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ABSTRACT. We consider a function f on an abstract Wiener space, with values

in R
d, which is regular and non-degenerate in the sense of the Malliavin calculus. Its

law admits a density p which is C∞ on R
d. We give criteria ensuring that p(ξ) > 0 for

a fixed ξ in R
d. The first one is stated in terms of capacities cr,p on the Wiener space.

The second one is related to some “restrictions” of f to subspaces of dimension d of the

Cameron-Martin space. Finally, we apply this criterion to obtain another one, previously

given by Aida-Kusuoka-Stroock, in the case where function f admits a “skeleton”. The

criteria are actually proved in the more general situation where the basic Wiener measure

is replaced by a measure with a regular density.

1 Introduction

In several works, criteria of positivity of densities were studied for solutions
of SDE’s ([3], [1]) or SPDE’s ([13]). These criteria are based on the existence
of a “skeleton”, which is a well defined “restriction” to the Cameron-Martin
space which determines the function. A general version of this kind of cri-
teria is given in [1] and, under a slightly different form, in [13].

In sections 2 and 3 of this paper, we are interested in criteria of positivity
without any assumption of existence of a skeleton. Then, in section 4, we
show that the criterion of section 3 allows us to obtain essentially the result
of [1] just above mentioned.

The setting of this paper is that of an abstract Wiener space (E,H, µ),
and we widely use, without defining them, the notions and notation of Malli-
avin’s calculus (we refer, for example, to [15] and [4]). The characterizations
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that we have in mind are related to capacities on Wiener space, for which
we refer to [11], [14], [7], [12],. . .

We consider, throughout all this work, an element f = (f1, . . . , fd) in
(D∞)d, where D

∞ denotes the set of real smooth functionals on E in the
sense of Malliavin. We set Jf = [det (< Dfi, Dfj >H)]1/2 and we assume
the classical condition of non-degeneracy

1

Jf
∈ ∩p>1L

p(µ).

We also consider a non-negative function g in D
∞ and we denote by µg the

measure with density g with repect to µ. It then is known that the law
µg ◦ f

−1 of f under µg has a smooth density with respect to the Lebesgue
measure on R

d. In what follows, we denote this density by pg (abreviated
in p if g = 1).

If r ≥ 0 and p > 1, there exists a capacity cr,p associated with the
Sobolev space D

r
p on E (r is the “order of derivation” and p is the “power

of integration”). Then f (resp. g) admits a µ-representative which is quasi-
continuous with respect to all capacities cr,p (we shall say that it is ∞-quasi-
continuous). Henceforth, f (resp. g) denotes “this” representative.

2 Positivity and capacities

Our goal, in this section, is to prove the following result:

Theorem 1 Let ξ ∈ R
d. The following properties are equivalent:

(i) pg(ξ) > 0

(ii) ∃r ≥ 0 ∃p > 1 cr,p({f = ξ} ∩ {g > 0}) > 0

(iii) ∀r > 0 and ∀p > 1 such that rp > d, cr,p({f = ξ} ∩ {g > 0}) > 0.

We begin with a key lemma.

Lemma 1.1 If pg(ξ) = 0, then, for all n ∈ N, for all r ∈ N
d such that

|r| < n,
∂|r|

∂xr
pgn(ξ) = 0.

The above result is proved, for g = 1, in [2]. The following proof follows the
same ideas.
Proof: Let r ∈ N

d. By [15, Lemma 2, p.54], there exists a linear functional
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lr from D
∞ into itself, such that, for any smooth function u on R

d with
compact support and for any h ∈ D

∞,

∫

∂|r|u

∂xr
◦ f h dµ =

∫

u ◦ f lr(h) dµ.

By the explicit form of lr(h), one sees that lr(h) depends linearly on h and
on its Malliavin derivatives up to order |r|. Hence, if |r| < n, there exists
hr,n ∈ D

∞ such that lr(g
n) = g hr,n. Therefore, if |r| < n, for any u as

above,
∫

u(x)
∂|r|

∂xr
pgn(x) dx = (−1)|r|

∫

u ◦ f g hr,n dµ.

Now, by [15, Theorem 1.14, p.60] and the notation therein, the last integral

may be written as

∫

u(x) < δx(f), g hr,n > dx. We therefore have

∂|r|

∂xr
pgn(ξ) = (−1)|r| < δξ(f), g hr,n > .

