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Abstract. We study the independence of Poisson functionals via the chaotic calculus on
Poisson space. Necessary and sufficient conditions for this independence are given in the
case of Poisson multiple stochastic integrals.
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1 Introduction and preliminaries

The problem of obtaining conditions for the independence of Wiener multiple stochas-
tic integrals I,,(f,) and I,(¢,) in terms of their symmetric deterministic kernels
fo € L*(IRy)°", g € L*(IR;)°™, has been studied in [9], [10]. A necessary and
sufficient condition for this independence is that the first order contraction of f,, and

g, vanishes almost everywhere:

/0 fal@s oy 2n)gm(@1, Y2y - oy Ym)der =0 ace.

We are interested here in finding an analog of this condition on Poisson space, us-
ing the operators of the anticipative stochastic calculus, cf. [2], [3], [5], [6]. In
this section, we start by recalling definitions and properties that can be found
in [5], [8]. Sect. 2 contains the main result (Th. 1), which states that two Pois-
son multiple stochastic integrals I,,(f,) and I,,(¢,,) are independent if and only if
falr, ooy xn)gm(21,y2, - o, Ym) = 0 ae. Let X be a locally compact separable space
with its Borel o-algebra B(X), and let A be a diffuse Radon measure on (X, B(X)).
We consider a Poisson random measure with intensity A on a probability space

(Q,F, P), ie. arandom measure p on (X, B(X)) such that



(i) P(p(A) =n) = e MDA 1y € N A € B(X).
(ii) If Ay,..., A, are disjoint elements of B(X), then p(Ay),...,p(A,) are indepen-

dent random variables.

If A€ B(X), we denote by F4 the o-algebra generated by the random vari-
ables p(B) for B € B(X), B C A. We assume moreover that F = Fy. The
o-algebras F4 and Fp are independent if and only if AN B = (). No ordering is

required on X. In case X = IR, a standard Poisson process (N¢)iep, is defined as

N, =p(]0,1]), t € IR;. Let
Ap ={(z1,...,2,) € IRY : xy# x; Vi j}.

Let L*(X,A)®" denote the space of square-integrable functions of n variables, and
let L?(X,))°" denote the subspace of L*(X,\)®" made of symmetric functions. If
fn € L*(X,\)®", the Poisson multiple stochastic integral of f, is defined as

L) = [ e )= Ddh) - (p = (1),

cf. [5]. If X = IR, this expression coincides with the following iterated stochastic

integral of predictable processes

L) =t [ /f - /f Fullye oo )d(Ney = A(11)) -+~ d(No, = A(1a)),

where fn € L*(IR4, \)°" is the symmetrization of f,, in its n variables. We recall the

isometry formula:

E L (fo)Im(gm )] = n}(frr gm )22 (x )2n L fnmm) (1)
fo € LX), g € L*(X, A)°™. Any square integrable functional F' € L*(Q, F, P)

has a Wiener-Poisson chaotic decomposition, expressed as

n>0
fr € L2(X, \)°* & > 0, with the conventions L?(X, \)° = IR and Iy(fs) = fo. Denote
by €, the Poisson chaos of order n € IN, defined as

Co ={L.(f.) : [.€ L*(X,N)"}.

Then



An annihilation operator V : L*(Q)) — L*(Q) @ L*(X, \) is defined by VIy(fo) =0
and

VIy(fn) = nloa(fn), (2)

fo € L*(X,))°", n € IN". This operator is closable, of domain Dom(V), and its
adjoint V*: L*(Q) @ L*(X, ) — L*(Q) satisfies

VL fast) = Lupa (faga),

for1 € LA(X, )" @ L*(X, A), where fn-l—l is the symmetrization in n + 1 variables of
fni1, defined as

1
(n+1)!

