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Abstract

We study the absolute continuity of transformations defined
by anticipative flows on Poisson space, and show that the process
of densities associated to those transformations allows to solve
anticipative linear stochastic differential equations on the Poisson
space.
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1 Introduction

Linear Skorohod stochastic differential equations have been studied on
the Wiener space, cf. [3], using the anticipative stochastic calculus de-
veloped in [6]. It has been shown in particular that the solutions of such
equations are associated to the density induced by absolutely continu-
ous transformations defined by flows on the Wiener space. Such absolute
continuity results have been extended in [11]. Our goal here is to in-
vestigate the Poisson space case. The anticipative stochastic calculus on
Poisson space, cf. [5], [9], permits to introduce anticipative stochastic dif-
ferential equations by means of an extension of the compensated Poisson
stochastic integral, also called the Skorohod integral. We study the abso-
lute continuity of some anticipative flows on Poisson space and show that
their associated densities allow to solve Skorohod stochastic differential
equations. Let us describe the Poisson space interpretation that we are
working with, cf. [9]. Let B be a space of sequences with a probability
measure P such that the coordinate functionals

. B— IR k€ IN,



are independent identically distributed exponential random variables. The
space B is endowed with the norm || « ||p= sup,cp | n | /(n + 1) such
that P is defined on the Borel o-algebra of B. Let T, = S:=F!r,
k > 0, denote the k-th jump time of the Poisson process (V;) defined
as Ny = Y 150 Lirye0f(t), t € IR4. Denote by (eg)renv the canonical basis
of the space of square-summable sequences H = I*(IN). We define an
operator ¢ that turns any discrete time stochastic process v = (ug)ren
into a continuous time process (u) by i:(u) = uy,_, or

(w) =Y wlim, 1,,0(1),  t € IRy (1)

k>0

The flow that we will consider is the family (7;)¢epo,1) of transformations

T, : B — B, defined by

t
Tiw) =+ ([ e Te)odTw)ids) .

0 k>0
where o is a process satisfying some boundedness conditions. If the trans-
formation 7y, ¢ € [0, 1], is absolutely continuous, then the process of densi-

-1
ties (%) solves the anticipative stochastic differential equation
tef0,1]

t ~
x;:1+/04@X¢NM
0

where fg us§N, = & (ul[w]) is the Skorohod integral of uljy 4 on the Pois-
son space, as defined in [1], [5], [9]. This integral is an extension to
anticipative integrands of the stochastic integral with respect to the com-
pensated Poisson process. It is the adjoint of a derivation operator de-
fined by shifting the Poisson process jump times, and has in particular the
property of being an integral with zero expectation. As a consequence,
we will be able to solve the anticipative stochastic differential equation

1 ~ 1
&:%+/@&MH/@&@temm 2)
0 0

where Xy and b are bounded random variables. In case the processes
b and o are predictable, the equation defining the inverse (A;)eo1) of
(7¢)teo,1) becomes

Aﬁ@:w+(%

and we retrieve a classical result, cf. for instance [2].
We proceed as follows. In Sect. 2 the definitions and main results

t

is(ek)as(w)ds) \

k>0



of the anticipative stochastic calculus on the Poisson space as introduced
in [5], [9] are recalled. Sect. 3 is devoted to the definition of the flow
(7¢)tepo,1) of anticipative transformations of the Poisson process trajecto-
ries and to the study of its absolute continuity. Those results are applied
in Sect. 4, where the solution of the linear Skorohod stochastic differential
equation (2) is given.

2 Anticipative stochastic calculus on the
Poisson space

Let S denote the set of functionals of the form

F=f(ro,...,7n),

with n € IN and f € C(IR}™). We define a gradient operator D :
L%(B) — L*(B) @ H by

DF = (akf(Tov"'an))k€N7 es. (3)
We also define D : LQ(B) — LQ(B) ® L2(1R+) as
DF =—ioDF, FEeES.

The operators D and D are closable, cf. [9]. Denote by D the domain
of the closed extension of D. Let 6 be the adjoint of D, which is also
closable and can be extended to a closed operator

§: LY(B % [0,1]) — LY(B),

of domain Dom(g). Let V denote the class of processes of the form

i=n
v = Z Ia, filToy ooy Tn),
=1

where f; € C°(IR}H)

following formula, cf. [5

1 <i<n,and Ay,...;A, C[0,1]. We have the
I, [9]:

§(v) = /OOO o(s)d(N, — s) — /OOO Dyo(s)ds, ve V. (4)

The interpretation of & as an extension of the stochastic integral with
respect to the compensated Poisson process comes from the following
proposition, cf. [5], [9].