According to [14], δξ(f) may also be viewed as a measure, the pairing cor-
responding to the integral of the ∞-quasi-continuous representative. Thus, if
pg(ξ) =< δξ(f), g >= 0, then g = 0 δξ(f)-a.e. and therefore,
< δξ(f), g hr,n >= 0, which yields the desired result. 2

Lemma 1.2 Assume pg(ξ) = 0. Then, for all r ∈ N
d, for all i ≥ 0 and

a > 0,

lim
ε→0

ε−i
E[

d
∏

j=1

|fj − ξj |
rj exp(−a

|f − ξ|2

ε2
)gn] = 0

for n big enough.

Proof: We have

E[
d

∏

j=1

|fj − ξj |
rj exp(−a

|f − ξ|2

ε2
)gn]

=

∫ d
∏

j=1

|xj − ξj |
rj exp(−a

|x− ξ|2

ε2
)pgn(x) dx.

Denote by ϕε the indicator of {x; |x− ξ|2 ≤ ε}. We have

∫

(1 − ϕε(x))
d

∏

j=1

|xj − ξj |
rj exp(−a

|x− ξ|2

ε2
)pgn(x) dx
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≤ E[
d

∏

j=1

|fj − ξj |
rjgn] exp(

−a

ε
),

and, by Taylor’s formula and lemma 1.1,

∫

ϕε(x)
d

∏

j=1

|xj − ξj |
rj exp(−a

|x− ξ|2

ε2
)pgn(x) dx

≤ (n!)−1 sup
|x−ξ|≤ε

|∇npgn(x)|

∫

ϕε(x)|x− ξ||r|+ndx

≤ (n!)−1Cd sup
|x−ξ|≤1

|∇npgn(x)| ε(|r|+n+d)/2,

where Cd denotes the volume of the unit ball in R
d. The result follows

directly. 2

We then deduce the implication (ii) =⇒ (i) in theorem 1:

Corollary 1.2.1 If pg(ξ) = 0, then cr,p({f = ξ} ∩ {g > 0}) = 0 for all
r ≥ 0 and p > 1.

Proof: Let r ≥ 0 and p > 1. Suppose pg(ξ) = 0 and let Fε = exp(− |f−ξ|2

ε2
).

Then Fε is ∞-quasi-continuous and belongs to D
∞. Let D be the derivative

operator (from D
∞ into D

∞(H)). Let k be an integer greater than r. Then,
by lemma 1.2 (and the Schwartz inequality), there exists n ∈ N such that,
for 0 ≤ k′ ≤ k,

lim
ε→0

‖Dk′(Fεg
n)‖Lp(µ) = 0,

and, therefore, Fεg
n tends to 0 in D

r
p as ε tends to 0. Since, for a >

0, Fεg
n ≥ an on {f = ξ} ∩ {g ≥ a}, we get (cf. for example [10])

cr,p({f = ξ} ∩ {g ≥ a}) = 0. The result then follows, letting a tend to
0. 2

The implication (iii) =⇒ (ii) is obvious. Let us then show the im-
plication (i) =⇒ (iii). Let us first recall that, by [16], the distribution
δξ(f) belongs to the dual space of D

r
p for any r > 0 and p > 1 such

that rp > d. Assume that r and p are thus fixed. As a measure, δξ(f)
is then an (r, p)-finite energy measure and, therefore, it does not charge
the (r, p)-polar sets (see [14], [12]). On the other hand, it is easy to prove,
by approximation of this measure, that < δξ(f), |f − ξ|2 >= 0 and there-
fore measure δξ(f) does not charge the set {f 6= ξ}. Consequently, if
cr,p({f = ξ} ∩ {g > 0}) = 0, then measure δξ(f) does not charge the set
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{g > 0}. Therefore pg(ξ) =< δξ(f), g >= 0 and property (i) would not be
satisfied. Theorem 1 is then proved.
Remark In [8], the authors built a “Gaussian Hausdorff measure on E of
codimension d”, denoted by ρd. As a consequence of their theorem 21, the
equality pg(ξ) =

∫

{f=ξ} g (Jf)−1 dρd holds (where Jf denotes the repre-
sentative defined in lemma 3.1 below). It follows that pg(ξ) > 0 if and
only if ρd({f = ξ} ∩ {g > 0}) > 0, which implies, by [8, theorem 9], prop-
erty (iii) in the above theorem. This is another proof of the implication
(i) =⇒ (iii), which needs actually less restrictive assumptions on f and g
and was communicated to us by D. Feyel.

