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1 Introduction and preliminaries

The problem of obtaining conditions for the independence of Wiener multiple stochas-

tic integrals I

n

(f

n

) and I

m

(g

m

) in terms of their symmetric deterministic kernels

f

n

2 L

2

(IR

+

)

�n

, g

m

2 L

2

(IR

+

)

�m

, has been studied in [9], [10]. A necessary and

su�cient condition for this independence is that the �rst order contraction of f

n

and

g

m

vanishes almost everywhere:

Z

1

0

f

n

(x

1

; : : : ; x

n

)g

m

(x

1

; y

2

; : : : ; y

m

)dx

1

= 0 a:e:

We are interested here in �nding an analog of this condition on Poisson space, us-

ing the operators of the anticipative stochastic calculus, cf. [2], [3], [5], [6]. In

this section, we start by recalling de�nitions and properties that can be found

in [5], [8]. Sect. 2 contains the main result (Th. 1), which states that two Pois-

son multiple stochastic integrals I

n

(f

n

) and I

m

(g

m

) are independent if and only if

f

n

(x

1

; : : : ; x

n

)g

m

(x

1

; y

2

; : : : ; y

m

) = 0 a.e. Let X be a locally compact separable space

with its Borel �-algebra B(X), and let � be a di�use Radon measure on (X;B(X)).

We consider a Poisson random measure with intensity � on a probability space

(
;F ; P ), i.e. a random measure p on (X;B(X)) such that
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(i) P (p(A) = n) = e

��(A)

�(A)

n

n!

, n 2 IN , A 2 B(X).

(ii) If A

1

; : : : ; A

n

are disjoint elements of B(X), then p(A

1

); : : : ; p(A

n

) are indepen-

dent random variables.

If A 2 B(X), we denote by F

A

the �-algebra generated by the random vari-

ables p(B) for B 2 B(X), B � A. We assume moreover that F = F

X

. The

�-algebras F

A

and F

B

are independent if and only if A

T

B = ;. No ordering is

required on X. In case X = IR

+

, a standard Poisson process (N

t

)

t2IR

+

is de�ned as

N

t

= p([0; t]), t 2 IR

+

. Let

�

n

= f(x

1

; : : : ; x

n

) 2 IR

n

+

: x

i

6= x

j

8i 6= jg:

Let L

2

(X;�)


n

denote the space of square-integrable functions of n variables, and

let L

2

(X;�)

�n

denote the subspace of L

2

(X;�)


n

made of symmetric functions. If

f

n

2 L

2

(X;�)


n

, the Poisson multiple stochastic integral of f

n

is de�ned as

I

n

(f

n

) =

Z

�

n

f

n

(t

1

; : : : ; t

n

)(p� �)(dt

1

) � � � (p� �)(dt

n

);

cf. [5]. If X = IR, this expression coincides with the following iterated stochastic

integral of predictable processes

I

n

(f

n

) = n!

Z

1

0

Z

t

�

n

0

� � �

Z

t

�

2

0

^

f

n

(t

1

; : : : ; t

n

)d(N

t

1

� �(t

1

)) � � � d(N

t

n

� �(t

n

));

where

^

f

n

2 L

2

(IR

+

; �)

�n

is the symmetrization of f

n

in its n variables. We recall the

isometry formula:

E [I

n

(f

n

)I

m

(g

m

)] = n!(f

n

; g

m

)

L

2

(X;�)


n
1

fn=mg

; (1)

f

n

2 L

2

(X;�)

�n

, g

m

2 L

2

(X;�)

�m

. Any square integrable functional F 2 L

2

(
;F ; P )

has a Wiener-Poisson chaotic decomposition, expressed as

F =

X

n�0

I

n

(f

n

);

f

k

2 L

2

(X;�)

�k

; k � 0; with the conventions L

2

(X;�)

0

= IR and I

0

(f

0

) = f

0

. Denote

by C

n

the Poisson chaos of order n 2 IN , de�ned as

C

n

= fI

n

(f

n

) : f

n

2 L

2

(X;�)

