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Abstract:

In this paper, we address to the problem of testing hypothesis using maximum like-

lihood statistics in non identifiable models. We derive the asymptotic distribution

under very general assumptions. The key idea is a local reparametrization, depending

on the underlying distribution, which is called locally conic. This method enlights

how the general model induces the structure of the limiting distribution in terms of

dimensionality of some derivative space. We present various applications of the theory.

The main application is to mixture models. Under very general assumptions, we solve

completely the problem of testing the size of the mixture using maximum likelihood

statistics. We derive the asymptotic distribution of the maximum likelihood statistic

ratio which takes an unexpected form.
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1 Introduction

In this paper, we study the problem of hypothesis testing using maximum likelihood

statistics in very general and various situations. The originating question was to solve

the problem for general finite mixtures. Indeed, the problem is nor clearly neither

completely solved in the literature. Partial solutions may be found in for example in

[5], [11], [18]. In particular, Ghosh and Sen ([11]) state the asymptotic distribution of

the maximum likelihood statistics for testing one population against two populations.

However, their formulation requires some strong separation of the populations which

is highly unsatisfactory. To be more precise and to introduce the key ideas of our

solution, let us discuss briefly the most simple problem of population mixture. So let

gπ,γ = (1 − π)f0 + πfγ = f0 + π(fγ − f0) (1)

be the model, where F = (fγ)γ∈Γ is a parametric regular family of densities with re-

spect to some positive measure ν, and π ∈ [0, 1]. The problem is to test gπ,γ = f0

against gπ,γ 6= f0. The model is not identifiable since gπ,γ = f0 if and only if λ = 0

or π = 0. Define the directional estimators π̂n
γ as the maximum likelihood estimator

of π when γ is fixed, and γ̂n
π as the maximum likelihood estimator of γ when π is

fixed. The directional Fisher information at point g0 is
∫ (fγ−f0)2

f0
dν when γ is fixed,

and π2.
∫
(∂fγ
∂γ

)2
γ=0.

1
f0
dν when π is fixed. In a standard way,

√
nπ̂n

γ and
√
nγ̂n

π con-

verge to gaussian random variables and define respectively gaussian processes ξγ and

ηπ. But the covariance of these processes is unbounded as γ tends to 0 or as π tends

to 0 since the directional Fisher informations tend to 0. This implies that π̂n and

γ̂n, global maximum likelihood estimators, do not converge at all. This explains for

instance the phenomena of non convergence described in Hartigan ([13]). However,

this does not imply that the maximum likelihood statistic does not converge, but that

the method does not allow to find the limit distribution, except when setting extra

assumptions on the parameters, such as π ≥ ǫ or ‖γ‖ ≥ ǫ for some fixed positive ǫ.

Indeed in this case, the gaussian processes are bounded (depending of course on ǫ),

and the limit distribution of the maximum likelihood statistic may be proved to be

the supremum of a simple function of the gaussian process. Redner proved in [16] that

the maximum likelihood estimators for finite mixtures with compact parameter space

is consistent in the quotient parameter space (when quotient is taken with respect to

identifiable classes). This result, though interesting, is not very tractable. Bickel and

Chernoff give the asymptotic distribution of the supremum of some process which is

related, following Hartigan, to the problem of testing a mixture of two normal distri-

butions with same variance against a pure normal (see [6]) in the simple mixture model.
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Here, we propose a complete solution to this specific problem without any extra

assumption on the parameters. The driving idea is to parametrize in such a way that

one of the parameters is identifiable at the previously non identifiable point, so that it

is possible to have asymptotic expansions in its neighborhood, and the other param-

eter contains all the non identifiability. We thus propose a new reparametrization of

the mixture family.An important property is also that all directional Fisher informa-

tions are uniformly equal to one. The first parameter can be thought around the true

point as something close to the Kullback-Leibler distance, the other parameter can be

thought as a ”direction”. The first parameter is thus the only parameter that can be

consistently estimated, and the second one, around the true distribution, may be seen

as a nuisance parameter. It can not be consistently estimated. When a ”direction”

is fixed, the model is supposed to be regular , which, of course, does not imply the

regularity of the whole model. Doing so, the key point is to assume that the closure

of the derivatives in any direction at point 0 of the log-likelihood is a Donsker class of

random variables, so that we prove easily that the asymptotic distribution of the max-

imum log-likelihood is a function of the supremum of a gaussian process. Moreover,

the first ”distance” parameter converges in distribution with parametric speed
√
n.

After making expansions around the true value of the identifiable parameter, some

maximization has to be performed. To be able to obtain a result, it is necessary to

have a careful control over the remaining terms of the expansions. To our opinion,

this had been overlooked in previous papers. When testing one population against

two populations, the asymptotic distribution has a term coming from ”second order”

unboundness, see Theorem 4.2. The simple mixture model does not lead to such extra

term, compare Theorem 1 and Theorem 4.2.

This situation is not proper to mixture models. In this paper, we present an abstract

general solution to the asymptotics of maximum likelihood statistics, and application

to hypothesis testing. These general models are not identifiable in general and can be

nonparametric models. We call them locally conic models . We develop here two major

applications: mixture models, and usual parametric models. Applied to parametric

models, this point of view underlines naturally the role of the geometric structure of

the parameter space around the null hypothesis in the precise formulation of the limit

distribution. Applied to mixture models, this leads to a surprising theorem, where it

appears that an unexpected term in the limit distribution comes from the non identi-

fiability of the model. The locally conic parametrization allows a clear understanding

of what happens due to the non identifiability.

Non parametric testing (and the associated estimation of our ”Kullback” parameter)

of a probability density may be carried out using our theory for contamination (or
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perturbation) models. Indeed, they are an extension of the simple mixture model.

Applications to ARMA processes are quickly explained and are developed in another

paper ([8]): Observations are of course no more i.i.d. and we have to use an approx-

imation of the likelihood or more generally a contrast function instead of the likelihood.

The organization of the paper is the following: In a first section, we set the gen-

eral point of view and assumptions on the model. We explain the driving ideas, and

we prove our main abstract results under simple assumptions: convergence, asymp-

totic distribution of the maximum log-likelihood statistic and of the first ”distance”

parameter θ, together with asymptotic distribution of the maximum log-likelihood un-

der contiguous sequences. We then set how these results apply for the problem of

hypothesis testing. In section 3, we focus on the classical parametric situation, with

particular attention to the geometry of the parameter space. In section 4, we solve

the problem for population mixtures, leading to a surprising Theorem (see Theorem

4.2). In section 5 we propose further remarks and applications, in particular to non

parametric perturbation models and to ARMA models. Proofs of the main results are

given in section 6.

2 General results

2.1 Model and Basic Assumptions

G is a set of distributions g in L1(ν), where ν is a positive measure on IRk.

Most often in the sequel we refer to the situation where we observe a sample (X1, . . . , Xn)

of i.i.d. random vectors with common distribution the underlying probability g0ν.

The fundamental assumption on the model is the following: we assume there exists a

parametrization of G through two parameters θ and β : (θ, β) ∈ [0,M ] × B, M is a

positive real number, B is a precompact Polish space, with metric dB.

G = {g(θ,β), (θ, β) ∈ T }

where T ⊂ [0,M ] × B is endowed with the product topology of IR and B. The

parametrization satisfies the following assumptions:

(A1) It is possible to extend the application (θ, β) → g(θ,β) from T to G such that

(θ, β) → g(θ,β)(x) is continuous ν a.s., and:

g(θ,β) = g0 ⇐⇒ θ = 0
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Define for any positive number c:

Bc = {β ∈ B : ∃θ ≤ c, (θ, β) ∈ T }

For any β in B, define:

θβ = sup{t : [0, t] × {β} ⊂ T }

We say that a model is locally conic if the local parametrization verifies:

(A2) ∀β ∈ B̃, either θβ > 0 or there exists c > 0 such that ([0, c] × {β}) ∩ T is

empty.

define then

B̃ =
⋂

c>0

Bc

This assumption says that it is impossible to find accumulation sequences of parameter

leading to θ = 0 with directions β where the submodel (g(θ,β)ν, (θ, β) ∈ T )θ (where β

is fixed) is not defined in a rightneighborhood of 0. Moreover, B̃ is then the set of all

directions β for which the submodel approaches 0.

