H) and satis�es to (i), (ii). There exists f

k

2 W

2;1

(IR

n+1

; dx), with f

k

= 0

a.e. on [�1; 1]

k

� [�1; 1]

c

� [�1; 1]

n�k

, such that F

n

(k) = f

k

(�

0

; : : : ; �

n

) P -a.e.,

k = 0; : : : ; n. We choose a Lipschitz version of F

n

(k) on B

[�1;1]

such that F

n

(k) = 0

on �

�1

k

(] � 1; 1[

c

). Let ! 2 B

[�1;1]

, h 2 H such that �(!

k

+ h

k

) > 1 and

~

h =

(�1� !

k

)1

fkg

+

P

1

i=0

h

i

e

i

1

fi 6=kg

. Then F

n

(k)(! + h) = F

n

(k)(! +

~

h) = 0, and

j F

n

(k)(! + h)� F

n

(k)(!) j

H

= j F

n

(k)(! +

~

h)� F (!) j

H

� c j

~

h j

H

� c

 

(�1� !

k

)

2

+

1

X

i=0

1

fi 6=kg

h

2

i

!

1=2

� c j h j

H

:

Hence f

k

has a Lipschitz version on [�1; 1]

k

� IR � [�1; 1]

n�k

such that f

k

= 0 on

[�1; 1]

k

�]� 1; 1[

c

�[�1; 1]

n�k

. Let 	 2 C

1

c

(IR

n+1

) with support in [�2; 0]

k

� [0; 2]�

[�2; 0]

n�k

, 0 � 	 � 1 and

R

IR

n+1
	(x)dx = 1. Let for m � 2

�

k;m

(y) =

�

1

m

�

n+1

Z

[�1;1]

k

�IR

+

�[�1;1]

n�k

	(m(y + x))f

k

(x)dx

+

�

1

m

�

n+1

Z

[�1;1]

k

�IR

�

�[�1;1]

n�k

	(m(y � x))f

k

(x)dx;

y 2 [�1; 1]

n+1

, and �

m

(k) = �

k;m

(�

0

; : : : ; �

n

), k = 0; : : : ; n, �

m

(k) = 0, k > n. Then

�

m

2 U , m � 2, and (�

m

)

m�2

converges to F

n

in D

2;1

and satis�es to (i), (ii).

�

Lemma 3 For p; q > 0, let

A = f ! 2 B

]a;b[

: !

k

� a; b� !

k

> 4=p; k � n

0

;

Q(!) � 4=p;

sup

jhj

H

�2=p

j F (! + h) j

H

� q=(6p);

sup

jhj

H

�2=p

j DF (! + h) j

H
H

� q=6

)

and

~

F = �(p�

G

)F , where G is a �-compact set contained in A. Then

j

~

F (! + h)�

~

F (!) j

H

� (5q=6) j h j

H

;

for h 2 H, !; ! + h 2 B

[a;b]

, and kj

~

F j

H

k

1

� q=(6a). Consequently

~

F 2 D

U

1;1

(H).

The proof of this lemma is identical to the proof of Lemma 4 in [17], replacing the

set �

�1

k

(f0g) with �

�1

k

(f�1; 1g), noticing that for ! in this set, �

A

(!) � 4=p, hence

�(�

A

(!)) = 0, and F

n

(k) = 0 on �

�1

k

(f�1; 1g). It then remains to use Lemma 2 to

show that

~

F 2 D

U

1;1

(H).

10



�

Proposition 6 Let F;G 2 S(H) and T = I

B

+ F . We have G � T 2 Dom(�) and

�(G) � T = �(G � T ) + trace(DF

�

(DG) � T ) + �

2

(F;G � T )

H

:

Proof. cf. [15], [20] for the Gaussian and exponential cases. For the uniform density,

we have �(G � T ) 2 S and

�(G � T ) = �

1

X

k=0

D

k

(G(k) � T ) = �

1

X

k=0

D

k

(I

B

+ F )

�

(DG(k)) � T

= �(G) � T �

1

X

k;l=0

D

k

F (l)(D

l

G(k)) � T:

�

4 Probabilistic interpretation

The aim of this section is to give a uni�ed probabilistic interpretation to Th. 1. In

the Gaussian case, the density (4) can be expressed with the Skorohod integral. We

are interested in interpretations of this kind in the exponential and uniform cases.