�n

g:

Then

L

2

(
;F ; P ) =

M

n�0

C

n

:
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An annihilation operator r : L

2

(
) ! L

2

(
) 
 L

2

(X;�) is de�ned by rI

0

(f

0

) = 0

and

rI

n

(f

n

) = nI

n�1

(f

n

); (2)

f

n

2 L

2

(X;�)

�n

; n 2 IN

�

. This operator is closable, of domain Dom(r), and its

adjoint r

�

: L

2

(
)
 L

2

(X;�) ! L

2

(
) satis�es

r

�

I

n

(f

n+1

) = I

n+1

(

^

f

n+1

);

f

n+1

2 L

2

(X;�)

�n


L

2

(X;�), where

^

f

n+1

is the symmetrization in n+1 variables of

f

n+1

, de�ned as

^

f

n+1

(t

1

; : : : ; t

n+1

) =

1

(n+ 1)!

X

�2�

n+1

f

n+1

(t

�(1)

; : : : ; t

�(n+1)

);

�

n+1

being the set of all permutations of f1; : : : ; n+ 1g. The operator r

�

coincides

with the Poisson stochastic integral on predictable square-integrable processes, cf.

[5]. The operator r can be extended to any Poisson functional as a di�erence

operator, cf. [3], [5], with

r(FG) = FrG+GrF +rFrG: (3)

A Wick product between Poisson multiple stochastic integrals is de�ned as

I

n

(f

n

) : I

m

(g

m

) = I

n+m

(f

n

� g

m

); f

n

2 L

2

(X;�)

�n

; g

m

2 L

2

(X;�)

�m

; (4)

where f

n

� g

m

is the symmetric tensor product of f

n

and g

m

, i.e. the symmetrization

of the function f

n


 g

m

. Note that

j f

n


 g

m

j

2

L

2

(X)


n+m

�

(n+m)!

n!m!

j f

n

� g

m

j

2

L

2

(X)


n+m

:

Finally, we recall the following result, known as the Stroock formula, which allows

to express the chaotic decomposition of F 2

T

n�1

Dom(r

n

) using the operator r.

Proposition 1 If F 2

T

n2IN

Dom(r

n

), then

F = E[F ] +

X

n�1

1

n!

I

n

(E[r

n

F ]):

Proof. This result depends only on the Fock space structure of the chaotic decom-

position, hence its Wiener space version, cf. [7], is valid on Poisson space.

�

3



2 Independence of Poisson multiple stochastic in-

tegrals

In the case of �rst order integrals, a necessary and su�cient condition for their

independence can be obtained via their characteristic functionals. The characteristic

functional of I

1

(f

1

) is given by

E [exp(i�I

1

(f

1

))] = exp

�

Z

X

(exp(i�f

1

(x))� i�f

1

(x)� 1)�(dx)

�

; � 2 IR;

cf. [8]. A necessary condition for the independence of I

1

(f

1

) and I

1

(g

1

) can be

obtained as

Z

X

(exp(i�f

1

(x)+ i�g

1

(x))� exp(i�f

1

(x))� exp(i�g

1

(x))+ 1)�(dx) = 0; �; � 2 IR;

which implies that fg = 0 �-a.e., and this condition is su�cient for the independence

since the Poisson measure has independent increments, cf. the proof of Th. 1. In the

general case, the characteristic function is unknown, and we need the following mul-

tiplication formula for the Poisson multiple stochastic integrals. If f

n

2 L

2

(X;�)

�n

and g

m

2 L

2

(X;�)

�m

, we de�ne the function f

n

�

l

k

g

m

, 0 � l � k, to be the sym-

metrization in n+m� k � l variables of the function

(x

l+1

; : : : ; x

n

; y

k+1

; : : : ; y

m

) 7!