Notice also that B̃ is obviously compact.

Assume further:

(A3) For all β in B̃, gθ,β is twice continuously differentiable with respect to θ ν a.e.,

with right continuous derivatives at point θ = 0. Denote by g′θ,β and g”θ,β the deriva-

tives (which are right derivatives at θ = 0). These derivatives are ν a.s. continuous

over T (with respect to (θ, β)).

To study the maximum likelihood statistic, we shall use Taylor expansions. The first

term in the expansion is the empirical process of the first derivative of the density. The

uniformity of the convergence in the central limit theorem will be the second key point

in the paper. Define H the Hilbert space L2(g0 · ν), and

D = {
g′(0,β)

g0

, β ∈ B̃}

(A4) D is a Donsker class. Let ξd be the gaussian process on D with covariance the

usual scalar product in H. Then ξd has continuous sample paths.

Donsker classes are defined in [20]. Roughly speaking, a Donsker class is a set of

functions for which the empirical distributions (with i.i.d. variables) verify a uniform
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central limit theorem, with limit distribution a Gaussian process.

(A5). We assume that the following normalization condition holds:

∀d ∈ D, ‖d‖H = 1

So that D is a subset of the unit sphere in H. D is then a compact subset of this unit

sphere in H since functional Donsker classes are necessarily precompact.

Comments on the assumptions.

• The parametrization depends upon the underlying distribution g0. For instance,

in case of simple mixtures such as (1), we set

gπ,γ = f0(1 + θ · β), θ = ‖gπ,γ − f0

f0

‖H , β =
gπ,γ − f0

f0

· ‖gπ,γ − f0

f0

‖−1
H .

and in case of parametric models (gγ), where g0 = gγ0 :

gγ = gγ0+θβ, θ2 = (γ − γ0)
T · I(γ0) · (γ − γ0), β =

γ − γ0

θ

where I(.) is the Fisher information of the model.

• Sufficient conditions for a set to be a Donsker class of functions are given in [20].

A sufficient condition for D to be a Donsker class is that the L2-entropy with

bracketing is integrable, see [15].

• Sufficient conditions for a gaussian process to have continuous sample paths are

given in [10]. A sufficient condition is that the L2-entropy is integrable.

• The assumptions imply that (D)2 is a Glivenko-Cantelli class in probability.

• The parametrization may be non identifiable. The only identifiability is that of

θ at point g0.

The driving ideas are the following. First, to be able to make an expansion of the

maximum likelihood, we need a point around which to make the expansion. In other

words, we need a parameter θ which can be consistently estimated. This is the reason

of the locally conic parametrization such that (A1) and (A2) hold. Second, we have

to make an expansion till the remaining terms may be uniformly bounded, so that the

maximization may also be performed on the parameter β. In the parametric situation,

an expansion till order 2 will be enough, this gives the simple results of the next section.

In the mixture model, this is no more possible, as we shall explain further. However,
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the locally conic parametrization allows to see exactly what happens and to find the

solution.

The first point which holds for both applications is the uniform convergence of the

estimator of θ, we set it now.

The log-likelihood is :

ln(θ, β) =
n∑

i=1

log g(θ,β)(Xi)

Define the maximum likelihood estimator (θ̂n, β̂n) to be any maximizer of ln over T ,

which exists, thanks to (A1). As usual we shall need:

(A6) There exists a function h in L1(g0ν) such that: ∀g ∈ G, | log g| ≤ h ν-a.e.

The following Theorem states the convergence of θ̂n:

Theorem 2.1 Under assumptions (A1) (A2) and (A6), θ̂n converges in probability to

0 as n tends to infinity.

Notice that β̂n may or may not converge, see the examples developed in subsequent

sections: For mixture models, β̂n does not converge in general, and for regular para-

metric models, β̂n converges in distribution.

2.2 Simple asymptotic results

To have uniformly small remaining terms in the Taylor expansion till order 2, we in-

troduce:

(A7) There exists real functions l and m such that:

∀(θ, β) ∈ T , |
g′(θ,β)

g(θ,β)

|≤ l and | g”(θ,β)

g(θ,β)

|≤ m

with

Eg0ν [l]
2 < +∞ and Eg0νm < +∞

Notice that (A3), (A7) state the regularity of the model parameterized only with

θ ≥ 0 when β is fixed, which is defined on a small right-neighborhood of 0, [0, θβ],

thanks to (A2).

Define Tn as the maximum likelihood statistic: Tn = ln(θ̂
n, β̂n). We have the following

asymptotic result:
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Theorem 2.2 Assume (A1),(A2), (A3), (A4), (A5), (A6), (A7) hold. Then:

Under g0.ν, Tn − ln(0) converges in distribution to the following variable:

1

2
· sup
d∈D

(ξd)
2 · 1ξd≥0

Remark

Depending on the structure of the gaussian process on D, the indicator function may

disappear in the limit variable. For the classical parametric case, it depends of the

geometrical structure around θ0, see section 3.1.

The following Theorem states the asymptotic distribution of θ̂n:

Theorem 2.3
√
n · θ̂n converges in distribution as n tends to infinity to

sup
d∈D

(ξd) · 1ξd≥0

where ξd is the gaussian process on D with covariance the usual scalar product in H.

It is possible to check the asymptotic limit distribution of the log-likelihood statistic

for each direction under alternative contiguous distributions as usual. The following

result was proved by Ghosh and Sen in [11] for mixtures of two populations under their

strong separation assumption.

Theorem 2.4 Assume the underlying distribution is g(θn,β0) · ν, where θn = c/
√
n, c

a positive real number, β0 ∈ B̃. For any β in B̃, define Vn(β) = supθ : (θ,β)∈T ln(θ, β).

Then:

Vn(β) − ln(0) converges in distribution to:

1

2
· (ξd + c〈d, d0〉H)2 · 1ξd+c〈d,d0〉H≥0

where d =
g′
(0,β)

g0
and d0 =

g′
(0,β0)

g0

Of course, this is not completely satisfactory since this result holds only directionally.

We make the following conjecture:

Conjecture 1 Assume (A1),(A2), (A3), (A4), (A5), (A6), (A7) hold. Under the

distribution g(θn,β0)·ν, where θn = c/
√
n, c a positive real number, β0 ∈ B̃, the maximum

likelihood statistic Tn − ln(0) converges in distribution to:

1

2
· sup
d∈D

(ξd + c〈d, d0〉H)2 · 1ξd+c〈d,d0〉H≥0

where d0 =
g′
(0,β0)

g0
.
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2.3 Application to hypothesis testing

As was underlined before, the locally conic parametrization depends on the unknown

true density. However, the maximum likelihood statistic does not depend on the

parametrization, it only depends on the family G, whatever be its description. More-

over, when substracting two maximum likelihood statistics over different models, the

difference makes the terms ln(0) disappear. It is then clear that the previous results

allow to test hypothesis using maximum likelihood statistics with asymptotic known

level in the following way. Define T0 and T1 to be sets of parameters such that the

models G0 = {g(θ,β), (θ, β) ∈ T0} and G1 = {g(θ,β), (θ, β) ∈ T1} verify all assumptions

of section 2.1., T0 ⊂ T1. Define:

Tn(i) = sup
(θ,β)∈Ti

ln(θ, β) i = 1, 2

We have

Theorem 2.5 The asymptotic level of the test of H0 : (θ, β) ∈ T0 against

H1 : (θ, β) ∈ T1/T0 with rejecting domain :

Tn(1) − Tn(0) ≥ Cα

is:

α := P (
1

2
· sup
d∈D1

(ξd)
2 · 1ξd≥0 −

1

2
· sup
d∈D0

(ξd)
2 · 1ξd≥0 ≥ Cα)

with obvious notations.