Let (h

k

)

k2IN

be a Hilbert basis of L

2

(IR

+

). In connection with the problem stated

at the end of the introduction, we are seeking an interpretation of the divergence �

as a stochastic integral of continuous-time processes. For this we need to compose �

with a map i : L

2

(B)
 L

2

(IR

+

)! L

2

(B)
 l

2

(IN). We de�ne in each case a linear

injection i : l

2

(IN)! L

2

(IR

+

), a stochastic process (Y

t

)

t2IR

+

, and a �ltration (F

t

) in

the following way.

De�nition 6 If � is Gaussian, let

i(e

k

) = h

k

; k 2 IN;

denote by Y =

~

Y =

P

k�0

�

k

R

�

0

h

k

(s)ds the Wiener process on (B;P ), and let

F

t

= �

�

~

Y

s

: s � t

�

; t 2 IR

+

:

In this case, the injection i is actually a deterministic Hilbert space isomorphism.

11



De�nition 7 If � is exponential, let T

k

= �

0

+ � � �+ �

k

,

i(e

k

)(t) = �1

]T

k�1

;T

k

]

(t); t 2 IR

+

; k 2 IN;

Y

t

=

X

k�0

1

[T

k

;1[

(t);

~

Y

t

= Y

t

� t; t 2 IR

+

;

and F

t

= �(Y

s

: s < t), t 2 IR

+

.

De�nition 8 If � is uniform, let T

k

= k + (1 + �

k

)=2,

i(e

k

)(t) = �

�

(1� �

k

)1

]k;T

k

]

(t)� (1 + �

k

)1

]T

k

;k+1]

(t)

�

t 2 IR

+

; k 2 IN;

Y

t

=

P

k�0

1

[T

k

;1[

(t);

~

Y

t

= Y

t

� t; t 2 IR

+

; and

F

t

= �(Y

s

: s � [t]); t 2 IR

+

:

([t] denotes the integral part of x 2 IR

+

). LetW be the dense set in L

2

(B)
L

2

(IR

+

)

of continuous-time processes v such that v(t) = f(t; �

0

; : : : ; �

n

), t 2 IR

+

, with f 2

C

1

c

(IR

n+2

), n � �1.

Proposition 7 The stochastic integral with respect to (

~

Y

t

)

t2IR

+

can be extended to

(F

t

)-adapted process u 2 L

2

(B)
 L

2

(IR

+

), with the bound

E

"

�

Z

1

0

u(s)d

~

Y

s

�

2

#

� E

�

Z

1

0

u(s)

2

ds

�

: (5)

It is well-known that for normal martingales such as the Wiener and compensated

Poisson processes, (5) holds as an equality. In the uniform case, it also becomes an

equality if

R

k+1

k

u(t)dt = 0, k 2 IN , cf. [14].

The operator i is easily extended to discrete-time stochastic processes.

De�nition 9 Let j : L

2

(IR

+

)! H be the adjoint of i : H ! L

2

(IR

+

), de�ned as

(i(u); v)

L

2

(IR

+

)

= (u; j(v))

H

; u 2 S(H); v 2 W; P � a:s:

We de�ne unbounded operators

~

D : L

2

(B) �! L

2

(B) 
 L

2

(IR

+

) and

~

� : L

2

(B) 


L

2

(IR

+

) �! L

2

(B) as

~

DF = i �DF; F 2 S;

and

~

�(v) = � � j(v); v 2 W: (6)

