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ABSTRACT. We consider a function f on an abstract Wiener space, with values
in R%, which is regular and non-degenerate in the sense of the Malliavin calculus. Its
law admits a density p which is C*° on R?. We give criteria ensuring that p(¢) > 0 for
a fixed £ in RY. The first one is stated in terms of capacities cr,p on the Wiener space.
The second one is related to some “restrictions” of f to subspaces of dimension d of the
Cameron-Martin space. Finally, we apply this criterion to obtain another one, previously
given by Aida-Kusuoka-Stroock, in the case where function f admits a “skeleton”. The
criteria are actually proved in the more general situation where the basic Wiener measure

is replaced by a measure with a regular density.

1 Introduction

In several works, criteria of positivity of densities were studied for solutions
of SDE’s ([3], [1]) or SPDE’s ([13]). These criteria are based on the existence
of a “skeleton”, which is a well defined “restriction” to the Cameron-Martin
space which determines the function. A general version of this kind of cri-
teria is given in [1] and, under a slightly different form, in [13].

In sections 2 and 3 of this paper, we are interested in criteria of positivity
without any assumption of existence of a skeleton. Then, in section 4, we
show that the criterion of section 3 allows us to obtain essentially the result
of [1] just above mentioned.

The setting of this paper is that of an abstract Wiener space (E, H, 1),
and we widely use, without defining them, the notions and notation of Malli-
avin’s calculus (we refer, for example, to [15] and [4]). The characterizations



that we have in mind are related to capacities on Wiener space, for which
we refer to [11], [14], [7], [12],...

We consider, throughout all this work, an element f = (f1,..., fq) in
(D)%, where D> denotes the set of real smooth functionals on E in the
sense of Malliavin. We set Jf = [det (< Df;, Df; >x)]"/? and we assume
the classical condition of non-degeneracy

Jif € Mp>1LP ().

We also consider a non-negative function g in D°° and we denote by s, the
measure with density g with repect to p. It then is known that the law
fig © f~! of f under g has a smooth density with respect to the Lebesgue
measure on R%. In what follows, we denote this density by py (abreviated
inpifg=1).

If » > 0 and p > 1, there exists a capacity ¢, , associated with the
Sobolev space Dy, on E (r is the “order of derivation” and p is the “power
of integration”). Then f (resp. g) admits a u-representative which is quasi-
continuous with respect to all capacities ¢, , (we shall say that it is co-quasi-
continuous). Henceforth, f (resp. ¢g) denotes “this” representative.

2 Positivity and capacities
Our goal, in this section, is to prove the following result:
Theorem 1 Let £ € R%. The following properties are equivalent:
(i) py(€) > 0
(i) Ir>0 Fp>1 cp{f =€ N{g>0}) >0
(iii) Vr > 0 and Vp > 1 such that rp > d, ¢, ,({f =&} N{g > 0}) > 0.
We begin with a key lemma.
Lemma 1.1 If p,(¢) = 0, then, for all n € N, for all r € N? such that
<n 2 o) =0,

The above result is proved, for g = 1, in [2]. The following proof follows the
same ideas.
Proof- Let r € N%. By [15, Lemma 2, p.54], there exists a linear functional



I, from D™ into itself, such that, for any smooth function u on R?% with
compact support and for any h € D>,

8|T|u

~ofhdu= /uofl

By the explicit form of lr(h), one sees that [,(h) depends linearly on h and
on its Malliavin derivatives up to order |r|. Hence, if |r| < n, there exists
hyn € D* such that [.(¢") = g hypn. Therefore, if |r| < n, for any u as
above,

alr!
[ ut@) e do = ()" o s ghup du
Now, by [15, Theorem 1.14, p.60] and the notation therein, the last integral
may be written as / w(z) < 6z(f),9 hrpn > dx. We therefore have

7|
%pg"(f) = (=) < 6¢(f), 9 P > -

According to [14], 6¢(f) may also be viewed as a measure, the pairing cor-
responding to the integral of the co-quasi-continuous representative. Thus, if
pe(§) =< 06e(f),g >= 0, then g = 0 é¢(f)-a.e. and therefore,
< 6¢(f), 9 hypn >= 0, which yields the desired result. 2

Lemma 1.2 Assume py(€) = 0. Then, for all v € N%, for all i > 0 and
a >0,

. —1 d i |f_£|2 n
lim E[[T £ — &l exp(—a = )91=0
j=1
for n big enough.
Proof: We have
d r. |f*€|2 n
E[J] 1£; = &7 exp(—a—)g"]
j=1

2
_/H“’EJ 5" exp(—a = f‘ )pgn () da.