Proposition 1 Let v € L*(B) @ L*(IR;) be predictable with respect to
the filtration generated by the Poisson process (Ny). We have

Denote by D . the subset of D;; made of the random variables F' for
which

| E [y + I DF [allLes)
is bounded and let Ly ., = L*([0,1], D1 o), L12 = L*([0,1], Dy2). U T :

B — B is a measurable mapping, we denote by 7, P the image measure
of P by 7T, and say that 7 is absolutely continuous if 7, P is absolutely
continuous with respect to P. A flow (¢;)o<s<i<1 of transformations
of B is said to be absolutely continuous if ¢, is absolutely continuous,
0 < s <t < 1. Weend this section with four propositions which will be
useful in the sequel. Their statements and proofs are adapted from [4].
Proofs are given in the appendix.

Proposition 2 Let F' € Dyy. For any ¢ > 0, there is a sequence
(Fo)newy C S that converges to I in Dy 5 and such that

1. essinf I'< F, <ess sup I',n € IN.
2 Nl DF, lnll2ll DF Inllo +2  n € IN.

We obtain in the same way the following result.

Proposition 3 Let o € Ly ., with 0 > —1 a.s. and [ || o % dr <

oo. For any e > 0, there is a sequence (0™),ery C V that converges to o
in Ly 2 and such that for n € IN,

1. o" > —1.

NS

o Loy Bads < fy | os [2 ds.

1/2

NS

1/2
(o N Doz 1ull2, ds) ™ < e+ (Jo Il Do |ull%, ds)

o i 12200 I 5

2 dr.

o0

B

S

N o™ e B <l o L Bxpo1)-

N

N D™ e (Bxoajx ) < €+ || Do || e (Bx[oa]x V) -

If o has continuous trajectories a.s., then (0%, Jnen converges in L*(B)
toor,, k> 1.



Proposition 4 Let T',T? be two absolutely continuous transformations,
respectively defined by

T'Hw)=w+ </o1 is(ek)ai(w)ds) keN

and

T*(w) =w+ (/01 is(ek)af(w)ds) \

kEN
w € B, with o',0? € L*(B x [0,1]). Let F € Dy o. eI/Ve have
| FoT (w) = FoT*w) [<]l| DF |ulleel o' (w) = 0*(w) 22,1 -
If F eS8, then
| F(w) = Flw+h) [ DE |allcll 2 lr heH, we B,
Proposition 5 Let (T"),cn be a sequence of absolutely continuous trans-
formations with

T'w =w+ (/OOO is(ek)ag(w)ds) \

keN

defined by a sequence (0"),en of processes that converges in L*(B) @
L*([0,1]) to a process o, such that the sequence of densities (L")en =
(dT*nP) . is uniformly integrable. If (F,).en converges to I in L*(B),

P
then (F, 0 T")en converges to F' o T in probability, where T is defined

by

Tw=w+ (/OOO is(ek)as(w)ds)

Moreover, T is absolutely continuous.

keN

3 Absolute continuity of anticipative flows

Proposition 6 Let o € V. The equation
t
Tiw =w — (/ is(ek)(’];w)as(’];w)ds) , te]o,1], (5)
0 k>0

has a unique solution which is invertible. For s,t € [0,1], s < t, let

Ay =T,7" and G50 = Ts0 Ay, s <t. Then ¢, satisfies to

bro =t ([Lilen)@)n(dldr) weB, 0<s<t<1 (6)

keN

Let s, =T 0As, s <t. We have

v = ([[ie)@ulon(u)dr) weB 0Ss<i<l

keN



Proof. The equations (5) and (6) can be solved as differential equations
in finite dimension since o, is Lipschitz, r € [0, 1], c¢f. Prop. 4. Denote by
A; and 7; the solutions of (5) and (6) for s = 0. It remains to show that
¢s10Ty =T, s < t. Let us show that for r <, 0,.(ex)(Tow) = t.(ex)(T,w),
k € IN. For s <1, we notice from (1) that T(Tw) < s = Ty(Tw) =
T (Tiw), and Ty(75) > s = Tp(7T;) > s. Hence