12



Note that j(W) � Dom(�), so that the composition (6) is well-de�ned. We have

more explicitly:

i) If � is Gaussian, i is unitary and j is the inverse of i:

j

k

(v) =

Z

1

0

v(t)h

k

(t)dt; k 2 IN; v 2 W:

ii) If � is exponential,

j

k

(v) = �

Z

T

k

T

k�1

v(t)dt; k 2 IN; v 2 W:

iii) If � is uniform,

j

k

(v) = �

 

(1� �

k

)

Z

T

k

k

v(s)ds� (1 + �

k

)

Z

k+1

T

k

v(s)ds

!

; v 2 W; k 2 IN:

Proposition 8 The operators

~

D and

~

� are closable adjoint of each other, with

~

�(v) =

Z

1

0

v(s)d

~

Y

s

�

Z

1

0

~

D

s

v(s)ds; v 2 W:

If v 2 L

2

(B) 
 L

2

(IR

+

) is (F

t

)-adapted, then v 2 Dom(

~

�) and

~

�(v) coincides with

the compensated integral of v with respect to (Y

t

)

t2IR

+

:

~

�(v) =

Z

1

0

v(s)d(Y

s

� s):

Proof. cf. [5], [12], [14], [15].

�

The eigenvectors of

~

�

~

D are given respectively in the Gaussian, exponential and uni-

form cases by the composition of the Hermite, Laguerre and Legendre polynomials

with �

k

, cf. [14], [15], [22]. We let

L

2;1

= fu 2 L

2

(B)
 L

2

(IR

+

) : j(u) 2 D

U

2;1

(H)g;

with the norm k u k

L

2;1

=k j(u) k

D

U

2;1

(H)

. This extends the de�nition of [12]. The

space L

loc

2;1

is de�ned as in Def. 3, and

~

�(u) can be locally de�ned for u 2 L

loc

2;1

since

~

� is local as �.

Proposition 9 The isometry j : L

2;1

! D

U

2;1

(H) is onto. More precisely, for F 2

D

U

2;1

(H), there is u

F

2 L

2;1

such that F = j(u

F

), with

E

h

k u

F

k

2

L

2

(IR

+

)

i

�k F k

2

D

U

2;1

(H)

: (7)

13



Proof. The statement is obvious in the Gaussian case. Let (F

n

)

n2IN

� U be a

sequence converging to F in D

U

2;1

(H). If � is exponential, let

u

n

(t) =

X

k2IN

1

]T

k

;T

k+1

]

(t) (D

k

F

n

(k) j

�

k

=t�T

k

) :

Then F

n

= j(u

n

), and by integration by parts on the variable �

k

,

E

"

Z

T

k+1

T

k

u

2

n

(t)dt

#

= E

h

u

n

(T

k+1

)

2

i

= E

h

D

k

F

n

(k)

2

i

; (8)

from the Fubini theorem, since u

n

(t) does not depend on �

k

if t 2]T

k

; T

k+1

[. Relation

(7) follows by summation on k 2 IN . If � is uniform, let

u

n

(t) = �

X

k2IN

1

]k;k+1]

(t) (D

k

F

n

(k) j

�

k

=2t�2k�1

) :

We have

j

k

(u

n

) = (1� �

k

)

Z

T

k

k

D

k

F

n

(k) j

�

k

=2t�2k�1

dt� (1 + �

k

)

Z

k+1

T

k

D

k

F

n

(k) j

�

k

=2t�2k�1

dt

= (1� �

k

)

Z

2k+1+�

k

2k

D

k

F

n

(k) j

�

k

=t�2k�1

dt=2

�(1 + �

k

)

Z

2k+2

2k+1+�

k

D

k

F

n

(k) j

�

k

=t�2k�1

dt=2

= (1� �

k

+ 1 + �

k

)F

n

(k)=2 = F

n

(k); k 2 IN;

hence F

n

= j(u

n

) and clearly,

E

"