Z fn-l-l(tg(l)? s 7t0(n+1))7

OCEX 41

Jrgr(te, oo tagr) =

Y,41 being the set of all permutations of {1,...,n 4+ 1}. The operator V* coincides
with the Poisson stochastic integral on predictable square-integrable processes, cf.
[5]. The operator V can be extended to any Poisson functional as a difference

operator, cf. [3], [5], with
V(FG)=FVG+ GVF+VFVG. (3)
A Wick product between Poisson multiple stochastic integrals is defined as

]n(fn) : ]Tn(gm) = n-l-TfL(fn Ogm)v Jn € Lz(Xv )‘)Onv gm € Lz(Xv )‘)Omv (4)

where f, 0 ¢, is the symmetric tensor product of f,, and ¢,,, i.e. the symmetrization
of the function f, ® ¢,,. Note that
(n+m)!

o | fo 0 gm [12(x)0mtm -

| o ® g [12(x)0m4m <

Finally, we recall the following result, known as the Stroock formula, which allows

to express the chaotic decomposition of I € (,5; Dom(V") using the operator V.

Proposition 1 If F € N,cpy Dom(V"), then

F=EF|+> %JH(E[V”F]).

n>1 """

Proof. This result depends only on the Fock space structure of the chaotic decom-

position, hence its Wiener space version, cf. [7], is valid on Poisson space. O



2 Independence of Poisson multiple stochastic in-
tegrals

In the case of first order integrals, a necessary and sufficient condition for their
independence can be obtained via their characteristic functionals. The characteristic

functional of I1(f1) is given by

FElexp(iali(f1))] = exp (/X(exp(iozfl(x)) —tafi(x) — 1))\(d:1;)) , «aé€lR,

cf. [8]. A necessary condition for the independence of I1(f1) and [;(g1) can be

obtained as

[ (expiafi(e) +iBgu(a)) — expliafile)) — exp(idgr(e)) + DA(dx) =0, a,§ € IR,

which implies that f¢g = 0 A-a.e., and this condition is sufficient for the independence
since the Poisson measure has independent increments, cf. the proof of Th. 1. In the
general case, the characteristic function is unknown, and we need the following mul-
tiplication formula for the Poisson multiple stochastic integrals. If f, € L*(X, )"
and g,, € L*(X,)\)°™, we define the function f, ok ¢,,, 0 < I < k, to be the sym-

metrization in n + m — k — [ variables of the function

(J}H_l,...,l’n,yk-l—la'-'vym)'_>
/X---/an(:lil,...,:Ifn)gm(l’l,---7$kayk+17---7ym))\(d$1)---)\(d$l)-

The function f, o} ¢, is not necessarily in L2(X, \)en+m=k-1,

Proposition 2 i) If f, € L*(X,\)°" and ¢,, € L*(X,\)°™ are such that f, o% g,, €
LA X N)erdm=k=l 0 < 1 <k <nAm, then L,(fu)[n(gn) € L*() and its chaotic
decomposition can be written as
k=nAm I=k
Lt = 3 05 ) (1 )E (] ) eitrida 6)

i) Conversely, if L.(fn)ln(gm) € L*(Q), then the function

S fn m ? s
5<2:<2s

is in L*(X, Nt~ 0 < s <2(n Am), and the chaotic expansion of I,(fn)Im(gm)
is
nAm

LUBLAUSED sp (s (6)



Remark 1 The first part of this proposition can be found under different formula-
tions in [1], [4], [8]. The second part gives necessary conditions for L,(fn)ln(gm) to
be in L*(Q).