Clearly, as a consequence of the previous theorem, we have in particular
that p(ξ) > 0 if and only if cd,2({f = ξ}) > 0. To illustrate this criterion,
we shall give another proof of a result due to S. Fang ([5]).

Theorem 2 Suppose d = 1. Then {p > 0} is the interior of the support of
p.

Proof: Let ξ be in the interior of the support of p. Then µ({f < ξ}) > 0 and
µ({f > ξ}) > 0. By ergodicity of the Ornstein-Uhlenbeck semi-group, one
sees that, if (Xt) is the Ornstein-Uhlenbeck process in E with µ as initial
law, then P(f(X0) < ξ and f(Xt) > ξ) > 0 for t big enough. Now, as f is
quasi-continuous, almost-surely the function t −→ f(Xt) is continuous ([9]).
Therefore P(∃t f(Xt) = ξ) > 0. This is equivalent ([9]) to c1,2({f = ξ}) > 0
and hence, by theorem 1, p(ξ) > 0 holds. 2

Remarks

1) The above result is no longer true for d ≥ 2 (see [1, Example 3.45]). D.
Nualart gave recently another simpler example.
2) The result also is generally false, if d = 1, if p is replaced by pg.
3) D. Nualart gave recently a very short, analytic proof of the previous
theorem under much weaker assumptions on f .

3 Positivity and restrictions to d-dimensional sub-

spaces of H

Before stating the main result of this section, we introduce some notation.
Since function f is ∞-quasi-continuous, we know according to [7] that, for
any finite dimensional subspace K of H, there exists a slim set EK in E
(i.e., ∀r, p cr,p(EK) = 0) such that, for any ω 6∈ EK , the function

fK
ω : x ∈ K −→ f(ω + x)
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is C∞ on K. We can define similarly the C∞-function gKω on K, for ω out
of a slim set. If the dimension of K is d, we shall denote by J(fK

ω ) the
absolute value of the determinant of the Jacobian matrix of fK

ω . In what
follows, ∞-quasi-everywhere means out of a slim set.
We fix a complete orthonormal basis, {h0, h1, · · ·}, of H. Denote by Θ the
set of subsets of N containing d elements. For θ ∈ Θ, Kθ denotes the space
spanned by {hi; i ∈ θ}. In what follows, we often replace in the notation
Kθ simply by θ. For example, fθ

ω is set for fKθ
ω . We then have the following

result.

Theorem 3 Let ξ ∈ R
d. Then pg(ξ) > 0 if and only if there exists θ ∈ Θ

such that

µ({ω; ∃x ∈ Kθ fθ
ω(x) = ξ, gθω(x) > 0 and J(fθ

ω)(x) > 0}) > 0.

We begin with a few lemmas.

Lemma 3.1 There exists an ∞-quasi-continuous representative of Jf , still
denoted by Jf , and Jf > 0 ∞-quasi-everywhere.

Proof: It is well-known that Jf and (Jf)−1 belong to D
∞. Denoting in the

same way the ∞-quasi-continuous representatives, we have (Jf)(Jf)−1 =
1 µ-a.s. and therefore, by a classical result, (Jf)(Jf)−1 = 1 ∞-quasi-
everywhere. The result follows. 2

For 1 ≤ i ≤ n and h ∈ H, we denote by Dhfi the ∞-quasi-continuous
representative of < Dfi, h >H . If θ ∈ Θ, we set

Jθf = |det(Dhk
fi)1≤i≤d,k∈θ|

1/2 .

Lemma 3.2 The set ∩θ∈Θ{Jθf = 0} is a slim set.

Proof: Clearly, {Jf > 0} = ∪θ∈Θ{Jθf > 0} up to a slim set. The result
follows then from lemma 3.1. 2

It should be noticed that, if K is a finite dimensional subspace of H, for
∞-quasi-every ω ∈ E and for all h and x ∈ K, Dhf(ω+x) = ∂hf

K
ω (x) where

∂h denotes the usual derivative in direction h. Therefore, for ∞-quasi-every
ω, for all θ ∈ Θ, (Jθf)θω = J(fθ

ω) on Kθ.

Lemma 3.3 Let ϕ be a smooth function from R
d into R

d and let l be a
non-negative continuous function on R

d. Then, for ξ, z ∈ R
d,

lim inf
r→0

∑

ϕ(x)=ξ+rz,J(ϕ)(x)>0

l(x)

J(ϕ)(x)
≥

∑

ϕ(x)=ξ,J(ϕ)(x)>0

l(x)

J(ϕ)(x)
.
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Proof: It is an easy consequence of the inverse mapping theorem. 2

Set, for x ∈ H, q(x) = (2π)−d/2 exp(−
|x|2

H

2 ). We denote, for θ ∈ Θ, by
ωθ the pseudo-orthogonal projection of ω ∈ E onto Kθ.