Z

k+1

k

u

2

n

(t)dt

#

= E

�

Z

1

�1

(D

k

F

n

(k))

2

j

�

k

=s

ds=2

�

= E

h

(D

k

F

n

(k))

2

i

;

which implies by summation on k 2 IN :

E

h

k u

F

k

2

L

2

(IR

+

)

i

= (1� �

2

)E

2

4

X

k2IN

D

k

F (k)

2

3

5

+ �

2

E

h

k F k

2

l

2

(IN)

i

�k F k

2

D

U

2;1

(H)

:

�

The density function in Th. 1 can now be rewritten after the following proposition.

Proposition 10 let F 2 D

U ;loc

2;1

(H) satisfy the hypothesis of Th. 2 with F = j(u),

u 2 L

loc

2;1

. The Radon-Nykodim density function is expressed as

�

F

= det

2

(I

H

+Dj(u)) exp

�

�

~

�(u)�

1

2

�

2

k u k

2

L

2

(IR

+

)

�

:

If u is (F

t

)-adapted,

�

F

= det

2

(I

H

+Dj(u)) exp

�

�

Z

1

0

u(t)d

~

Y

t

�

1

2

�

2

k u k

2

L

2

(IR

+

)

�

:

14



Remark. In the uniform case, another de�nition of i and j can be given so that

~

� = � � j extends the compensated stochastic integral with respect to the natural

�ltration of (Y

t

)

t2IR

+

, cf. [16]. The compensator of (Y

t

)

t2IR

+

with respect to its

natural �ltration is given by

d�(t) =

X

k2IN

1

k + 1� t

1

[k;T

k

[

(t)dt:

The linear injection i is then de�ned as

i(e

k

)(t) = (1� �

k

)1

[k;T

k

[

(t); k 2 IN;

and the dual j of i is taken with respect to d�(t):

j

k

(u) = (1� �

k

)

Z

T

k

k

u(t)d�(t); k 2 IN:

It satis�es

Z

1

0

i

t

(u)v(t)d�(t) = (u; j(v))

l

2

(IN)

; u 2 l

2

(IN); v 2 L

2

(IR

+

):

With such de�nitions, the operator

~

� = � � j extends the stochastic integral with

respect to the compensated process Y � �, but the eigenvectors of

~

�

~

D are no longer

given by the Legendre polynomials, cf. [16].

5 Proof of the main result

We will prove the following theorem, which is an extension of Th. 1. This result is

also valid on the Wiener and Poisson spaces, cf. [17], [21].

Theorem 2 Let F 2 H�C

1

loc

with F (k) = 0 on �

�1

k

(fa; bg), k 2 IN . Let T = I

B

+F

and

M =

n

! 2 B

[a;b]

: det

2

(I

H

+DF ) 6= 0

o

:

Assume that T

�

B

]a;b[

�

� B

]a;b[

and let N(!;M) = card(T

�1

(!)

T

M). Then N(!;M)

is at most countably in�nite and

E [fN(!;M)] = E [f � T j �

F

j]

for f 2 C

+

b

(B). The restriction of (I

B

+ F )

�

P to M is absolutely continuous with

respect to P , and

d(I

B

+ F )

�

P

jM

dP

(!) =

X

�2(I

B

+F )

�1

(!)\M

1

j �

F

(�) j

:
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Let K denote the set of �nite rank linear operators K : H ! H with rational

coe�cients such that I

H

+ K is invertible and let 
(K) = (k (I

H

+K)

�1

k

1

)

�1

,

K 2 K. Let V denote the subset of H made of sequences with rational coe�cients

and �nite support in IN . We start by treating the case of contractive mappings with

the following result which extends Prop. 5 of [17].