Proof of Prop. 2. i) The difference with the result of [8] is that we explicitely
compute the coefficient of f, ok g,,. As proved in [8], if f,, o} ¢, € L2(X, \)entm=k=l,
0 <1<k <nAm,then (5) can be obtained by formal calculations, using the rule

(p(dz) — Mdx))* = p(dz) = (p(dz) — M(dx)) + A(dx)
for the integration on diagonals. We have

]n(fn)]m(gm)
B /AnxAm fn(xh o "xn)gm(yh - '7ym)(p - )‘)(dxl) T (p - )‘)(dxn)
(p— N (dy1) - (p — N)(dym)

= () (F ) Lot b))
(= )k~ (= ) )(p = A)(dgin) - (p = V()

- 5 r)E0)

/n+m . l/ / fn Tlyeeoy & gm(:z;l,...,xk,yk+1,...,ym))\(dxl)...)\(dxl)
(p—M(dxig1) - (p— AN)(dxn)(p— N dyrs1) -+ (p— M) (dym)

k=nAm n m =k k l
_ kz_% k! ( . ) ( L );( ; )]n+m—k—l(fn O Gim)-

i) If L.(fu)ln(gm) € L*(Q), then it is in the sum Cy & -+ @ C\ppn of the Poisson

(]

chaos of orders lower than n + m since

Bl (fu)In(gm) | Co® -+ @ Cogm] = Li(fn) Elln(gm) | Co @ -+ D Crgn]

1
La(fa) (g ),

hence it belongs to M,>; Dom (V") and its chaotic decomposition can be obtained

from Prop. 1. From (3), we have by induction for r > 1

p=r gq=r
Vi Vi (FG) =Y 3 Vi, Vi FVy -V, G,

p=0g=r—p {ky<--<kptu{li<---<lg}={1,..r}



and V'(FG) € L*(Q) @ L*(X,\)°" if FG € Dom(V"). Applying this formula to
F=1(f.) and G = I,,(¢gmm), we obtain

Vi Vo (L) In(gm) = 32 2 >

p=0g=r—p  {ki <--<kptU{li<--<lg}={1,....,r}

]n—p(fn('v Tpyy - 7tkp))]m—q(gm('7 gy 7th))'

n! m!
(n—p)(m —q)!
Define a function A, ppm—r € L*(X,A)°" as

hn,m,n—l—m—r (tla oo 7t7°)

1

= GBIV Ve L fu) 1n(gin))]
1= = n! m!

S L pmme (n— p)lanmprfn onis_r Gu(te, ... 1)
r! p=0 q:rzzp = " (n - p)’ (m - Q)’ . v ’ ’ ’
1 nlm!

= T 1 %n,m, ,Tfn O:bn_—pr Im tiyoout,
r! n—m-I—TZS:QpSQn (n o p)’ ' r ( 7 7 )7

where a,, ., 18 the number of sequences by < --- < k, and [; < --- < [, such that

{k1,. ., kY UL, . 1} = {1,...,r}, with exactly m —r 4+ p — (n — p) terms in

common. This number is

r! p!
r—p)pt(m—n—r+2p)l(n+r—m-—p)

Upom,pr = (

Hence

hn,m,n—l—m—r

nim!
= Z fn O:Ln_—pr—l—p Im
n—m+r<2p<2n (T - p)’(m —n—r+ 2p)’(n +r—m-— p)’(n - p)’
n! m! 1 1

- Z Ay nof_igm

pm—r <3 ntm—r) (n—)(m—0)! (20— s)! (s —0)!

= . . . . n O} ™y
5<2:<2s ¢ ¢ st

with s =n+m —r and ¢ = p+ m — r. The chaotic expansion

nAm

Lu(f)ln(9m) = D Lrtms (o)

follows from Prop. 1. O

Theorem 1 The random variables I,(f,) and 1,(gn) are independent if and only
of

Fol@1se s @) gm (@1, Y2y o s ym) = 0 AT e,



Proof. We follow the approach of [9]. If I,,(f,) and [,,(¢.) are independent, then
L(f)n(gm) € L*(Q, F, P) and

(n+m)! | fo 0 gm [12(x 2yontm

Y

ntm! | fo @ g [72(x)ontm

= nlm!| f, |%2(X,/\)®"| Im |%2(X,/\)®m
= L) £ [Lu(gn)?]