Denote by . the indicator of {z; |z — &|? < ¢}. We have

2
/ (1= pe(x H lzj — &|™ eXp(—a’x €2§| )Pgn () dx



H\f] 179" exp(—),

and, by Taylor’s formula and lemma 1.1,

s expl-al? S
[t Hm 17 exp(—a ) pyn (v) da

where Cj; denotes the volume of the unit ball in R, The result follows
directly. 2
We then deduce the implication (ii) = (¢) in theorem 1:

Corollary 1.2.1 If py(§) = 0, then c,p,({f = £} N{g > 0}) = 0 for all
r>0andp>1.

Proof: Let r > 0 and p > 1. Suppose py(£) = 0 and let F, = exp(—‘f;g'?).
Then F; is co-quasi-continuous and belongs to D*°. Let D be the derivative
operator (from D> into D*>°(H)). Let k be an integer greater than r. Then,
by lemma 1.2 (and the Schwartz inequality), there exists n € N such that,
for 0 < k' <k,

hmIID( 9")lLe () =0,

and, therefore, Frg" tends to 0 in Dj as ¢ tends to 0. Since, for a >
0, Frg™ > a™ on {f = &£t N{g > a}, we get (cf. for example [10])
ap{f =& N{g > a}) = 0. The result then follows, letting a tend to
0. 2

The implication (#ii) == (4¢) is obvious. Let us then show the im-
plication (i) = (#i). Let us first recall that, by [16], the distribution
6¢(f) belongs to the dual space of Dj for any » > 0 and p > 1 such
that rp > d. Assume that r and p are thus fixed. As a measure, 6¢(f)
is then an (r,p)-finite energy measure and, therefore, it does not charge
the (r, p)-polar sets (see [14], [12]). On the other hand, it is easy to prove,
by approximation of this measure, that < 6¢(f),|f — £|* >= 0 and there-
fore measure 6¢(f) does not charge the set {f # £}. Consequently, if
crp({f = &€ N {g > 0}) = 0, then measure d¢(f) does not charge the set



{g > 0}. Therefore py(§) =< 6¢(f),9 >= 0 and property (i) would not be
satisfied. Theorem 1 is then proved.
Remark In [8], the authors built a “Gaussian Hausdorff measure on E of
codimension d”, denoted by pg. As a consequence of their theorem 21, the
equality py(§) = f{fzg}g (Jf)~! dpg holds (where Jf denotes the repre-
sentative defined in lemma 3.1 below). It follows that py(¢) > 0 if and
only if pg({f = &£} N {g > 0}) > 0, which implies, by [8, theorem 9], prop-
erty (7i7) in the above theorem. This is another proof of the implication
(1) = (i41), which needs actually less restrictive assumptions on f and g
and was communicated to us by D. Feyel.

Clearly, as a consequence of the previous theorem, we have in particular
that p(§) > 0 if and only if cg2({f = £}) > 0. To illustrate this criterion,
we shall give another proof of a result due to S. Fang ([5]).

Theorem 2 Suppose d = 1. Then {p > 0} is the interior of the support of
p.

Proof: Let £ be in the interior of the support of p. Then pu({f < £}) > 0 and
p({f > &}) > 0. By ergodicity of the Ornstein-Uhlenbeck semi-group, one
sees that, if (X;) is the Ornstein-Uhlenbeck process in E with p as initial
law, then P(f(Xy) < € and f(X;) > &) > 0 for ¢t big enough. Now, as f is
quasi-continuous, almost-surely the function ¢ — f(X;) is continuous ([9]).
Therefore P(3t f(X;) = &) > 0. This is equivalent ([9]) to c12({f =¢&}) >0
and hence, by theorem 1, p(§) > 0 holds. 2
Remarks

1) The above result is no longer true for d > 2 (see [1, Example 3.45]). D.
Nualart gave recently another simpler example.

2) The result also is generally false, if d = 1, if p is replaced by py.