Z

X

� � �

Z

X

f

n

(x

1

; : : : ; x

n

)g

m

(x

1

; : : : ; x

k

; y

k+1

; : : : ; y

m

)�(dx

1

) � � ��(dx

l

):

The function f

n

�

l

k

g

m

is not necessarily in L

2

(X;�)

�n+m�k�l

.

Proposition 2 i) If f

n

2 L

2

(X;�)

�n

and g

m

2 L

2

(X;�)

�m

are such that f

n

�

l

k

g

m

2

L

2

(X;�)

�n+m�k�l

, 0 � l � k � n ^ m, then I

n

(f

n

)I

m

(g

m

) 2 L

2

(
) and its chaotic

decomposition can be written as

I

n

(f

n

)I

m

(g

m

) =

k=n^m

X

k=0

k!

 

n

k

! 

m

k

!

l=k

X

l=0

 

k

l

!

I

n+m�k�l

(f

n

�

l

k

g

m

): (5)

ii) Conversely, if I

n

(f

n

)I

m

(g

m

) 2 L

2

(
), then the function

h

n;m;s

=

X

s�2i�2s

i!

 

n

i

! 

m

i

! 

i

s� i

!

f

n

�

s�i

i

g

m

is in L

2

(X;�)

�n+m�s

, 0 � s � 2(n ^m), and the chaotic expansion of I

n

(f

n

)I

m

(g

m

)

is

I

n

(f

n

)I

m

(g

m

) =

n^m

X

s=0

I

n+m�s

(h

n;m;s

): (6)

4



Remark 1 The �rst part of this proposition can be found under di�erent formula-

tions in [1], [4], [8]. The second part gives necessary conditions for I

n

(f

n

)I

m

(g

m

) to

be in L

2

(
).

Proof of Prop. 2. i) The di�erence with the result of [8] is that we explicitely

compute the coe�cient of f

n

�

l

k

g

m

. As proved in [8], if f

n

�

l

k

g

m

2 L

2

(X;�)

�n+m�k�l

,

0 � l � k � n ^m, then (5) can be obtained by formal calculations, using the rule

(p(dx)� �(dx))

2

= p(dx) = (p(dx) � �(dx)) + �(dx)

for the integration on diagonals. We have

I

n

(f

n

)I

m

(g

m

)

=

Z

�

n

��

m

f

n

(x

1

; : : : ; x

n

)g

m

(y

1

; : : : ; y

m

)(p� �)(dx

1

) � � � (p � �)(dx

n

)

(p� �)(dy

1

) � � � (p � �)(dy

m

)

=

k=n^m

X

k=0

k!

 

n

k

! 

m

k

!

Z

�

n+m�k

1

fx

1

=y

1

;:::;x

k

=y

k

g

f

n

g

m

p(dx

1

) � � � p(dx

k

)

(p� �)(dx

k+1

) � � � (p� �)(dx

n

)(p� �)(dy

k+1

) � � � (p� �)(dy

m

)

=

k=n^m

X

k=0

k!

 

n

k

! 

m

k

!

l=k

X

l=0

 

k

l

!

Z

�

n+m�k�l

Z

X

� � �

Z

X

f

n

(x

1

; : : : ; x

n

)g

m

(x

1

; : : : ; x

k

; y

k+1

; : : : ; y

m

)�(dx

1

) � � � �(dx

l

)

(p� �)(dx

l+1

) � � � (p � �)(dx

n

)(p� �)(dy

k+1

) � � � (p� �)(dy

m

)

=

k=n^m

X

k=0

k!

 

n

k

! 

m

k

!

l=k

X

l=0

 

k

l

!