Proposition 11 Let K 2 K, v 2 V and n

0

2 IN such that Support(v); Support(Kh) �

f0; : : : ; n

0

g, h 2 H. Let A be a bounded Borel set in B

]a;b[

, and let F : B ! H be

measurable. Let T = I

B

+ F + K + v. We make the following assumptions on

(F;K; v; A):

� F has a bounded support in B,

� kj F j

H

k

1

<1,

� F (k) = 0 on �

�1

k

(fa; bg), k 2 IN ,

� There is c 2 IR, 0 < c < 1, such that

j F (! + h)� F (!) j

H

� c
(K) j h j

H

; (9)

for h 2 H, !; ! + h 2 B

]a;b[

,

� �

k

+ F (k) 2 [a; b] a.s., k > n

0

,

� T (A) � B

]a;b[

.

Then T is injective and

E

h

f1

T (A)

i

= E [1

A

f � T j �

F+K+v

j]

for f bounded measurable on B.

The boundedness assumptions on the set A and the support of F are unnecessary in

the case of the uniform density.

Proof. The injectivity of T can be shown as in [9], [17], from (9). We modify F with

F = 0 on B

c

[�1;1]

. Let (F

n

)

n�n

0

� U be a sequence given by Lemma 2, converging to

F inD

2;1

(H) with F

n

= 0 on B

c

[�1;1]

, such that F

n

(k) = 0 if k > n, F

n

depending only

on �

0

; : : : ; �

n

, and let T

n

= I

B

+F

n

+K+v. By a classical argument, cf. [9], [17], [21],

16



I

B

+ F

n

� (I

B

+K)

�1

+ v can be shown to be bijective on B with inverse I

B

+ G

n

,

where G

n

satis�es

G

n

= �F

n

� (I

B

+K)

�1

� (I

B

+G

n

)� v; (10)

and

j DG

n

j

H
H

� c=(1� c): (11)

Moreover,

T

n

(f! 2 B : !

k

2 [�1; 1]; k > n

0

g) = f! 2 B : !

k

2 [�1; 1]; k > n

0

g (12)

from Lemma 2-iii) and (10). There exists U; V 2 V with Support(U); Support(V ) �

f0; : : : ; n

0

g such that U

k

> T

�1

n

(k) > V

k

on B

]�1;1[

, k; n 2 IN , since (F

n

)

n�n

0

and

(G

n

)

n�n

0

are uniformly bounded in n and !. Let T : B �! B denote the application

de�ned as T (!)(k) =

�

U

k

�V

k

2

�

!

k

+

U

k

+V

k

2

, k � n

0

, T (!)(k) = !

k

, k > n

0

, and let

� =

 

n

0

Y

k=0

(U

k

� V

k

)

!

T

�

P:

De�ne �

�

n

: IR

n+1

! H by �

�

n

(x) = (x

0

; : : : ; x

n

; 0; : : :). There is a function g 2

C

1

(IR

n+1

; IR

n+1

) such that F

n

+K+v = �

�

n

g(�

0

; : : : ; �

n

), n � n

0

. Let �

?

n

= I

B

��

n

,

denote by P

?

n

the image measure of P by �

?

n

and let B

?

n

= �

?

n

(B). The Jacobi

theorem in dimension n+ 1 gives for n > n

0

:

Z

B

1

B

]�1;1[

� T

n

f � T

n

j �

F

n

+K+v

j d�

=

Z

B

?

n

Z

IR

n+1

1

B

]�1;1[

(! + �

�

n

(x

0

+ g

0

; : : : ; x

n

+ g

n

))f(! + �

�

n

(x

0

+ g

0

; : : : ; x

n

+ g

n

))

j det(I

IR

n+1

+ @g) j dx

0

� � �dx

n

dP

?

n

(!)=2

n+1

=

Z

B

?

n

Z

IR

n+1

1

B

]�1;1[

(! + �

�

n

y)f(! + �

�

n

y)dy

0

� � �dy

n

dP

?

n

(!)=2

n+1

= E

h

1

B

]�1;1[

f

i

; f 2 C

+

b

(B):