The proof follows that of Theorem 2.2 for the distribution of (Tn(1)−ln(0), Tn(0)−ln(0))

where the true distribution g0 lies in G0.

If the true distribution is a fixed g1 not in G0, the asymptotic power of the test is

obviously one, though if the true distribution is g(θn,β0) · ν as in Theorem 2.4, the

asymptotic power is conjectured to be:

P (
1

2
· sup
d∈D1

(ξd + c〈d, d0〉H)2 · 1ξd+c〈d,d0〉H≥0 −
1

2
· sup
d∈D0

(ξd + c〈d, d0〉H)2 · 1ξd+c〈d,d0〉H≥0 ≥ Cα)

where d0 =
g′
(0,β0)

g0
.

Remarks

• To compute the asymptotic distribution of Tn(1)−Tn(0), notice that the processes

involved are correlated and that D0 ⊂ D1.
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• The limit distribution may depend on g0 or may be free of g0. This depends on

the spaces B̃ and D. Indeed, if B̃ does not depend on g0, the distribution of the

supremum over D of the square of the gaussian process may be free of g0. This is

the case for parametric testing where the parameter to be tested is in the interior

of the parameter set, see section 3.1.

• Analytic derivations of the distributions of the supremum of the Gaussian pro-

cess as involved in the Theorems are difficult problems. In a recent work, Azais

and Wschebor ([2]) give an explicit formula for computing the distribution of the

supremum of a random process in various situations. A recent text of introduc-

tion in the topics of continuity and extrema for gaussian processes, together with

references, is the one of Adler ([1]). Also, in similar contexts, Beran and Millar

([4]) have proposed stochastic procedures using bootstrapping to find the esti-

mated level of confidence sets when the asymptotic distribution is too intractable.

Similar ideas could be used here.

• Though the assumption (A7) does not hold for mixtures, we shall derive an

asymptotic distribution for the maximum likelihood statistic which will be also

some function of the maximum of the gaussian process indexed by D. Application

to hypothesis testing follows obviously the same lines.

3 Application to parametric models

Let G = {gγ, γ ∈ Γ} be an identifiable parametric model where Γ is a compact subset

of IRp. We make the following geometrical assumption on Γ:

(RP1) For all γ in Γ and u in IRp define:

T (γ, u) = {t ∈ IR, γ + t.u ∈ Γ}

U(γ) = {u ∈ IRp, T (γ, u) contains a right-neighborhood of 0 , [0, uγ[}

Then:

∀γ ∈ Γ, ∃c > 0, ∀u, (∃t ∈ T (γ, u)) and t < c =⇒ u ∈ U(γ))

Moreover, for all γ in Γ, U(γ) spans IRp.

Let g0 = gγ0 .

Assume the model is locally regular in the following way:
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(RP2) The application t → gγ0+t.u is twice continuously differentiable for t > 0,

g0ν a.e. for all directions u in U(γ0), with right continuous derivative at t = 0.

There exist functions h, l, m, such that:

∀γ = γ0 + t.u ∈ Γ, u ∈ U(γ0), | log gγ| ≤ h, | 1

gγ

∂gγ0+t.u

∂t
| ≤ l, | 1

gγ

∂2gγ0+t.u

∂t2
| ≤ m

Eg0ν [h] < +∞, Eg0ν [l
2] < +∞, Eg0ν [m] < +∞

Define the Fisher information at point γ0 as the p× p matrix I(γ0) such that:

∀u ∈ U(γ0), Var

(
1

gγ0

∂gγ0+t.u

∂t
|t=0

)

= uT · I(γ0) · u

(RP3) I(γ0) is non degenerated.

Comments

• Assumption (RP1) allows to define the Fisher information unambiguously since

derivatives exist in at least p linearly independent directions.

• For γ0 in the interior of Γ, the Fisher information so defined reduces to the usual

Fisher information, and assumptions (RP2) and (RP3) state the regularity of the

model in the usual way (see [7]).

• The geometric interpretation of (RP1) is that Γ possesses the following property:

at a boundary point, there exists a small ball B centered at the boundary point

such that Γ ∩B is inside the tangent cone.

3.1 Testing γ = γ
0 against γ 6= γ

0

The locally conic parametrization will be:

γ = γ0 + θ · β

θ =
√

(γ − γ0)T I(γ0)(γ − γ0)

β =
γ − γ0

θ

It is then obvious that all assumptions (A1),(A2), (A3), (A5), (A6), (A7) hold, with:

B = B = { γ − γ0

√
(γ − γ0)T I(γ0)(γ − γ0)

, γ ∈ Γ}
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Now, let β1, . . . , βp be p independent directions in B. Then:

D = D = {d =
1

g0

p∑

i=1

bidi, where di =
∂gγ0+θ.βi

∂θ
|θ=0, and

p∑

i=1

biβi ∈ B}

Then (A4) holds since D is a compact subset of a finite dimensional linear space, and

(A5) holds by construction. Let ln(γ) be the log-likelihood with n i.i.d. observations.

We have:

Theorem 3.1 Under the assumptions (RP1), (RP2) and (RP3): supγ∈Γ ln(γ)− ln(0)

converges in distribution to:

1

2
sup

u∈I(γ0)1/2·B
(〈u, V 〉)2 1〈u,V 〉≥0

where V is a p dimensional standard gaussian random variable and 〈., .〉 the usual scalar

product on IRp.

Proof

Theorem 2.2 gives that supγ∈Γ ln(γ) − ln(0) converges in distribution to:

1

2
sup∑p

i=1
biβi∈B

(〈b, d〉)2 1〈b,d〉≥0

with d = (d1, . . . , dp). The distribution of 〈b, d〉 is that of 〈β,W 〉 where β ∈ B and W

follows centered p-dimensional gaussian distribution with variance I(γ0). The change

of variables u = I(γ0)1/2 · β gives the result.

Theorem 3.1 allows one to know the asymptotic distribution of the maximum like-

lihood statistic depending on the geometric structure of Γ around γ0:

• If γ0 is in the interior of Γ, B contains all possible directions, and also

I(γ0)1/2 ·B, so that (as already known) we obtain that the asymptotic distribution

of supγ∈Γ ln(γ)− ln(0) is 1
2
·χ2(p), since the supremum in the Theorem is attained

for u = V/‖V ‖.

• If γ0 is on the boundary of Γ, the asymptotic distribution does depend on γ0 only

through the set B, that is only through the shape of Γ at the boundary point γ0.

More precisely:

Corollary 3.2 Under the assumptions (RP1), (RP2) and (RP3): supγ∈Γ ln(γ)− ln(0)

converges in distribution to:

1

2

(
〈V, PI(γ0)1/2·B(V )〉

)2
1〈V,P

I(γ0)1/2·B
(V )〉≥0

where V is a p dimensional standard gaussian random variable and PI(γ0)1/2·B the or-

thogonal projection onto the set I(γ0)1/2 · B.
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3.2 Testing with a finite dimensional nuisance parameter

Here, we suppose that we are interested only in a part of the parameter. Namely,

γ = (α, δ), α ∈ IRk, δ ∈ IRl, k+ l = p, and we want to test α = α0 against α 6= α0. Say

that γ0 = (α0, δ0). We have:

Theorem 3.3 Under the assumptions (RP1), (RP2) and (RP3) for the whole model

and if γ0 lies in the interior of Γ: supγ∈Γ ln(γ) − supδ,(α0,δ)∈Γ ln(α
0, δ) converges in

distribution to 1
2
· χ2(k).