Lemma 3.4 Let ξ ∈ R
d and θ ∈ Θ. Then,

pg(ξ) ≥

∫

∑

fθ
ω(x)=ξ,J(fθ

ω)(x)>0

gθω(x) q(ωθ + x)

J(fθ
ω)(x)

dµ(ω).

Proof: Let B(ξ, r) be the open ball in R
d with center ξ and radius r and let

Cd denote the volume of the unit ball in R
d. Then, by the quasi-invariance

of measure µ,

pg(ξ) = lim
r→0

1

Cdrd

∫

1B(ξ,r) ◦ f g dµ

= lim
r→0

1

Cdrd

∫ ∫

E×Kθ

1B(ξ,r) ◦ f(ω + x) g(ω + x) q(ωθ + x) dµ(ω) dx

≥ lim inf
r→0

1

Cdrd

∫ ∫

E×Kθ

1B(ξ,r)◦f(ω+x) g(ω+x) q(ωθ+x) 1{J(fθ
ω)(x)>0} dµ(ω) dx.

Using the change of variables formula (cf. [6]), we obtain

pg(ξ) ≥ lim inf
r→0

1

Cdrd

∫ ∫

E×B(ξ,r)

∑

fθ
ω(x)=y,J(fθ

ω)(x)>0

gθω(x) q(ωθ + x)

J(fθ
ω)(x)

dµ(ω) dy.

The result follows then from lemma 3.3, using Fatou’s lemma. 2

The previous lemma shows immediately that the condition in the state-
ment of theorem 3 is sufficient. Suppose now pg(ξ) > 0. We have seen
that δξ(f) is a non-nul (d, 2)-finite energy measure and δξ(f)({g > 0}) > 0.
According to lemma 3.2, there exist θ ∈ Θ and ε > 0 such that

δξ(f)({Jθf ≥ ε} ∩ {g ≥ ε}) > 0.

Let ϕ be a real smooth function on R satisfying

0 ≤ ϕ ≤ 1, ϕ = 0 on ] −∞, ε2/4] and ϕ = 1 on [ε2,+∞[.

Then ϕ((Jθf)2) ∈ D
∞ and 1{Jθf≥ε} ≤ ϕ((Jθf)2) ≤ 1{Jθf≥ε/2}, and simi-

larly for ϕ(g2). Let (Fn) be an increasing sequence of closed sets such that
cd,2(F

c
n) ↓ 0 and let, for any n, ϕn be the (d, 2)-equilibrium potential of F c

n

(cf. [14] or [12]). Then,

lim inf
r→0

1

Cdrd

∫

Fn

1B(ξ,r) ◦ f ϕ((Jθf)2) ϕ(g2) dµ
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≥< δξ(f), ϕ((Jθf)2) ϕ(g2) > −C‖ϕn‖D
d
2

≥ δξ(f)({Jθf ≥ ε} ∩ {g ≥ ε}) − Ccd,2(F
c
n)

where C does not depend on n. Hence, for n big enough,

lim inf
r→0

1

Cdrd

∫

Fn

1B(ξ,r) ◦ f 1L dµ > 0,

where L denotes the set {Jθf ≥ ε/2} ∩ {g ≥ ε/2}. Notice that, by [7], if φ
is an ∞-quasi-continuous function and if K is a finite dimensional subspace
of H, the function ω ∈ E −→ φK

ω is ∞-quasi-continuous as a function from
E into C(K). It follows that

γθ(ω) = sup{|(Dhk
Dhl

fj)
θ
ω(x)|; k, l ∈ θ, 1 ≤ j ≤ d, x ∈ Kθ and |x|H ≤ 1}

is ∞-quasi-continuous. We deduce from this result and from the tightness
of capacity cd,2 (cf. for example [7]) that there exists a compact set F in E,
such that γθ and, for k ∈ θ and 1 ≤ j ≤ d, Dhk

fj are continuous on F , and
satisfying

lim inf
r→0

1

Cdrd

∫

F
1B(ξ,r) ◦ f 1L dµ > 0.