I

n+m�k�l

(f

n

�

l

k

g

m

):

ii) If I

n

(f

n

)I

m

(g

m

) 2 L

2

(
), then it is in the sum C

0

� � � � � C

n+m

of the Poisson

chaos of orders lower than n+m since

E[I

n

(f

n

)I

m

(g

m

) j C

0

� � � � � C

n+m

] = I

n

(f

n

)E[I

m

(g

m

) j C

0

� � � � �C

n+m

]

= I

n

(f

n

)I

m

(g

m

);

hence it belongs to

T

n�1

Dom(r

n

) and its chaotic decomposition can be obtained

from Prop. 1. From (3), we have by induction for r � 1

r

t

1

� � �r

t

r

(FG) =

p=r

X

p=0

q=r

X

q=r�p

X

fk

1

<���<k

p

g[fl

1

<���<l

q

g=f1;:::;rg

r

t

k

1

� � �r

t

k

p

Fr

t

l

1

� � �r

t

l

q

G;

5



and r

r

(FG) 2 L

2

(
) 
 L

2

(X;�)

�r

if FG 2 Dom(r

r

). Applying this formula to

F = I

n

(f

n

) and G = I

m

(g

m

), we obtain

r

t

1

� � � r

t

r

(I

n

(f

n

)I

m

(g

m

)) =

p=r

X

p=0

q=r

X

q=r�p

X

fk

1

<���<k

p

g[fl

1

<���<l

q

g=f1;:::;rg

n!

(n � p)!

m!

(m� q)!

I

n�p

(f

n

(�; t

k

1

; : : : ; t

k

p

))I

m�q

(g

m

(�; t

l

1

; : : : ; t

l

q

)):

De�ne a function h

n;m;n+m�r

2 L

2

(X;�)

�r

as

h

n;m;n+m�r

(t

1

; : : : ; t

r

)

=

1

r!

E[r

t

1

� � � r

t

r

(I

n

(f

n

)I

m

(g

m

))]

=

1

r!

p=r

X

p=0

q=r

X

q=r�p

1

fn�p=m�qg

n!

(n� p)!

m!

(m� q)!

(n� p)!a

n;m;p;r

f

n

�

n�p

q+p�r

g

m

(t

1

; : : : ; t

r

);

=

1

r!

X

n�m+r�2p�2n

n!m!

(n� p)!

a

n;m;p;r

f

n

�

n�p

m�r+p

g

m

(t

1

; : : : ; t

r

);

where a

n;m;p;r

is the number of sequences k

1

< � � � < k

p

and l

1

< � � � < l

q

such that

fk

1

; : : : ; k

p

g [ fl

1

; : : : ; l

q

g = f1; : : : ; rg, with exactly m � r + p � (n � p) terms in

common. This number is

a

n;m;p;r

=

r!

(r � p)!p!

p!

(m� n� r + 2p)!(n+ r �m� p)!

:

Hence

h

n;m;n+m�r

=

X

n�m+r�2p�2n

n!m!

(r � p)!(m� n� r + 2p)!(n + r �m� p)!(n� p)!

f

n

�

n�p

m�r+p

g

m

=

X

n+m�r�2i�2(n+m�r)

n!

(n� i)!

m!

(m� i)!

1

(2i� s)!

1

(s� i)!

f

n

�

s�i

i

g

m

=

X

s�2i�2s

i!

 

n

i

! 

m

i

! 

i

s� i

!

f

n

�

s�i

i

g

m

;

with s = n+m� r and i = p +m� r. The chaotic expansion

I

n

(f

n

)I

m

(g

m

) =

n^m

X

s=0

I

n+m�s

(h

n;m;s

)

follows from Prop. 1.

�

Theorem 1 The random variables I

n

(f

n

) and I

m

(g

m

) are independent if and only

if

f

n

(x

1

; : : : ; x

n

)g

m

(x

1

; y

2

; : : : ; y

m

) = 0 �


n+m�1

� a:e:

6



Proof. We follow the approach of [9]. If I

n

(f

n

) and I

m

(g

m

) are independent, then

I

n

(f

n

)I

m

(g

m

) 2 L

2

(
;F ; P ) and

(n +m)! j f

n

� g

m

j

2

L

2

(X;�)


n+m

� n!m! j f

n


 g

m

j

2

L

2

(X)


n+m

= n!m! j f

n

j

2

L

2

(X;�)


n

j g

m

j

2

L

2

(X;�)


m

= E

h

I

n

(f

n

)