Proof

For the full model, we have that B is an ellipsoid in IRp. For the submodel, the locally

conic parametrization will be:

γ = γ0 + θ1 · (0, β1)

θ1 =
√

(δ − δ0)T I1(δ0)(δ − δ0)

β1 =
δ − δ0

θ1

where I1(δ
0) is defined at point δ0 as in (RP2) for the submodel. Then with obvious

notations B1 = (0)k × El where (0)k is the nul point in IRk and El the l-dimensional

ellipsoid defined with the matrix I1(δ
0). Following the same change of variables than

for the proof of Theorem 3.1 we have that:

supγ∈Γ ln(γ) − supδ,(α0,δ)∈Γ ln(α
0, δ) converges in distribution to

1

2
sup
u∈B

(〈u, V 〉)2 1〈u,V 〉≥0 −
1

2
sup
u1∈El

(〈((0)k, u1), V 〉)2 1〈((0)k,u1),V 〉≥0

where V is a p dimensional standard gaussian random variable. This in turns exactly

equals 1
2
(V 2

1 + V 2
2 + . . . + V 2

k ).

4 Population mixtures

In this section, we show how the theory of locally conic models applies to population

mixtures.

Let F = (fγ)γ∈Γ be a family of probability densities with respect to ν. Γ is a compact

subset of IRk for some integer k. Gp is the set of all p−mixtures of densities of F :

Gp = {gπ,α =
p∑

i=1

πi · fγi : π = (π1, . . . , πp), α = (γ1, . . . , γp),

∀i = 1, . . . , p, γi ∈ Γ, 0 ≤ πi ≤ 1,
p∑

i=1

πi = 1}
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Obviously, the model is not identifiable for the parameters π = (π1, . . . , πp) and

α = (γ1, . . . , γp). There exist mixtures g in Gp which have different representations gπ,α

with different parameters π and α. For instance, we have for any permutation σ of the

set {1, . . . , p}:
p∑

i=1

πi · fγi =
p∑

i=1

πσ(i) · fγσ(i)

Another example which may not be avoided by taking some quotient with respect to

permutations is:

fγ0 =
p∑

i=1

π · fγ0 + (1 − π) · fγ0 =
p∑

i=1

πi · fγ0

for any (πi) such that πi ≥ 0 and
∑p

i=1 πi = 1.

However, we assume that Gp is identifiable in the weak following sense:

gπ0,α0 = gπ1,α1 ν a.e. ⇐⇒
p∑

i=1

π0
i · δγ0

i
=

p∑

i=1

π1
i · δγ1

i
as probability distributions on Γ

In other words, Gp is identifiable if the parameter is the mixing discrete probability

distribution on Γ. Teicher (see [19]) or Yakowitz and Spragins ([21] give sufficient

conditions for such weak identifiability, which hold for instance for finite mixtures of

gaussian or gamma distributions.

We address to the following problems:

• For a particular density fγ0 = f0, test f0 against a simple mixture in the model

(1) stated in the introduction.

• For a particular density fγ0 = f0, test f0 against a general mixture, or test one

population against a mixture.

• For an integer q less than p, test q populations against p populations.

As noted before, the model is not identifiable for the parameters π = (π1, . . . , πp) and

α = (γ1, . . . , γp). If reparameterized in an identifiable manner, lack of differentiability

appears. When using the non identifiable parametrization with parameter (π, α), the

lack of identifiability leads to a degeneracy of the Fisher information, so that, when

using classical Taylor expansions for the log likelihood statistics, the resting terms

may not be bounded uniformly. Moreover, the asymptotic variance of the maximum

likelihood estimator (which is the inverse of the Fisher information), when one of the

parameter π or α is fixed is unbounded. This is why Ghosh and Sen had to sepa-

rate strongly the γ parameters to develop the asymptotics of the maximum likelihood

statistic (see [11]) when testing two populations against one population; that is, they

14



          

assumed that the model for two populations verified ‖γ1 − γ2‖ ≥ ǫ for a fixed positive

ǫ and some norm ‖.‖ on Γ. This assumption is rather unnatural.

For each mixture problem, we exhibit a locally conic parametrization that will solve the

problem completely with no such separation on the parameters of the mixing family.

We make the following assumptions on the mixing family F :

• (M1) There exists a function h in L1(g0ν) such that: ∀f ∈ F , | log f | ≤ h ν-a.e.

4.1 Simple mixture

Here, the model is the subset of G2 given by (1):

gπ,γ = (1 − π)fγ0 + πfγ

where π ∈ [0, 1], γ ∈ Γ and the true density is g0 = fγ0 , γ0 in the interior of Γ. Recall

that H is the Hilbert space L2(g0ν). Define (θ, β) by:

θ = ‖gπ,γ − g0

g0

‖H = π · ‖fγ − fγ0

fγ0

‖H ; β = γ

So that the new parametrization is given by:

gπ,γ = g(θ,β) = g0(1 + θ · fβ − fγ0

fγ0

/‖fβ − fγ0

fγ0

‖H) (2)

It is easy to see that here:

D = {fβ − fγ0

fγ0

· ‖fβ − fγ0

fγ0

‖−1
H , β ∈ Γ}

We make the following assumption:

• (M2) fγ is continuously differentiable ν almost everywhere with respect to γ =

(γ1, . . . , γk) in the interior of Γ. Moreover, there exists a function l such that:

∀γ ∈ Γ, | 1

fγ

∂fγ
∂γi

| ≤ l, i = 1, . . . , k Eg0ν [l
2] < +∞

Theorem 4.1 Under assumptions (M1), (M2), and if:

(S2) D is a Donsker class and ξd has continuous sample paths

then the parametrization verifies all assumptions (A1), (A2), (A3), (A4), (A5), (A6),

(A7), and Theorem 2.2 holds.
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Proof

(M1) implies (A6), (M2) implies (A1), (A2), (A3) and (A7). In particular

g(θ,β) = g0 ⇐⇒ θ = 0

is obviously a consequence of the weak identifiability, since

T ⊂ {(θ, β) : θ ≤ ‖fβ − fγ0

fγ0

‖H}.

Then, (A5) holds by construction.

Remark. A simple and useful example where the assumptions hold is the case of

the mixture of gaussian variables. If the mixture is only on the means, it is enough

to assume that the means are in a compact set. If the mixture is also on the vari-

ances, easy computations show that the variances have to be restricted in a set of form

[ǫ, 2σ0 − ǫ] if σ0 is the variance of g0 for the assumption (A6) to hold. However, in this

case, a close look at the expansions giving the form of the likelihood statistic shows

that the Theorem still holds even when the variance is allowed to take bigger values:

the bigger values play a negligeable role when taking the maximum. This will be fully

developed in further work.

4.2 One population against two populations

In the case of the simple mixture, the locally conic parametrization is linear in the

parameter θ. The Taylor expansion till order 2 is trivial, and the simple asymptotic

result Theorem 2.2 holds. This will be the same for contamination models as explained

in section 5. But this will no more be the case for mixtures of unknown populations.

Let us explain the situation in the most simple case of real parameters. Here, Γ will be

a compact subset of IR. We suppose again that the underlying distribution is g0 = fγ0 ,

γ0 in the interior of Γ. But the model is the whole G2. Define: β = (γ, δ) γ ∈ Γ,

δ ∈ [0,M ]. The locally conic parametrization is given by:

g(θ,β) =
θ

N(β)
fγ + (1 − θ

N(β)
)fγ0+ θ

N(β)
δ

where

N(β) = ‖δ 1

g0

∂fγ
∂γ

|γ=γ0 +
fγ − g0

g0

‖H

If fγ possesses sufficiently many derivatives with respect to γ, we have the following

derivatives for gθ,β (g(k) denotes the k-th derivative of g(θ,β) with respect to θ and f (k)
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the k-th derivative of fγ with respect to γ ):

g′(θ,β) =
δ

N(β)
(1 − θ

N(β)
)(f ′

γ0+ θ
N(β)

δ
) +

1

N(β)
(fγ − fγ0+ θ

N(β)
δ)

g
(k)
(θ,β) = − kδk−1

N(β)k
f

(k−1)

γ0+ θ
N(β)

δ
+

δk

N(β)k
(1 − θ

N(β)
)f

(k)

γ0+ θ
N(β)

δ

Observe now that N(β) goes to 0 as soon as γ goes to γ0 and δ goes to 0. Then it can

be seen that δ
N(β)2

can not be uniformly bounded, so that g”(θ,β) divided by g(θ,β) may

not be uniformly bounded. To find the result, the locally conic parametrization is

still a key point, but the Taylor expansion has to be made till an order bigger than 2

in a region where N(β) goes to 0. We shall need the assumptions:

• (M3) N(β) = 0 if and only if γ = γ0 and δ = 0.