3) D. Nualart gave recently a very short, analytic proof of the previous
theorem under much weaker assumptions on f.

3 Positivity and restrictions to d-dimensional sub-
spaces of H

Before stating the main result of this section, we introduce some notation.

Since function f is co-quasi-continuous, we know according to [7] that, for

any finite dimensional subspace K of H, there exists a slim set Fx in F
(i.e., Vr,p ¢rp(Ex) = 0) such that, for any w ¢ E, the function

5 re K — f(w+x)



is O on K. We can define similarly the C*°-function g& on K, for w out
of a slim set. If the dimension of K is d, we shall denote by J(fX) the
absolute value of the determinant of the Jacobian matrix of fX. In what
follows, oco-quasi-everywhere means out of a slim set.

We fix a complete orthonormal basis, {hg, hi,- -}, of H. Denote by © the
set of subsets of N containing d elements. For # € ©, Ky denotes the space
spanned by {h;; i € 0}. In what follows, we often replace in the notation
Ky simply by 6. For example, f is set for f5¢. We then have the following
result.

Theorem 3 Let £ € RL. Then py(€) > 0 if and only if there exists 0 € ©
such that

p({w; w e Ky fo(x) =¢, ¢%(x) > 0 and J(f2)(z) > 0}) > 0.
We begin with a few lemmas.

Lemma 3.1 There exists an co-quasi-continuous representative of J f, still
denoted by Jf, and Jf > 0 co-quasi-everywhere.

Proof: Tt is well-known that .Jf and (Jf)~! belong to D*®. Denoting in the
same way the oo-quasi-continuous representatives, we have (Jf)(Jf)™! =
1 p-a.s. and therefore, by a classical result, (Jf)(Jf)™! = 1 oco-quasi-
everywhere. The result follows. 2

For 1 < ¢ <n and h € H, we denote by Dy, f; the co-quasi-continuous
representative of < Df;,h >p. If 0 € O, we set

Jof = |det(Dy, fi)1<i<areol >
Lemma 3.2 The set Ngca{Jof = 0} is a slim set.

Proof. Clearly, {Jf > 0} = Upeco{Jof > 0} up to a slim set. The result
follows then from lemma 3.1. 2

It should be noticed that, if K is a finite dimensional subspace of H, for
oo-quasi-every w € E and for all h and z € K, Dy, f(w+x) = O 5 (x) where
0Oy, denotes the usual derivative in direction h. Therefore, for co-quasi-every

w, for all @ € ©, (Jof)?, = J(f?) on K.

Lemma 3.3 Let ¢ be a smooth function from R% into RY and let | be a
non-negative continuous function on R%. Then, for &,z € RY,

lim inf Z (z) > Z iz)

0 w(z)=E+r2,J () (x)>0 J(p)() o()=¢,J(¢)(z)>0 J(p)(@)




Proof: 1t is an easy consequence of the inverse mapping theorem. 2
Set, for z € H, q(z) = (2r)~%? exp(— [z |H) We denote, for § € ©, by
wy the pseudo-orthogonal projection of w € E onto Kjy.

Lemma 3.4 Let £ € RY and 6 € ©. Then,

) alen+a)
/ g%g e AU M)

Proof- Let B(&,7) be the open ball in R? with center ¢ and radius 7 and let
C, denote the volume of the unit ball in RY. Then, by the quasi-invariance
of measure p,

> lim inf
- r—0 Cde

//E . Lp(enof(wtz) glwtz) qwo+x) 11;050)@)>0y d(w) da.
X189

Using the change of variables formula (cf. [6]), we obtain

1 95(x) q(wp + )
py(€) > lim inf / / = dp(w) dy.
g r—0 Cde ExB(&,r) fg(x):yg(:fg)(x)>0 J(ff,)(l’)

The result follows then from lemma 3.3, using Fatou’s lemma. 2

The previous lemma shows immediately that the condition in the state-
ment of theorem 3 is sufficient. Suppose now py(§) > 0. We have seen
that 6¢(f) is a non-nul (d, 2)-finite energy measure and é¢(f)({g > 0}) > 0.
According to lemma 3.2, there exist § € © and € > 0 such that

6e(f){Jof 2 e} N{g>e}) > 0.