Th(Tow) < s < Ty (Tow) <= Ti(Tw) < s < Ty (Tow)
— T(Tw) < s < Tpp1(Tw).
This gives
¢
¢s+(Thw) = Tyw + (/ i (ex)(Tw)o(r, ’]}w)dr) =T,w,
s keN

which implies (5). Finally, ¢,(ex)(¢s+) = t,(ex)(¥s,), 0 < s <r <t <1,
and

W = s 0w = w+ (/: ir(er) (s w)o (P 0 ¢57tw)dr)
= o+ ([ (orso)on (o)

keN

keN
U

Theorem 1 For o € Ly, with o > —1 a.s., and [; || i Moo dr < o0,
Fq. (5) has a unique absolutely continuous solution which is invertible
and whose inverse flow {5+ @ 0 <s <t <1} satisfies to (6). Assume
that o has continuous trajectories, a.s. Then

_ d(¢sp)-P
L57t_T (7)
= exp|— [ Do, (é,)dr — tO'T e )dr 14 o7 (o7,1)),
(= [ Deont6ar = [[artontr) TI (1+om,(6m.0)
0<s<t<I1.

Remark. DTUT(@J) is here interpreted as t,(Do,(¢,+)).
Proof. We start by assuming that o € V and depends only on 7o,...,7,
for some n € IN.

Lemma 1 Ifo € V, we have with ¢ given by Prop. 6:

det (Dgs,) = exp (— /: DTUT(¢T7t)dT) H (1407, (é7,4)) 0 <s <t <1

SSTk St



Proof. We have that ¢;.(1) is differentiable since it is expressed with the
solution of a differential equation with C* coefficients, and

Dk¢s,t(1)
= lg=p + 01, (01,0 ) <y L s< T <y — 01 (O1.0) L ket L semycty
$1=n
+ Z iT(el)Dkqu(i)DiaT(qﬁm)dr k,l € IN.

Letting Uy = (Dids:(1))o<k,i<n, this gives the following differential equa-
tion in the space of (n + 1) x (n + 1) matrices:

t
Us,t = As,t —I'/ UT,tBT,tdr7 (8)
where

As ik, 1) = Lp=ny + o1y, (14,0 Lip<y Vo<t <6y — 0010 Ly Ls<mi<ty

0 <k, l<n, and B,; = (1:(€1) Dros(¢st))yer i<, Solving this differential
equation in s € [0,7] for fixed w on the intervals |7}, T;11[N[0, 1], k£ € IN,
we get

(Dk¢s,t(1))ogk,lgn (9)

t/\TNS-I-l t/\Tl-I-l
= exp (/ BT7th) H (eXp (//\T Br,tdr) + Cl) 9
s SALY

S<Tl <t

0 <s<t< 1, where Cp, [ > 1, is a matrix such that Ci(1,1) = op,(¢1,.4)
and Cy(z,7) =0if e # lor j > 1. Since B, 4(¢,7) =0ifr < T}, =0,...,n,

we have
t/\Tl-I-l
det (exp (/ Bmdr) + Cl)
sAT}
t/\Tl-I-l
= (14 or,(¢r,+))det (exp (//\T Bmdr)) ) (10)
snNTy
Hence
¢
det(Us+) = exp (/ trace(Bm)dr) H (1 +op,(¢1,.0)) -

s<Tp<t, k<n
Noticing that for k£ > n,

Dy (1)
= L=y + 014 (D740 ) V<t Lisc Ty <6 — 01(07.0) Likany L s< i<ty



and trace(B, ;) = y=n Dyo(¢ri)ir(er) = DTUT(¢T7t), we obtain

det (Do) = exp (—/:DTUT(%)CZT) T (14 05,(65,.0))

Define for k € IN 7, : B — H by mp(w) = (1{e<a} v )kenv. Let @, =
0si—1p, 0 < s <1 <1 and Iy = 7P, for £ > n. The mapping I — F},
is a diffeomorphism of Bt = {w € B : w; >0, k € IN}, and we have
for f € G (B), from the finite dimensional Jacobi theorem:

E[f] = E[f(]B+Fk)|det(]H—|—DFk |exp( ZFk )]