• (M4) fγ possesses derivatives till order 5. For all k ≤ 5,

f
(k)
γ0

g0

∈ L2(g0ν)

Moreover, there exist functions m2, m5 and a positive ǫ such that:

sup
γ−γ0≤ǫ

|f”γ
g0

| ≤ m2 Eg0ν [m
2
2] < +∞

sup
γ−γ0≤ǫ

|f
(5)
γ

g0

| ≤ m5 Eg0ν [m
2
5] < +∞

Define D as the set of functions d

d =
1

N(β)

(
fγ − fγ0 + δf ′

γ0

g0

)

Define also

d1 =
f ′
γ0/g0

‖f ′
γ0/g0‖H

, d2 =
f”γ0/g0

‖f”γ0/g0‖H
, u = 〈d1, d2〉

Notice that d1, d2 are in D as well as (λd1 +µd2)/
√
λ2 + µ2 + 2uλµ. We may now state

the Theorem:

Theorem 4.2 Assume that (M1), (M3), (M4) hold, that D is a Donsker class and

that ξd has continuous sample paths. Then Tn − ln(0) converges in distribution to the

following variable:

sup

{
1

2
· sup
d∈D

(ξd)
2 · 1ξd≥0;

1

2
ξ2
d1

+
1

2
ξ2
(d2−ud1)/

√
1−u21ξ

(d2−ud1)/
√

1−u2>0

}
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The asymptotic distribution is the supremum of two terms. The first one is the sup

term which was expected, and which is obtained for parameters that do not approach

too fast the non identifiable point. The second term comes from the boundary of the

set D, that is from approaching the non identifiable point. This second term has an

unexpected form, since it seems to be twice than an ordinary term (it adds two terms),

and appears as a boundary term coming from second order.

Remark.

If moreover f ′
γ/g0 is uniformly bounded in H, it is not difficult to see that ξd has

continuous sample paths using an entropy criterion. Indeed it is easily seen that

‖
fγ−fγ0+δf ′

γ0

g0

‖fγ−fγ0+δf ′

γ0

g0
‖
−

fγ′−fγ0+δ′f ′

γ0

g0

‖fγ′−fγ0+δ′f ′

γ0

g0
‖
‖

is upper bounded by

2
‖fγ−fγ′+(δ−δ′)f ′

γ0

g0
‖

‖fγ−fγ0+δf ′

γ0

g0
‖

The number of covering balls in H is then easily seen to be of order 1/ǫ2 when N(β)

does not approach zero, and of order 1/ǫ4 when N(β) approaches zero.

4.3 One population against a mixture

Here, we suppose again that the underlying distribution is g0 = fγ0 , γ0 in the interior

of Γ. But the model is the whole Gp for some known integer p. Define:

β = (λ1, . . . , λp−1, γ
1, . . . , γp−1, δ), λi ≥ 0,

p−1∑

i=1

λi = 1, γi ∈ Γ, i = 1, . . . , p− 1

and δ ∈ IR

The locally conic parametrization is given by:

g(θ,β) =
p−1∑

i=1

λi
θ

N(β)
fγi + (1 − θ

N(β)
)fγ0+ θ

N(β)
δ

D is the subset of the unit sphere of H of functions of the form:


δ
1

g0

∂fγ
∂γ

|γ=γ0 +
p−1∑

i=1

λi
fγi − g0

g0



 1

N(β)

where λi ≥ 0, γi ∈ Γ, i = 1, . . . , p− 1, δ ∈ IR, and

p−1∑

i=1

λi = 1
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and

N(β) = ‖δ 1

g0

∂fγ
∂γ

|γ=γ0 +
p−1∑

i=1

λi
fγi − g0

g0

‖H

The following assumption will replace (M3):

• (M3*) N(β) = 0 if and only if
∑p−1

i=1 λi(γ − γ0)2 = 0 and δ = 0.

For non negative λ1, . . . , λp−1, any λ and ǫ = 0 or 1, if Λ = (λ1, . . . , λp−1, λ, ǫ), define

d(Λ) =

∑p−1
i=1 λi

fγi−fγ0

g0
+ λd1 + ǫd2

‖∑p−1
i=1 λi

fγi−fγ0

g0
+ λd1 + ǫd2‖H

and define D1 to be the subset of D of functions d(Λ) which are orthogonal to d1. Then

Theorem 4.3 Under (M1), (M3*), (M4), if D is a functional Donsker class and ξd

has continuous sample paths, then Tn − ln(0) converges in distribution to the following

variable:

sup

{
1

2
· sup
d∈D

(ξd)
2 · 1ξd≥0;

1

2
ξ2
d1

+ sup
d∈D1

1

2
ξ2
d · 1ξd≥0

}

Theorem 4.3 is obviously an extension of Theorem 4.2 since in case p = 2, D1 contains

only one direction.

The addressed problem of testing one population (known or unknown) against a p-

mixture can now clearly be solved using Theorem 2.2 when the population is known,

and using Theorem 2.5 together with Theorem 3.1 when the population is unknown.

4.3.1 q populations against p populations

We believe that the asymptotic distribution of the maximum likelihood statistic in

the general model could be derived using the following locally conic parametrization.

Define B0 the set of parameters β = (λ1, . . . , λp−q, γ
1, . . . , γp−q, δ1, . . . , δq, ρ1, . . . , ρq)

such that λi ≥ 0, γi ∈ Γ, i = 1, . . . , p− q, δl ∈ IRk, ρl ∈ IR, l = 1, . . . , q, and
∑p−q

i=1 λi +
∑q

l=1 ρl = 0. Let then

N(β) = ‖
q∑

l=1

k∑

i=1

δli
1

g0

∂fγ
∂γi

|γ=γl,0 +
p−q∑

i=1

λi
fγi

g0

+
q∑

l=1

ρl
fγl,0

g0

‖H

For any β in B0 and any non negative θ such that for any integer l = 1, . . . , q,

π0
l + ρl

θ
N(β)

≥ 0, define the mixture:

g(θ,β) =
p−q∑

i=1

λi
θ

N(β)
fγi +

q∑

l=1

(π0
l + ρl

θ

N(β)
)fγl,0+ θ

N(β)
δl (3)
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Such parametrization may be viewed as a perturbation of g0 in the following way: per-

turb the q mixture g0 through a perturbation of the parameters γl,0 and the weights

π0
l , and add a perturbation as a p− q-mixture with weight tending to 0.

Such equation does not completely set a locally conic parametrization. Indeed, the

equation (3) does not define unambiguously (θ, β) for a given mixture. For instance,

different sets of parameters may give g0. It is then important to define the set B̃ such

that g(θ,β) = g0 ⇐⇒ θ = 0, which is not an immediate consequence of the definition of

g(θ,β). We shall then precisely describe the set B̃. The asymptotic distribution of the

likelihood ratio will take a similar form than when testing 1 against p populations. It

will be fully developed in further work.

The locally conic parametrization.

Let g be any p-mixture:

g =
p∑

i=1

πi · fγi

To describe it through equation (3), one has to associate the parameters of g to those

of g0, that is to give a special order to the parameters. In other words: for any

permutation σ of the set {1, . . . , p}, we define the parameters θσ such that g(θσ ,βσ) = g.