By the remark following lemma 3.2,

1

Cdrd

∫

F
1B(ξ,r) ◦ f 1L dµ

=

∫
[

1

Cdrd

∫

1B(ξ,r) ◦ f
θ
ω(x)1F (ω + x)1Lθ

ω
(x)q(ωθ + x) dx

]

dµ(ω),

where Lθ
ω denote {x ∈ Kθ; J(fθ

ω)(x) ≥ ε/2 and gθω(x) ≥ ε/2}. Denote by
I(r, ω) the quantity between brackets. We suppose that the condition in the
statement of the theorem is not satisfied. In other words, we suppose that,
for µ-almost every ω, {x ∈ Kθ; fθ

ω(x) = ξ, gθω(x) > 0 and J(fθ
ω)(x) > 0} is

empty. Then, for µ-almost every ω, fθ
ω({x ∈ Kθ; ω+x ∈ F and x ∈ Lθ

ω}) is
a compact in R

d which does not contain ξ. Therefore, for µ-almost every ω,
I(r, ω) is equal to 0 if r is small enough. Hence, to come to a contradiction,
we have to dominate I(r, ω) independently of r and ω. Now, using again
the change of variables formula,

I(r, ω) =
1

Cdrd

∫

B(ξ,r)

∑

fθ
ω(x)=y,x∈Lθ

ω ,ω+x∈F

q(ωθ + x)

J(fθ
ω)(x)

dy.
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Let L(y, ω) be the quantity under the integral. We have

L(y, ω) ≤
2

ε

∑

fθ
ω(x)=y,J(fθ

ω)(x)≥ε/2,ω+x∈F

q(ωθ + x).

As functions γθ and Dhk
fj are continuous on F compact and therefore

bounded, by the inverse mapping theorem there exists some ρ > 0, indepen-
dent of ω and y, such that, if x and x′, x 6= x′, belong to the summation
set, then |x− x′|H ≥ ρ. It is then easy to see that there exists a constant C
depending only on d such that L(y, ω) ≤ Cε−1ρ−d. 2

4 Positivity and skeleton

In this section, we shall deduce from theorem 3 a characterization obtained
in [1]. The hypothesis assumed by these authors is a hypothesis of existence
of a skeleton in a meaning that we shall precise.

We denote, for n ∈ N, by πn the pseudo-orthogonal projection from E
onto space Hn spanned by {hi; 0 ≤ i ≤ n}. We may suppose that πn
is ∞-quasi-continuous and admits a “restriction” to H which is the true
orthogonal projection from H onto Hn.

Let θ ∈ Θ. If ϕ is a real continuous function on Kθ, we set

mθ(ϕ)(x) = sup
t∈Kθ,|t|H≤1

|ϕ(x + t)|.

For a real C2-function ϕ in Kθ, we set

lθ(ϕ)(x) = sup{|ϕ(x)|, |∂hk
ϕ(x)|,mθ(∂hk

∂hl
ϕ)(x); k, l ∈ θ}.

If ϕ is R
d-valued, we set lθ(ϕ) = sup1≤j≤d lθ(ϕj).

We set, for ω ∈ E, ωn = πn(ω) and ω′
n = ω − ωn. By [7], for µ-almost

every ω, fHn

ω′

n
is C∞ on Hn. It follows that, if K is a subspace of Hn, then, for

µ-almost every ω and all h ∈ Hn, fK
h+ω′

n
is C∞ on K. The similar properties

also hold for g. We shall denote πnh + ω′
n by (h, ω)n.

Definition Function f will be said to be s-regular if there exists an R
d-

valued C2-function f̃ on H such that

(S1) ∀θ ∈ Θ, for µ-almost every ω,

lim
n→∞

lθ(f
θ
ω − f̃θ

ωn
)(x) = 0 for all x in Kθ

(where, for all h ∈ H and for all x ∈ Kθ, f̃
θ
h(x) = f̃(h + x)),
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(S2) ∀θ ∈ Θ, ∀h ∈ H, for µ-almost every ω,

lim
n→∞

lθ(f̃
θ
h − fθ

(h,ω)n
)(x) = 0 for all x in Kθ.

The function will be said to be weakly s-regular if the same properties
hold, replacing “C2-function” by “continuous function” and “lθ” by “mθ”.

The function f̃ is then called the skeleton of f .

Remark In properties (S1) and (S2), the convergence for all x in Kθ can be
replaced by the convergence for x = 0. This follows easily from the quasi-
invariance of µ and from the definition of mθ. Likewise, in the definition of
mθ, one can replace “|t|H ≤ 1” by “|t|H ≤ r”, where r denotes any positive
fixed real number.