= Elf(lp+ ) [ A ], k=m,

with from (9):
t . t

Ay = exp <_/ DTUT(¢T,t)dT - / O-T(gbﬁt)dr) H (1 + UTi(¢Ti’t))'
s 5 s<T;<t, 1<k

Now,

E[Ag [log Ay ]

= B llogAxo (I + Fo)™" |

i=k
= b [Z gt
=1

! 2
| eI

Hence by uniform integrability of (Ag),, we obtain

Elf]=E[f o ¢sils,]

for f € G (B). We now return to the case of a general o. From Prop. 3,
we can choose a sequence (0™),ey C V that converges to o in Ly o, with
o, > —1, n € IN. The sequence (6"),cn defines a sequence of trans-

formations ( Zt) . ( ?t) . and density functions (L} ).en. The

uniform integrability of the sequence (L7 ,)nenv is shown as above:

r| [ 0l

Oodr—l—/ || Do, [ull2, dr, &> n.
0

IA

1+ o,

Lz, Nog 17, || = E [ log L2,(0%,) |

< B> lop(dn) [ +] |

k>1 7 1 —I_ U%k(¢%k,t)



13 o 13
[ D) L+ [ lorwr,) | ar]

S 102 llohecr + |
k>1 + Ty

t t
+ [ Darn ) Ve + [ o2 2 dr

1 1 1 1
<2/ U2 d / 2 g / Do, |gll% dr + <.
< o [l It [ I det [ Do Ll e

IA

E

2 lo=,

where ¢ does not depend on n. Let @7, = ¢, — Ip, and let us show that
(@} )nen converges in L*(B) @ H. We have

El ¢, —om 4]
< B[ 1or(ron) —ariron) il
< 2 ([ for—or uzdr s [ lorien) - oren P ]
< 92F [/:|a;}—a;n 2 L7 dr

+ [ 0 Do bl 41 [ 1o268,) = o290, dud]
< 2m[[ for—or 1 1| eso ([ (1 Do lulle +1)7 )

n,m € IN, 0 <s <t <1, by the Gronwall lemma and Prop. 4. This con-
verges to 0 by uniform integrability. Denote by ¢ ; the limit of (¢, )nen.
From Prop. 5, the sequence (07 (¢},))nen converges to o,(¢) in L*(B),
for r € [0,1], hence by boundedness of o the limit ¢, solves Eq. (5).
Moreover, ¢, is absolutely continuous from Prop. 5 and is the only
absolutely continuous solution from Prop. 4. We can now show that

(D.U.”(qbft))new converges to D.o.(¢.;) in L*(B) @ L*([0,]):

t ~ ~
£ [ 1Dio(en) = Dooton) I dr]
t
<28 [ [ (1 Do (60) = Deo(62) By + | Dro(60) = Doo(6,0) [) ]
t t
<28 | [ D(o7 = o0) By Liadr+ [ | Don(67) = Dovl6na) [y dr]
0 0

which converges to 0 as n goes to infinity since | Do, (¢7;) |g<||| Do, |m ]|,
r € [0,1]. We also have that (o7, (¢%, ;))nen converges to or,(¢r, ) in



L*(B), k € IN, from Prop. 3. Hence by unifom integrability and conver-
gence in probability of {L?,t tn € ]N} to L, we have for f € C;7(B):
E[f] = lim B[f(¢)L0,] = E[f(s0)Lsi]-

Since 1 +0 > 0 a.s., it is not difficult to see that ¢, is bijective and that
its inverse 1), satisfies (6). 0

Remark. The expression of the density can be written in a form which is
closer to its expression on Wiener space, cf. [4], [11], i.e

d(¢s,t>*P
dP

— exp ( / "Dy (00(6y00) ) — / "Dy (o) + 5(1[0,1510.(@5.715)))
X H (14 o7, (¢1,¢)) exp(—or,(P1,.0)),

S<Tk <t

Ls,t —

using (4). From [10] and (4), we obtain the following formal expression
for the Carleman-Fredholm determinant of D¢, :

dety (Dgsi) = exp (/t DT(UT(¢T7tw))dr — /: DTUT(¢T7tw)dr)
X H 1+ 0Ty ¢Tk ))exp(_UTk(¢Tk7t))

S<Tk <t

Lemma 2 If ' € § depends only on 19,...,7, and o €V, then

| D(F(AL)) |a

< 2mA+1) || o ||neBxp1)

1 1
< (14 [ 1100l drexo ([l Doy lunllc dr) ) | DF I,

€10,1].