This leads to:

βσ = (λ1,σ, . . . , λp−q,σ, γ
1,σ, . . . , γp−q,σ, δ1,σ, . . . , δq,σ, ρ1,σ, . . . , ρq,σ)

with:

∀i = 1, . . . , p− q, λi,σ · θσ = πσ(i) ·N(βσ)

∀i = 1, . . . , p− q, γi,σ = γσ(i)

∀i = 1, . . . , q, δi,σ · θσ = (γσ(p−q+i) − γi,0) ·N(βσ)

∀i = 1, . . . , q, ρi,σ · θσ = (πσ(p−q+i) − π0
i ) ·N(βσ)

It is easily seen that

θσ = ‖
q∑

l=1

k∑

i=1

(γ
σ(p−q+l)
i − γl,0

i )
1

g0

∂fγ
∂γi

|γ=γl,0 +
p−q∑

i=1

πσ(i)

fγσ(i)

g0

+
q∑

l=1

(πσ(p−q+l) − π0
l )
fγl,0

g0

‖H

The system is then ambiguous on the scale of βσ since a multiplication by a scalar of

β leads to the same result to N(β).

The problem is then to choose between the permutations. The following choice is a

good one. The idea is to associate step by step the nearest points γi involved in g to

the set of points γl,0 involved in g0. Look for:

min
l=1,...,q,i=1,...,p

‖γl,0 − γi‖

20



          

It is attained for l1 and i1. Define then σ(p− q + l1) = i1. Look then for

min
l=1,...,q,l 6=l1,i=1,...,p,i 6=i1

‖γl,0 − γi‖

It is attained for l2 and i2. Set then σ(p−q+ l2) = i2. By induction, define in the same

way σ(p − q + lj) = ij for j = 1, . . . , q. In this algorithm, consider only points truly

involved in g (eventually less than p points). Then complete the permutation σ in some

ordered way. You then have defined a permutation σ(g). The locally parametrization

is then given by equation (3) with:

T = {(θ, βσ(g)) : θ ≤ θσ(g), g ∈ G}

This induces the set B̃ as the intersection of all directions approaching 0 in T .

Such parametrization is locally conic.

5 Possible extensions

We briefly show how the theory of locally conic models could be used in two other

situations, leaving complete exposition and details for further investigation.

5.1 Contamination or perturbation models

Let g0 be fixed. Suppose we want to test : H0 : {g0} against the perturbation

H1 : {g(θ,β) = g0 + θβ} (or against the contamination model {g(θ,β) = (1 − ǫ)g0 + ǫg1}
which is similar to the perturbation model).

Assume θ ∈ [0, 1], β ∈ B where B is a subset of the unit ball of L2(1/g0.ν) such that

all β in B verify
∫
βdν = 0. We then have here:

D =
1

g0

B

Assume there exist Banach spaces C1 and C2 with canonical injections C1 → C2 →
L2(1/g0.ν) and real numbers K1 and K2 such that B is a subset of C1 with:

∀β ∈ B, ‖β‖C1 ≤ K1, ‖β‖C2 ≤ K2

B is equipped with the topology induced by C2. Then, we may apply the theory of

locally conic models as soon as

• The image in C2 of the unit ball of C1 is compact in C2,

• The continuity of the linear forms β → β(x) follows from the condition

|β1(x) − β2(x)| ≤ ‖β1 − β2‖C2
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• 1
g0
B is a Donsker class.

A simple example is the following: C1 = H4, C2 = H2 where Hp is the Sobolev space of

functions with p derivatives, equipped with the norm
∑p

j=0 ‖f (j)‖2. Then if we choose

as perturbation set

B = {β ∈ H4∪H2∪L2(1/g0.ν), ‖β‖L2(1/g0.ν) = 1, ‖β‖H4 ≤ K1, ‖β‖H2 ≤ K2, β(0) = 0}

We then have:

|β1(x) − β2(x)| = |
∫ x

0
(
∫ u

0
[β”1(v) − β”2(v)]dv)|

≤ ‖β1 − β2‖H2

In such situations, Theorem 2.3 holds, so that:

‖ĝn − g0‖ converges to 0 at speed 1/
√
n

where ĝn is the maximum likelihood of g in the perturbation model.

In other words, the norm of the density may be estimated at rate 1/
√
n in such non

parametric model. The estimation of non linear functionals of a density in non para-

metric models is a widely studied problem with known results and still open questions.

It is already known that some non linear functionals of a density may be estimated

at rate 1/
√
n in non parametric settings, see for instance Donoho ([9]). It is however

not in the scope of this paper to discuss this subject. Let us only notice that it is

also known that maximum likelihood estimators and functional Donsker class theory

do not lead to the optimal results for some critical non parametric situations, compare

for instance with the results of Laurent ([14]).

5.2 ARMA models

Let (ǫn)n∈IN be a sequence of independent centered gaussian random variables with

common variance σ2. An ARMA(p,q) process (Xn)n∈IN is given by the following equa-

tion (see for instance [3]):

Xn + a1Xn−1 + . . . + apXn−p = ǫn + b1ǫn−1 + . . . + bqǫn−q

where a1, . . . , ap, b1, . . . , bq are real parameters.

Let X = (Xn)n∈IN be a given process, and suppose we have to test that X is an

ARMA(p0, q0) process against X is an ARMA(p, q) process. As for the mixture model,

the ARMA(p,q) model is non identifiable when using parameters a1, . . . , ap, b1, . . . , bq.

For example an i.i.d. sequence has all 0 parameters, and also any equal parameters
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a1 = b1, . . . , ak = bk, k ≤ p and k ≤ q, the other parameters being set to 0. We

shall prove in a forthcoming paper ([8]) that it is possible to define a locally conic

parametrization to deduce the asymptotic behavior of the maximum pseudo-likelihood

statistic for the case of gaussian processes, or of the minimum contrast statistic for

general second order processes.

This leads to a simpler presentation than in [12]. This new presentation also makes

clearer the reason why the asymptotic limit distribution is the supremum of a function

of a gaussian process over some space.

6 Proofs

Proof of Theorem 2.1

K(g0, g(θ,β)) , the Kullback information, is continuous with respect to the parameter

(θ, β), thanks to (A1) (A2) and (A6). Define:

k(θ) = inf
β∈B : (θ,β)∈T

K(g0, g(θ,β))

Since T is a compact set and using assumption (A1) we have that:

∀θ > 0, k(θ) > 0

Define now:

Un(θ) = sup
β∈B : (θ,β)∈T

1

n
(ln(θ, β) − ln(0, β))

First of all, we obvioulsy have:

lim inf
n→+∞

Un(θ) ≥ k(θ) a.s.

Define mη(x, θ) = supdB(β1,β2)≤η | log g(θ,β1)(x) − log g(θ,β2)(x)|. Since B is compact for

any positive η there exists a finite number Nη of balls with diameter η/2 covering B
and with centers βi, i = 1, . . . , Nη. Now, obviously

Un(θ) ≤ sup
i=1,...,Nη

1

n
Cn(X

(n), θ, βi) +
1

n

n∑

i=1

mη(Xi, θ)

so that a.s.

lim sup
n→+∞

Un(θ) ≤ inf
i=1,...,Nη

C(θ, βi) + Eg0.ν(mη(X, θ))

so that

lim sup
n→+∞

Un(θ) ≤ k(θ) + Eg0.ν(mη(X, θ))
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Now, we have limη→0 mη(x, θ) = 0 a.s., and (A6) implies

lim
η→0

Eg0.ν(mη(X, θ)) = 0

so that

lim inf
n→+∞

Un(θ) ≥ k(θ)

and we may conclude that Un(θ) converges a.s. to −k(θ) for all θ.