Theorem 4 Assume that f is s-regular (resp. g is weakly s-regular) with
skeleton f̃ (resp. g̃) and let ξ ∈ R

d. Then pg(ξ) > 0 if and only if there
exists h ∈ H such that

f̃(h) = ξ, g̃(h) > 0 and rankDf̃(h) = d

(where Df̃ denotes the differential of f̃).

Lemma 4.1 Let ϕ and ϕn be C2-functions from R
d into R

d. Let ψ and ψn

be continuous functions from R
d into R. Assume that, for any x ∈ R

d,

lim
n→∞

sup(|ϕ− ϕn|(x), |Dϕ−Dϕn|(x), sup
|t|≤1

|D2ϕ−D2ϕn|(x + t)) = 0

and lim
n→∞

sup
|t|≤1

|ψ − ψn|(x + t) = 0.

Then, ϕ({Jϕ > 0} ∩ {ψ > 0}) ⊂ ∪nϕn({Jϕn > 0} ∩ {ψn > 0}).

Proof: Let ξ = ϕ(x) with Jϕ(x) > 0 and ψ(x) > 0. Then, by the inverse
mapping theorem, there exist δ and ε > 0 such that, for n big enough, ϕn is
a C2-diffeomorphism from B(x, δ) onto an open set containing B(ϕn(x), ε).
It can also be assumed that ψn > 0 on B(x, δ). There exists n such that
ξ ∈ B(ϕn(x), ε), which yields the result. 2

Suppose then pg(ξ) > 0. By theorem 3, there exists θ ∈ Θ such that
µ({ω; ∃x ∈ Kθ fθ

ω(x) = ξ, gθω(x) > 0 and J(fθ
ω)(x) > 0}) > 0. By

property (S1) and the previous lemma, µ({ω; ∃n ∃x ∈ Kθ f̃θ
ωn

(x) =

10



              

ξ, g̃θωn
(x) > 0 and J(f̃θ

ωn
)(x) > 0}) > 0. Consequently, there exist h ∈ H

and x ∈ Kθ such that

f̃(h + x) = ξ, g̃(h + x) > 0 and det(∂hj
f̃i)1≤i≤d,j∈θ(h + x) 6= 0.

In particular, f̃(h + x) = ξ, g̃(h + x) > 0 and rankDf̃(h + x) = d.
Suppose, conversely, that there exists h0 ∈ H such that f̃(h0) = ξ,

g̃(h0) > 0 and rankDf̃(h0) = d. Then there exists θ ∈ Θ such that f̃θ
h0(0) =

ξ, g̃θh0(0) > 0 and J(f̃θ
h0)(0) > 0. By property (S2) and lemma 4.1, for

µ-almost every ω, there exists n such that ξ ∈ fθ
(h0,ω)n

({J(fθ
(h0,ω)n

) > 0} ∩

{gθ(h0,ω)n
> 0}). Consequently, there exists n such that, if we denote by

A the set {ω ∈ E; ξ ∈ fθ
(h0,ω)n

({J(fθ
(h0,ω)n

) > 0} ∩ {gθ(h0,ω)n
> 0})}, then

µ(A) > 0. Obviously, it can be assumed that Hn ⊃ Kθ. For µ-almost every
ω, the map h −→ fθ

(h,ω)n
is continuous from H into C2(Kθ) and the map

h −→ gθ(h,ω)n
is continuous from H into C(Kθ). Therefore, by the same proof

as in lemma 4.1, for all ω ∈ A, there exists an open set Oω in H containing
h0, so that

h ∈ Oω =⇒ ξ ∈ fθ
(h,ω)n

({J(fθ
(h,ω)n

) > 0} ∩ {gθ(h,ω)n
> 0}).

The choice of Oω may be done in a measurable way with respect to ω.
Let then νn be the standard Gaussian measure on Hn. As νn charges all
non-empty open sets and since πn is an open map from H onto Hn, we have

µ[{ω; ξ ∈ fθ
ω({J(fθ

ω) > 0} ∩ {gθω > 0})}]

=

∫

Hn

µ[{ω; ξ ∈ fθ
h+ω′

n
({J(fθ

h+ω′

n
) > 0} ∩ {gθh+ω′

n
> 0})}] dνn(h)

≥

∫

A
νn(πn(Oω)) dµ(ω) > 0.

Theorem 3 then yields pg(ξ) > 0.
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