2

i

E

h

I

m

(g

m

)

2

i

= E

h

(I

n

(f

n

)I

m

(g

m

))

2

i

=

r=n^m

X

r=0

(n+m� r)! j h

n;m;r

j

2

L

2

(X;�)


n+m�r

� (n+m)! j h

n;m;0

j

2

L

2

(X;�)


n+m

+(n+m� 1)! j h

n;m;1

j

2

L

2

(X;�)


n+m�1

� (n+m)! j f

n

� g

m

j

2

L

2

(X;�)


n+m

+nm(n+m� 1)! j f

n

�

0

1

g

m

j

2

L

2

(X;�)


n+m�1

from Prop. 2. This implies that f

n

�

0

1

g

m

= 0 a.e.

Conversely, if f

n

�

0

1

g

m

= 0, choose a version

�

f

n

of f

n

and let

A = fx 2 X :

�

f

n

(x; �) = 0 a:e:g:

Then f

n

= 0 a.e. on A�X

n�1

, and g

m

= 0 a.e. on A

c

�X

n�1

. Consequently, I

n

(f

n

)

is F

A

c

-measurable and I

m

(g

m

) is F

A

-measurable, hence the independence.

�

In order to obtain a condition for independence which is consistent with its Wiener

space counterpart, we can write:

Corollary 1 The integrals I

n

(f

n

) and I

m

(g

m

) are independent if and only if

I

n

(f

n

)I

m

(g

m

) = I

n

(f

n

) : I

m

(g

m

);

where " : " denotes the Wick product.

Proof. This follows from the de�nition (4) of the Wick product, Th. 1 and Prop 2.

�

Proceeding as in [9], [10], we obtain the following corollaries.

Proposition 3 Two arbitrary families fI

n

k

(f

n

k

) : k 2 Ig and fI

m

l

(g

m

l

) : l 2 Jg

of Poisson multiple stochastic integrals are independent if and only if I

n

k

(f

n

k

) is

independent of I

m

l

(g

m

l

) for any k 2 I, l 2 J .

7



Proof. Assume that I

n

k

(f

n

k

) is independent of I

m

l

(g

m

l

), (k; l) 2 I �J . Fix a version

�

f

n

i

of f

n

i

, i 2 I, and let A

i

= fx 2 X :

�

f

n

i

(x; �) = 0 a:e:g, i 2 I. Then f

n

i

= 0

a.e. on A

i

�X

n

i

�1

and g

m

j

= 0 a.e. on A

c

i

�X

m

j

�1

, (i; j) 2 I � J . Consequently,

�(I

n

i

(f

n

i

) : i 2 I) � _

i2I

F

A

c

i

and �(I

m

j

(g

m

j

) : j 2 I) �

T

i2I

F

A

i

, which implies

the independence of the �-algebras.

�

Corollary 2 Let f

n

2 L

2

(X;�)

�n

, g

m

2 L

2

(X;�)

�m

, and

S

f

= ff

n

�

n�1

n�1

h : h 2 L

2

(X;�)

�n�1

g;

S

g

= fg

n

�

m�1

m�1

h : h 2 L

2

(X;�)

�m�1

g:

The statements listed below are equivalent.

(i) I

n

(f

n

) is independent of I

m

(g

m

).

(ii) For any f 2 S

f

and g 2 S

g

, fg = 0 �-a.e.

(iii) The �-algebras �(I

1

(f) : f 2 S

f

) and �(I

1

(g) : g 2 S

g

) are independent.

Proof. (i) , (ii) relies on the fact that any f 2 S

f

and g 2 S

g

can be written as

f = f

n

�

n�1

n�1

h, g = g

m

�

m�1

m�1

k with h 2 L

2

(X;�)

�n�1

, k 2 L

2

(X;�)

�m�1

, and that

fg = (f

n

�

0

1

g

m

; h
 k)

L

2

(X;�)

�n+m�2
. (ii), (iii) comes from Prop. 3.