Proof. We have from (8) and the Gronwall lemma, since Ag(k,[) = 0 if
k>

| DF(A)) |
t
([ 11 Do Lol DAo Igpmssg s dr

IA

t
xexp ([ 11 Doy lullo dr) + | D Ao gmsspnss ) | DF |

< 2mA+1) || o |lneBxp1)

1 1
(1 [ D il dreso ([ Do il dr) ) 1 0P i

10



4 Solution of a linear Skorohod equation

We need the following lemma.

Lemma 3 Let I' € S and let (T;),ep0,1) be the flow defined by o € Ly,
o> —1 a.s. We have

d .
FoT =0dT) (D) o T.. (11)

If moreover o € V, then

d 3
EF 0 At = —O'tDt(F o] At)

Proof. Eq. (11) comes from (3) and (5). We also have if o € V

d d d
0 = EFOAtOZ:E(FOAt)OI];—I_%FOAtOI];|5:t
d ~
- E(FOAQO’];‘th(?;)Dt(FoAt)oz'

4

Theorem 2 Let 0 € Ly, with continuous trajectories a.s., such that
o> —1 and [} || ﬁ |o< 00, b € L*([0,1], L>°(B)) and n € L>(B).

The anticipative stochastic differential equation

1 ~ 1
X, =n+/ UTXT(SNT—|-/ boX,ds t€[0,1] (12)
0 0

has for solution

X, = n(7” 1)exp< / Dsas ¢stw)d8—/() os(Pst) ds—l—/ bst) ds)
I[I (1+or,(én,0), tel0,1].
0<T;

<t

If moreover || b ||peBxoa)), || @ [|lLeo@xoa), || Do ||peoBxpaxny are
finite, then X is the unique solution of (12) in L*(B x [0,1]).

Proof. The proof is close to [3], [7]. We have X € L'(B x [0,1]) by
integrability of the density Lo, Let G € S.

£ "
I [ / asXstGds]
0

11



and X; — 1y — fo b,X,ds € L'(B). Hence o Xl € Dom(g), t € 1[0,1],
and (X¢)¢epo,1 is solution to Eq. (12). We now show the uniqueness of the
solution in L'(B x [0,1]). Let (¢™).en be a sequence given by Prop. 3,
and let (Y;)iep,1) be the difference of two solutions, which satisfies

t 13 ~
Y, = / bYads + / 0, Y,6N,.
0 0
Let ' € S.

EWVPAY)] = B

—

t N t
[ oD, (A ds + | bSYSF(A?)ds]
0 0

We have for u € V

t . t topr ~
E [/ USYSDS/ qurds] = F [/ / USYSDsqusdr]
0 s 0 Jo
1 T o
= F [/ / USYS(SNSUTdr] )
0 Jo

This relation can be extended by density to the process u = U”D(F(A”))
since [l o" D, (F(A"))dr = F(A?) — F(A") € Dy, and gives

B [/t .Y, D, /t UfDT(F(Af))drds]
0 s

12



. //USY(SNU”D( (A;}))dr]

_ /( /bYds) oD (F (A”))dr]

_ I /YJ”D A”))dr—/ bY/ X (A;}))drds].

Hence
B, F(AY] = E [/Ot(as oMY, D,(F(A™))ds + /Ot bSYSF(AZ)ds] |

From Lemma 2, | D(F(A})) |g is uniformy bounded in n and w, hence
letting n go to infinity we get

EY,F(A)] = E [/Ot bSYSF(AS)ds] .

E Y [ / L,by )Fds],
with £ = (Los(7;))™", which is satisfied by density for

Then

F = sign(LY(Ty)).

This gives
E[l Y]] </ [| Ys|]ds

and Y = 0 by the Gronwall lemma. Consequently the solution is unique.

4

Remark. If moreover the processes o and b are (F;)-adapted and n = 1,
then the solution coincides with the usual result, i.e.

¢ ¢
Xt:exp</0 bsds—/oasds) H (I1+op,) 0<1t<1,

0< T, <t

since ¢s (k) = 71 if Thy1 < s and o, by depend on 74 only if Thyr < s,
€ [0,1].

Appendix.

Let F,, denote the o-algebra generated by 79,...,7,, n € IN.