The rest of the proof does not di�er much from [11], [17], [21] and is given for the

sake of completeness. Its consists in an uniform integrability argument as n goes to

in�nity, using the de la Vall�ee-Poussin lemma. Since (j DF

n

j

H
H

)

n2IN

is bounded

uniformly in n and !, (j det

2

DT

n

j)

n2IN

is uniformly lower and upper bounded, hence

instead of E[j �

F

n

+K+v

log j �

F

n

+K+v

jj], we only need to estimate

Z

B

j �(F

n

+K + v)�

F

n

+K+v

j d�

17



= E

h

j �(F

n

+K + v) � T

�1

n

j

i

� E

h

j �(�

n

0

F

n

+K + v) � T

�1

n

j

i

+E

h

j trace

h�

D�

?

n

0

F

n

�

�

� T

�1

n

�D

�

�K � (I +K)

�1

+ (I +K)

�1

�G

n

�i

j

i

+E

h

j �(�

?

n

0

F

n

� T

�1

n

) j

i

:

The �rst two terms are uniformly bounded in n from (11). From the construction

of G

n

by iterations, cf. (10), it can be shown that �

?

n

0

G

n

2 U . We have �

?

n

0

G

n

=

��

?

n

0

F

n

� T

�1

n

, hence

E

h

j �(�

?

n

0

F

n

� T

�1

n

) j

i

= E

h

j �(�

?

n

0

G

n

) j

i

� E

h

j D�

?

n

0

G

n

j

2

H
H

i

� (c=(1� c))

2

;

n 2 IN , from (3). Choosing a subsequence and assuming that g 2 C

+

b

(B) is zero

outside of B

]�1;1[

, we have the �-a.e. convergence of (g � T

n

j �

F

n

+K+v

j)

n�n

0

to

g � T j �

F+K+v

j. Hence

Z

B

g � T j �

F+K+v

j d� = E [g] ; (13)

which remains true for g = f1

T (A)

where f is measurable and bounded since T (A) �

B

]�1;1[

. This gives

E[f � T1

A

j �

F+K+v

j] =

Z

B

g � T j �

F+K+v

j d� = E[g] = E[f1

T (A)

]:

�

Proof of Th. 2. LetK 2 K, v 2 V and n

0

2 IN such that Support(v); Support(Kh) �

f0; : : : ; n

0

g, h 2 H. For n > 8, let

A(n;K; v) = f ! 2 B

]�1;1[

: (1� !

2

k

) >

8

n

; k � n

0

;

Q(!) >

4

n

;

sup

jhj

H

�1=n

j F (! + h)�K(! + h)� v j

H

< 
(K)=(6n);

sup

jhj

H

�1=n

j DF (! + h)�K j

H
H

< 
(K)=6

)

;

Let F

K;v

= �(n�

G(n;K;v)

)(F �K � v), where G(n;K; v) is a �-compact modi�cation

of A(n;K; v)

T

M . Then from Lemma 3, F

K;v

and G(n;K; v) satisfy the hypothesis

of Prop. 11. We can now proceed exactly as in [21]. Denote by (G

k

)

k2IN

the count-

able family (G(n;K; v))

n;K;v

and let M

n

= G

n

T

�

S

i=n�1

i=0

G

i

�

c

, n 2 IN

�

. We have

18



S

n2IN

�

M

n

= M , this union being a partition. Now,

E [f � T j �

F

j] =

1

X

n=0

E [1

M

n

f � T j �

F

j]

=

1

X

n=0

E

h

1

T (M

n

)

f

i

= E [fN(!;M)] :

We also have

E [1

M

f � T ] =

1

X

n=0

E

�

1

M

n

f � T

�

F

�

F

� T � T

�1

�

=

1

X

n=0

E

�

1

T (M

n

)

f

1

�

F

� T

�

= E

2

6

4

f

X

�2T

�1

(!)

T

M

1

�

F

(�)

3

7

5

:

�
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