Let ¢ be a real smooth function on R satisfying

Og(p§17(p:00n]—oo,gz/4] and ¢ =1 on [62,+oo[.

Then gD((Jef)2) € D*° and 1{J9f25} < g&((Jgf)2) < 1{J9f2€/2}> and simi-
larly for ¢(g?). Let (F,) be an increasing sequence of closed sets such that
ca2(F5) | 0 and let, for any n, ¢, be the (d,2)-equilibrium potential of Fy
(cf. [14] or [12]). Then,

llgrilélfc d/ e o f e((Jof)?) e(g?) du



>< 6¢(f) 2((Jof)?) ¢(9%) > —=Clignllng
> 6c(f){Jof > e} N{g>e}) — Cecaa(FY)

where C' does not depend on n. Hence, for n big enough,

- 1
llggé’lfw /Fn 13(577,) e} f IL d/.L > 0,
where L denotes the set {Jgf > ¢/2} N {g > ¢/2}. Notice that, by [7], if ¢
is an oco-quasi-continuous function and if K is a finite dimensional subspace

of H, the function w € E — ¢& is oo-quasi-continuous as a function from
E into C(K). It follows that

Yo(w) = sup{](thDhlfj)g(xﬂ; kileb, 1<j<d, xe€ Kyand |x|g <1}

is co-quasi-continuous. We deduce from this result and from the tightness
of capacity cq 2 (cf. for example [7]) that there exists a compact set F' in E,
such that vy and, for £ € 6 and 1 < j < d, Dy, f; are continuous on F', and
satisfying

P
B Car

/FlB(g’r) of1pdu>0.

By the remark following lemma 3.2,

1
Curd /F Iper o f 1L du

= / [# / IpeEr© fg(x)lp(w + a:)ng ()q(wp + z) dz| dp(w),

where L? denote {z € Kp; J(f%)(x) > /2 and ¢/ (x) > £/2}. Denote by
I(r,w) the quantity between brackets. We suppose that the condition in the
statement of the theorem is not satisfied. In other words, we suppose that,
for p-almost every w, {x € Kp; f2(x) = ¢, g% (x) > 0 and J(f%)(x) > 0} is
empty. Then, for y-almost every w, f?({z € Ky; w+x € Fand z € LY}) is
a compact in R? which does not contain &. Therefore, for p-almost every w,
I(r,w) is equal to 0 if r is small enough. Hence, to come to a contradiction,
we have to dominate I(r,w) independently of r and w. Now, using again
the change of variables formula,

1 q(wg + )
9= G ey T i

fé(z)=y,z€Lf wtacF v



Let L(y,w) be the quantity under the integral. We have

2 Z q(wg + ).

L(y’w) S -
© 9(0)=9,J(fO)(x) >e /2w +aEF

As functions vy and Dy, f; are continuous on F' compact and therefore
bounded, by the inverse mapping theorem there exists some p > 0, indepen-
dent of w and y, such that, if x and 2/, x # 2, belong to the summation
set, then |x — 2'|g > p. Tt is then easy to see that there exists a constant C
depending only on d such that L(y,w) < Ce™1p~¢. 2

4 Positivity and skeleton

In this section, we shall deduce from theorem 3 a characterization obtained
in [1]. The hypothesis assumed by these authors is a hypothesis of existence
of a skeleton in a meaning that we shall precise.

We denote, for n € N, by m, the pseudo-orthogonal projection from F
onto space H, spanned by {h;; 0 < ¢ < n}. We may suppose that m,
is oo-quasi-continuous and admits a “restriction” to H which is the true
orthogonal projection from H onto H,,.

Let 8 € ©. If ¢ is a real continuous function on Ky, we set

mp(p)(z) = sup [p(z +1)].
te€Kp,|t|p<1

For a real C2-function ¢ in Ky, we set

lo()(x) = suple(x)], [On, 0 ()], Mo (On, On, ) (x); ksl € 6}

If o is R%-valued, we set lg(p) = supy<j<qlo(¥j)-
We set, for w € E, w, = m(w) and w), = w — wy,. By [7], for p-almost
every w, fﬁ” is C*° on H,. It follows that, if K is a subspace of H,, then, for

p-almost every w and all h € H,,, f,ﬁw, is C*° on K. The similar properties
also hold for g. We shall denote m,h + W/, by (h,w)s,.