Now, θ̂n is a maximizer of Un(θ). Let δ be a positive real number. We have:

∃ǫ > 0, ∀θ > δ, k(θ) ≥ 2ǫ

Let η be a positive real number, and let (θi)i=1,...,N be N real numbers such that

θi = θi−1 + η, θ1 = δ + η, θN ≥ M . We have :

Un(θ) = Un(θi) + Un(θ) − Un(θi)

We have:

P (θ̂n ≥ δ) ≤ P (sup
θ≥δ

Un(θ) > 0)

≤ P (wn(η) > ǫ) + P ([ inf
i=1,...,N

Un(θi)] ≥ −ǫ)

where

wn(η) = sup
|θ−θ′|≤η

|Un(θ) − Un(θ
′)|

Now, infi=1,...,N Un(θi) converges a.s. to infi=1,...,N −k(θi) which is less than −2ǫ so that

P ([infi=1,...,N Un(θi)] ≥ −ǫ) tends to 0 as n tends to infinity. It only remains to show

that P (wn(η) > ǫ) tends also to 0 for a good choice of η. To do this, notice that: if

rη(x) = sup|θ−θ′|≤η supβ∈B | log g(θ,β)(x) − log g(θ′,β)(x)| we have:

lim
η→0

Eg0.ν(rη(X)) = 0

thanks to assumptions (A1) and (A6). Now:

wn(η) ≤
1

n

n∑

i=1

rη(Xi)

So that almost surely:

lim sup
n→+∞

wn(η) ≤ Eg0.ν(rη(X))

which is smaller than ǫ for small enough η.

Proof of Theorem 2.2

An obvious consequence of assumption (A6) together with (A1) and (A2) is that, if a

submodel is fixed by the parameter β, the estimator of maximum likelihood θ̂nβ con-

verges to 0 as n tends to infinity. Moreover:
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Lemma 6.1 Under assumptions (A1), (A2), (A6), θ̂nβ converges to 0 in probability

uniformly in the parameter β.

Proof

We have:

{sup
β

θ̂nβ > δ} ⊂ {sup
β

sup
θ≥δ

(ln(θ, β) − ln(0, β)) > 0}

so that:

P (sup
β

θ̂nβ > δ) ≤ P (sup
θ≤δ

Un(θ) > 0)

and the end of the proof is the same as that of Theorem 2.1.

Let Vn(β) be the maximum likelihood statistic in the submodel: Vn(β) = ln(θ̂
n
β , β).

We obviously have, using (A2) and the convergence Theorem 2.1:

Tn = sup
β∈B̃

Vn(β)

Now: Assumption (A2) implies that, if θ̂nβ > 0, the derivative of ln(θ, β) with respect

to θ is zero at the point θ̂nβ : On {θ̂nβ > 0}

n∑

i=1

g′
(θ̂n

β
,β)

g
(θ̂n

β
,β)

(Xi) = 0

Expanding this equation leads to:

0 =
n∑

i=1

g′(0,β)

g(0,β)

(Xi) − θ̂nβ ·
n∑

i=1

(
g′(0,β)

g(0,β)

)2

(Xi)(1 + Rn)

where

Rn =
∫ 1

0

Zn(tθ̂
n
β , β)

An(β)
dt

with

Zn(u, β) =
1

n

n∑

i=1

(
g′(u,β)

g(u,β)

)2

(Xi) − An(β) − 1

n

n∑

i=1

(
g”(u,β)

g(u,β)

)

(Xi)

and

An(β) =
n∑

i=1

(
g′(0,β)

g(0,β)

)2

(Xi)

Now, define:

Z(u, β) =
∫ (

(
g′(u,β)

g(u,β)

)2g0 − (
g′(0,β)

g0

)2g0 −
g”(u,β)

g(u,β)

g0

)

dν
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Using the same tricks as for Theorem 2.1, we have:

lim
δ→0

sup
β

sup
|u|≤δ

|Z(u, β)| = 0

and then

lim
δ→0

lim sup
n→+∞

sup
β

sup
|u|≤δ

|Zn(u, β)| = 0 in probability .

An immediate consequence of this result together with Theorem 2.1 is that Rn = o(1)

in Probability uniformly over β. We may then state:

Lemma 6.2 The following equation holds :

θ̂nβ =

∑n
i=1

g′
(0,β)

g0
(Xi)

∑n
i=1

(
g′
(0,β)

g0

)2

(Xi)

· (1 + o(1)) · 1∑n

i=1

g′
(0,β)
g0

(Xi)>0

where the o(.) holds in probability uniformly over β.

Expansion in Vn(β) and similar arguments now lead to:

Vn(β) − ln(0) =
n∑

i=1

g
(θ̂n

β
,β)

− g0

g0

(Xi) −
1

2

n∑

i=1




g
(θ̂n

β
,β)

− g0

g0




2

(Xi)(1 + o(1))

We may then state:

Lemma 6.3

Vn(β) − ln(0) =
1

2

(∑n
i=1

g′
(0,β)

g0
(Xi)

)2

∑n
i=1

(
g′
(0,β)

g0

)2

(Xi)

· (1 + o(1)) · 1∑n

i=1

g′
(0,β)
g0

(Xi)>0

where the o(.) holds uniformly over β

Theorem 2.2 is then an immediate consequence of the previous lemma and assumptions

(A4) and (A5).

Proof of Theorem 2.3

Previous results lead to:

Tn − ln(0) =
1

2
(θ̂n)2 ·




n∑

i=1

(
g′
0,β̂n

g
0,β̂n

)2(Xi)



 (1 + o(1))

where the o(1) holds uniformly over β, so that:

√
nθ̂n =

√
2(Tn − ln(0)) ·

√√√√√
1

n

n∑

i=1

(
g′
0,β̂n

g
0,β̂n

)2(Xi) · (1 + o(1)) (4)

Now:
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Lemma 6.4
1

n

n∑

i=1

(
g′
0,β̂n

g
0,β̂n

)2(Xi)

converges to 1 in g0.ν probability as n tends to infinity.

Proof

Since a Donsker class is Glivenko-Cantelli in probability, we have:

lim
n→+∞

sup
d∈D

| 1

n

n∑

i=1

d2(Xi) − ‖d‖2
H |= 0 in g0.ν probability

Now, using assumption (A5) we have

lim
n→+∞

sup
d∈D

| 1

n

n∑

i=1

d2(Xi) − 1 |= 0 in g0.ν probability

Moreover, denoting
g′
0,β̂n

g
0,β̂n

by d̂n we have:

| 1

n

n∑

i=1

(d̂n)2(Xi) − 1 |≤ sup
d∈D

| 1

n

n∑

i=1

d2(Xi) − 1 |

and the lemma follows.

Now, equation (4) and lemma 6.4 prove Theorem 2.3.

Proof of Theorem 2.4

First of all, (g(θn,β0) · ν)⊗n and (g0 · ν)⊗n are contiguous. Indeed the log-likelihood ratio

is :

Λn =
n∑

i=1

log
g(θn,β0)

g0

(Xi)

=
c

n

n∑

i=1

g′(0,β0)

g0

(Xi) +
c2

2n

n∑

i=1

(
g”(0,β0)

g0

− (
g′(0.β0)

g0

)2)(Xi)(1 + o(1))

which converges in distribution under g0 · ν to the gaussian distribution N (−c2/2, c2).

This proves the contiguity, see [17] Proposition 3.1 p. 11. This implies, see [17] p.7:

• θ̂n converges to 0 in g(θn,β0) · ν probability,

• For all β in Bc, θ̂nβ converges to 0 in g(θn,β0) · ν probability.

so that lemma 6.3 stays true under g(θn,β0) · ν. Now, definition 2.1 p.7 of [17] again

implies that:
1

n

n∑

i=1

(
g′(0,β)

g0

)2(Xi)
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converges to 1 in probability under g(θn,β0) · ν. Moreover, applying Theorem 7.1 p. 33

of [17] we see that:
1√
n

n∑

i=1

g′(0,β)

g0

(Xi)

converges in distribution under g(θn,β0)·ν to the gaussian distribution N (c〈g
′

(0,β)

g0
,
g′
(0,β0)

g0
〉, 1)

and Theorem 2.4 follows.