Proof of Prop. 2. Let F, = (1 — L)E[F" | fn] n € IN. We have

13



essinf F < F, < ess sup F';n € IN. If (Gy)geny C S converges to
Fin Dy, then

. 1/2
rwmmmﬁmmmsu( @EWHEW)IM

Il
=]

K3

<

0o 1/2
< (ZE[(Din)Q Ifn]) oo SIIF DG |l -

=0

M]3

1/2
wW£mﬂw)ru

Il
=]

This gives ||| DF, |gl|l<||| DF |ullco. We also have the convergence
of (Fi)ken to Fin Dqy. Hence it suffices to prove the result for F' €
D15 of the form F = f(70,...,7,). Assume first that f has a compact
support in ]RT’I. Let U € Cfo(lRiH) with fBr_lz_+1 U(z)de =1, ¥ > 0,
and let fip(y) = k,}ﬁfBzﬂ U(ka)f(y + x)dz, k > 0, y € IR, With
Fr = fi(70,...,7), we still have ess inf F < Fj, < ess sup I, k € IN,
and
Il DFy | lloo <] DF [g]]oo -

If f does not have a compact support, let @ € C>°(IR") such that ®(x) = 1
for |z |<land 0 < ® < 1lon IR". Let Fy, = E[F | Fo]®(r0/k,..., T /k).
Then (F))rew converges to F'in Dy 5 and

1
I DEArllee = NIl 2B | Fu]D® + 6E[DE | Fu] a o0

1
< W@ IDF |rllso 5 I Fr llooll] DO []|oc

i=n

1
< MPF Jalloe +4 1 [l sup Y (9,®)°

=0

IA

Il DF [rloo +e

for k great enough.
Proof of Prop. 3. For # = {Ay,...,A,} a partition of [0, 1], let

0'7T221Ai/ oudr/ | Ay .
=1 A;
Let (m,)nen be a sequence of partitions of [0, 1], mutually increasing

with maxi<;<, | A} | converging to 0 as n goes to infinity. We have that
(0™ )penv converges to o in Ly with

1 1
Lo s < [ o) ds,

14



1 1 9 1 1 9
[l ds < [ 12 ds,
0 1 +om 0 1+ o,

1 1
| Doz lulld, ds < [ 1l Do lall, ds.

and

We can apply Prop. 2 to |Al—i| Ja, 05ds, 1 < i <.
Proof of Prop. 4. Assume F = f(70,...,7,).

| FoT'(w)— FoT?*w) |

—|f (/OT a;(w)ds,...,/i"“ a;(w)ds)
g (/OT o2 (w)ds, . . /T+ af(w)ds) |

< | DF |u (in (/TT+ ai(w)ds—/ﬂml ai(w)ds) 2)

=0

1/2

o

< I DF [alleal o' (w) = 0%(w) 220, w € B

The same argument holds for the second part. If /' € Dj ., then there
is a sequence (F},),env C S that converges to F'in Dy and

I DE [l <[l DE |a o0 +e-

Since 7' and 72 are absolutely continuous, P(| F, 07" — FoT" |> §)
goes to 0 as n goes to oo, for any § > 0. The same is true for 72. This
gives

| FoT?=FoT? |< (|| DF |ulle +&) | 0! = 0 |20

where ¢ is arbitrary.

Proof of Prop. 5. For any ¢ > 0, there is M. > 0 such that

sup £ |:Ln1{Ln>ME}:| <e/2.
n€N

For any 6 > 0, there is ng € IN such that for n > ny,

P(| F(T") = FA(T") |2 6) = E[lgr-r.ssl"]
E Voo L] + MoP(| F = F, |> 6)

/24 M.P(| F—F,|>¢) <e.

15



Let (G"),enwv € S be a sequence that converges to [ in L*(B). The
density L of 7 is the weak limit of (L"),en. For any ,6 > 0, there is
ko € IN such that

P(|FoT" =G oT" |>8)+P(|FoT —G*oT |>6)
< e+ 2M. < 2

for any n € IN. We also have

P(|GRoT —GRoT™ |>6)

1
< S I1DG* ulll o= 0" |r2oay< ¢

for n great enough, from Prop. 4. Hence there is ng € IN such that for
n Z no,

P(|FoT —FoT"|3>6)< 3. 0
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