Definition Function f will be said to be s-regular if there exists an R%-
valued C?-function f on H such that

(S1) VO € ©, for p-almost every w,

nlingolg(fg - ffjn)(:c) =0 for all x in Ky

(where, for all h € H and for all z € Ky, f(z) = f(h +z)),



(S2) VO € ©, Yh € H, for p-almost every w,

nh_)ngo lo(f — f(ehw)n)(x) =0 for all = in K.

The function will be said to be weakly s-regular if the same properties
hold, replacing “QQ—function” by “continuous function” and “ly” by “mg”.
The function f is then called the skeleton of f.

Remark In properties (S57) and (S2), the convergence for all z in Ky can be
replaced by the convergence for £ = 0. This follows easily from the quasi-
invariance of  and from the definition of mgy. Likewise, in the definition of
mg, one can replace “|t|g < 1”7 by “|t|g < 7”7, where r denotes any positive
fixed real number.

Theorem 4 Assume that f is s-regular (resp. g is weakly s-regqular) with
skeleton f (resp. §) and let & € RE. Then py(€) > 0 if and only if there
exists h € H such that

f(h)=¢, §(h) >0 and rankDf(h) = d
(where Df denotes the differential of f)

Lemma 4.1 Let ¢ and o, be C?-functions from R? into R%. Let 1 and v,
be continuous functions from R® into R. Assume that, for any x € R?,

Jim_sup(| — ¢n|(2), [De — Den|(z), |s‘up |D*0 — D*gn|(x+1)) =0
<1

and lim sup |[¢p —¢p|(x +1t) = 0.

Then, o({Je > 0} N {1 > 0}) C Unen({Jn > 0} N {thn > 0}).

Proof: Let & = ¢(x) with Je(x) > 0 and ¢(x) > 0. Then, by the inverse
mapping theorem, there exist § and £ > 0 such that, for n big enough, ¢, is
a C2-diffeomorphism from B(z,8) onto an open set containing B(¢, (), ).
It can also be assumed that 1, > 0 on B(x,§). There exists n such that
€ € B(pn(x),¢e), which yields the result. 2

Suppose then py(§) > 0. By theorem 3, there exists § € © such that
;3o € Ky fiz) = € %) > 0and J(f)(x) > 0}) > 0. By
property (S1) and the previous lemma, p({w; 3n Jz € Ky f9 (z) =

10



¢ g% (z) >0 and J(fgn)(a:) > 0}) > 0. Consequently, there exist h € H
and xz € Ky such that

f(h+z)=¢€ §(h+=z) >0 and det(h, fi)1<i<ajeo(h + z) # 0.

In particular, f(h+z) =&, §(h+z) > 0 and rankD f(h 4 z) = d.

Suppose, conversely, that there exists h® € H such that f(h?) = ¢,
§(h%) > 0 and rankD f(h?) = d. Then there exists 6 € © such that ff,(0) =
¢, 3%(0) > 0 and J(f,fo)(O) > 0. By property (S2) and lemma 4.1, for
p-almost every w, there exists n such that £ € f(eho u))n({J(f((’ho w)n) >0} N

{g(eho D 0}). Consequently, there exists n such that, if we denote by

A the set {w € E; § € f(ehow)n({J(f(eho,w)n) > 0} N {gg’ho,w)n > 0})}, then
1(A) > 0. Obviously, it can be assumed that H,, D Ky. For u-almost every
w, the map h — f(eh I is continuous from H into C?(Ky) and the map

h — g?h ), 18 continuous from H into C(Ky). Therefore, by the same proof
as in lemma 4.1, for all w € A, there exists an open set O, in H containing
h?, so that

h€0u=>E€ [, (T (ffhw) > 0N {glhw), > 0}

The choice of O, may be done in a measurable way with respect to w.
Let then v, be the standard Gaussian measure on H,. As v, charges all
non-empty open sets and since 7, is an open map from H onto H,,, we have

plfw; €€ FRLT(0) > 0y n{gl, > 01}

= [ nlfes € € o (T Ufr) > 01 {ghy, > O} dva(h)

n

Z/Az/n(wn(Ow))d,u,(w) > 0.

Theorem 3 then yields py(&) > 0.
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