�

Let (h

k

)

k2IN

�

be an orthonormal basis of L

2

(X;�). For simplicity, we denote by

�((I

n

(f

n

);rI

n

(f

n

); : : : ;r

n�1

I

n

(f

n

))

the �-algebra

�

�

I

n

(f

n

);

�

rI

n

(f

n

); h

k

1

1

�

L

2

(X;�)

; : : : ;

�

r

n�1

I

n

(f

n

); h

k

n�1

1

� � � � � h

k

n�1

n�1

�

L

2

(X;�)

�n�1

; k

i

j

2 IN; 1 � i � j

�

:

Corollary 3 The Poisson multiple stochastic integrals I

n

(f

n

) and I

m

(g

m

) are inde-

pendent if and only if the �-algebras

�((I

n

(f

n

);rI

n

(f

n

); : : : ;r

n�1

I

n

(f

n

))

and

�((I

m

(g

m

);rI

m

(g

m

); : : : ;r

m�1

I

m

(g

m

))

are independent.

8



Proof. This is a consequence of Th. 1, Prop. 3, and the de�nition (2) of r.

�

Corollary 4 If F 2 Dom(r) and G 2 L

2

(
;F ; P ) with G =

P

m�0

I

m

(g

m

), then F

is independent of G if

g

m

�

0

1

rF = 0; �


m


 P � a:e:; m 2 IN: (7)

Proof. Assume that F =

P

n�0

I

n

(f

n

). The condition (7) is equivalent to g

m

�

0

1

f

n

= 0 �-a.e. for any n;m 2 IN , since the decomposition rF =

P

n�0

nI

n�1

(f

n

) is

orthogonal in L

2

(
)
 L

2

(X;�). The result follows then from Prop. 3.

�

References

[1] C. Dellacherie, B. Maisonneuve, and P.A. Meyer. Probabilit�es et Potentiel, volume 4.

Hermann, 1992.

[2] A. Dermoune, P. Kr�ee, and L. Wu. Calcul stochastique non adapt�e par rapport �a la

mesure de Poisson. In S�eminaire de Probabilit�e XXII, volume 1321 of Lecture Notes

in Mathematics, Berlin/New-York, 1988. Springer Verlag.

[3] Y. Ito. Generalized Poisson functionals. Probability Theory and Related Fields, 77:1{

28, 1988.

[4] P. Kr�ee. La th�eorie des distributions en dimension quelconque et l'int�egrale stochas-

tique. In H. Korezlioglu and A.S.

�

Ust�unel, editors, Stochastic Analysis and Re-

lated Topics, volume 1316 of Lecture Notes in Mathematics, Berlin/New-York, 1986.

Springer-Verlag.

[5] D. Nualart and J. Vives. Anticipative calculus for the Poisson process based on the

Fock space. In S�eminaire de Probabilit�e de l'Universit�e de Strasbourg XXIV, volume

1426 of Lecture Notes in Mathematics, Berlin/New-York, 1990. Springer Verlag.

[6] N. Privault. Chaotic and variational calculus in discrete and continuous time for the

Poisson process. Stochastics and Stochastics Reports, 51:83{109, 1994.

[7] D. Stroock. Homogeneous chaos revisited. In S�eminaire de Probabilit�es XXI, volume

1247 of Lecture Notes in Mathematics, Berlin/New-York, 1987. Springer Verlag.

[8] D. Surgailis. On multiple Poisson stochastic integrals and associated Markov semi-

groups. Probability and Mathematical Statistics, 3:217{239, 1984.

[9] A.S.

�

Ust�unel and M. Zakai. On independence and conditioning on Wiener space.

Annals of Probability, 17(4):1441{1453, 1989.

[10] A.S.

�

Ust�unel and M. Zakai. On the structure on independence on Wiener space.

Journal of Functional Analysis, 90(1):113{137, 1990.

9