= B [(L(fu)Inlgn))]

r=nAm

= Z (n —I‘ m — T)' | hn7m77» |%2(X7/\)®n+m—r

r=0

Y

(n —|— m)' | hmm’() |%2(X7A)®n+m —I—(n —|— m — 1)’ | hn,m,l |%2(X7A)®n+m—1

> (ntm) ] faogm [1oxayemtm Frmn +m =D fo of gm [T2(x 3yentm—

from Prop. 2. This implies that f, oY ¢,, = 0 a.e.

Conversely, if f, 02 ¢,, = 0, choose a version f, of f, and let
A={rc X : fi(z,))=0a.c.}.

Then f, =0 a.e. on A x X" ! and ¢,, = 0 a.e. on A° x X"~ Consequently, I,,(f,)

is Fac-measurable and I, (g, ) is Fa-measurable, hence the independence. ]

In order to obtain a condition for independence which is consistent with its Wiener

space counterpart, we can write:

Corollary 1 The integrals I,(f,) and I,,(gm) are independent if and only if

where ” : 7 denotes the Wick product.

Proof. This follows from the definition (4) of the Wick product, Th. 1 and Prop 2.7

Proceeding as in [9], [10], we obtain the following corollaries.

Proposition 3 Two arbitrary families {1, (f.,) : k € 1} and {I,(gm,) : 1 € J}
of Poisson multiple stochastic integrals are independent if and only if I, (f..) is
independent of I, (gm,) for any k€ 1,1 € J.



Proof. Assume that I, (f,,) is independent of I,,(¢m,), (k,1) € I x J. Fix a version

fo, of foyi€l,andlet Ay ={z € X : f.(x,) =0 a.e}, i€ . Then f,, =0
a.e. on A; x X™ ' and g, = 0 a.e. on A x X™ 1 (i, j) € I x J. Consequently,
o(In,(fo;) + 1€ 1) C VierFae and (L, (gm,) : J € I) C Nigs Fa,. which implies
the independence of the o-algebras. O

Corollary 2 Let f, € L*(X,\)°", g, € L*(X,\)°™, and
S;={fao""1h : he L*(X,\)°" 1},

S, ={g, 0”1 h : he L*(X,\)°" 1

The statements listed below are equivalent.

(¢) I.(fn) is independent of L, (gm).
(i¢) For any f € Sy and g € S,, fg =0 A-a.e.
(¢i0) The o-algebras o(I1(f) = f € S¢) and o(I1(g) : g € Sy) are independent.

Proof. (1) < (11) relies on the fact that any f € Sy and g € 5, can be written as
f=faolTih, g = gnomiik with h € L*(X,\)°""!, k€ L*(X,\)°™"!, and that

Y

f9=(fn0} gm,h @ k)2(x \yontm—2. (i1) & (iii) comes from Prop. 3. O

Let (hy)ren+ be an orthonormal basis of L*(X,\). For simplicity, we denote by
o(L(f), VL (f)s o, V" ()
the o-algebra

o (]n(fn), (VI fo)s by

(V' D) gm0 bigmt)

L2(X0) geeey

k;eﬂv,1§@'§j).

Corollary 3 The Poisson multiple stochastic integrals I,,(f,) and I,,(¢y) are inde-
pendent if and only if the o-algebras

o(L(fn), VL. (fn)s - s V" L(F2)

and
o((LIn(9m)s Vn(gm)s s V" L gm))

are independent.



Proof. This is a consequence of Th. 1, Prop. 3, and the definition (2) of V. O

Corollary 4 If I' € Dom(V) and G € L*(Q, F, P) with G = Y,,50 In(gm), then F
is independent of G if

gm SVFE =0, X" @P —a.e., m€IN. (7)

Proof. Assume that I" = >, 5o 1,(f,). The condition (7) is equivalent to g, of
fn = 0 Xa.e. for any n,m € IN, since the decomposition VI = 3=, sonl,_1(f,) is
orthogonal in L*(Q) @ L*(X,\). The result follows then from Prop. 3. m
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