Proof of Theorem 4.2.

Define ηn = supβ θ̂
n
β , which is known to tend to 0 in probability. The proof relies on

separating the domain in two regions:

An = {β :
δ

N(β)2
≤ 1

ηαn
}

Bn = {β :
δ

N(β)2
≥ 1

ηαn
}

for a suited choice of α. Then we have:

Tn − ln(0) = sup

{

sup
β∈An

ln(θ̂
n
β , β) − ln(0), sup

β∈Bn

ln(θ̂
n
β , β) − ln(0)

}

Then we prove:

Lemma 6.5 Under the assumptions of Theorem 4.2, supβ∈An
ln(θ̂

n
β , β) − ln(0) con-

verges in distribution to
1

2
sup
d∈D

(ξd)
2 · 1ξd ≥ 0

and

Lemma 6.6 Under the assumptions of Theorem 4.2, supβ∈Bn
ln(θ̂

n
β , β) converges in

distribution to
1

2
ξ2
d1

+
1

2
ξ2
(d2−ud1)/

√
1+u21ξ

(d2−ud1)/
√

1+u2>0}

The following lemma will be a basic tool.

Lemma 6.7 Let φ = δ
N(β)2

Then

δ ≤ A

φ1/3
, N(β) ≤ B

φ2/3

where A and B are some fixed constants.
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The lemma says that, when N(β) goes to 0, its speed and that of δ may be controlled

via φ.

Proof of Lemma 6.7.

It is enough to prove that
δ2

N(β)

is uniformly bounded. Indeed, if not, let βn be a sequence such that

lim
n

δ2
n

N(βn)
= +∞

Then, using (M3), δn tends to 0 and γn tends to γ0. Letting

f”γ0

g0

= a
f ′
γ0

g0

+ t, t 6= 0

be an orthogonal decomposition in H, we have:

N(βn)
2 =

(

(γn − γ0 + δn + a/2.(γn − γ0)2)2 · ‖
f ′
γ0

g0

‖2
H + a2/4.((γn − γ0)4‖t‖2

H

)

(1+o(1))

Let γn − γ0 + δn = an(γn − γ0)2. Then:

δ2
n

N(βn)
=

(an(γn − γ0) − 1)2

√
(an + a/2)2‖f ′

γ0

g0
‖2
H + a2/4.‖t‖2

H

which is always bounded.

Remark.

Notice that the only constraint on the parameters is given by

θ

N(β)
≤ 1

In particular the speed of φ is unconstrained, this will be useful when optimizing the

approximating polynomial for proving Lemma 6.6.

Proof of lemma 6.5.

First, the following expansion holds for θ tending to 0:

ln(θ, β) − ln(0) =
n∑

i=1

g(θ,β) − g0

g0

(Xi) −
1

2

n∑

i=1

(
g(θ,β) − g0

g0

)2(Xi)(1 + O(
g(θ,β) − g0

g0

(Xi)))

(5)

Let us now write an expansion of g(θ,β) till order 2:

g(θ,β)(x) = g0(x) + θ · g′(0,β)(x) +
θ2

2
· g”(θ∗,β)(x)
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for a θ∗ ≤ θ and depending on x. Now as θ tends to 0:

g”(θ∗,β)(x) = −2
δ

N(β)2
f ′
γ0(x) + 0(

δ2

N(β)3
θm2(x)g0(x))

since δ is bounded and using (M4). Write:

Dn(β) =
n∑

i=1

g′(0,β)

g0

(Xi)

Fn =
n∑

i=1

f ′
γ0

g0

(Xi)

Define also

a2 = ‖
f ′
γ0

g0

‖2
H

and

u(β) = 〈d1,
g′(0,β)

g0

〉H

Notice that
n∑

i=1

(
g′(0,β)

g0

)2

(Xi) = n · (1 + o(1))

n∑

i=1

(
g′(0,β)

g0

)

d1(Xi) = nu(β) · (1 + o(1))

where the o(1) are uniform in probability, thanks to (A4) and (A5). Let us now see

what happens on An and for θ ≤ ηn. Applying lemma 6.7 we obtain

δ2

N(β)3
θ ≤ η1−4α/3

n

which goes to 0 as soon as α < 3/4. It is now not too hard to prove:

ln(θ, β) − ln(0) = θDn(β) − δ

N(β)2
Fnθ

2 + o(nθ2)

−θ2

2
n(1 + o(1)) +

δ

N(β)2
θ3nau(β)(1 + o(1))

−θ4

2

δ2

N(β)4
na2(1 + o(1)) + o(nθ2)

where all the o(·) are uniform in probability over β in An.Now,

δ

N(β)2
θ ≤ η1−α

n
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and since (Dn(β), Fn)/
√
n converges uniformly in distribution using (A4) we have easily

δ

N(β)2
Fnθ

2 = o(θDn(β))

where the o(·) is uniform in probability over β in An. We finally get for β in An and

for θ ≤ ηn:

ln(θ, β) − ln(0) =

(

θDn(β) − θ2

2
n

)

(1 + o(1))

where again the o(·) is uniform in probability over β in An. Since θ̂nβ ≤ ηn this obviously

leads, by maximizing θDn(β) − θ2

2
n to:

Vn(β) =
1

2

Dn(β)2

n
1Dn(β)≥0(1 + o(1))

for β in An and where the o(·) is uniform in probability over β in An. The conclusion

of Lemma 6.5 follows using (M4) and the fact that ∪nAn = D.

Proof of lemma 6.6.

We shall use again expansion (5), but the expansion for g(θ,β) has now to be done till

order 5:

g(θ,β)(x) = g0(x) + θ · g′(0,β)(x) +
4∑

i=2

θi

i!
· g(i)

(0,β)(x) +
θ5

5!
· g(5)

(θ∗,β)(x)

for a θ∗ ≤ θ and depending on x. The aim is now to prove that for θ ≤ ηn and for

β ∈ Bn we have:

ln(θ, β) − ln(0) = Pn(θ, β)(1 + o(1)) (6)

where all the o(·) are uniform in probability over β in Bn and with

Pn(θ, β) = θDn(β) − δ

N(β)2
Fnθ

2 − θ2

2
n

+
δ

N(β)2
θ3nau(β) − θ4

2

δ2

N(β)4
na2

First of all, notice that on Bn, δ and N(β) are bounded by ηα/3n and tend uniformly to

0. So that we may write:

g(θ,β)(x) = g0(x)+θ·g′(0,β)(x)−
4∑

i=2

θi

i!
· iδ

i−1

N(β)i
f

(i−1)
γ0 (x)(1+o(1))−θ5

4!

δ4

N(β)5
f

(5)
γ0 (x)+O(

δ5

N(β)5
θ5m5(x))
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From now on, all the o(·) will be in probability uniformly for β in Bn. Now, using

expansion (5) together with the previous result leads to

ln(θ, β) − ln(0) =
n∑

i=1

(θ ·
g′(0,β)

g0

(Xi) −
5∑

k=2

θk

(k − 1)!

δk−1

N(β)k
f

(k−1)
γ0

g0

(Xi)(1 + o(1))

+O(
δ5

N(β)5
θ5m5

g0

(Xi))) −
1

2

n∑

i=1

(θ ·
g′(0,β)

g0

(Xi)

−
5∑

k=2

θk

(k − 1)!

δk−1

N(β)k
f

(k−1)
γ0

g0

(Xi)(1 + o(1)) + O(
δ5

N(β)5
θ5m5

g0

(Xi)))
2

+O(
n∑

i=1

(θ ·
g′(0,β)

g0

(Xi) −
5∑

k=2

θk

(k − 1)!

δk−1

N(β)k
f

(k−1)
γ0

g0

(Xi)(1 + o(1))

+O(
δ5

N(β)5
θ5m5

g0

(Xi)))
3)

which, when keeping only the two first terms in the first sum and when taking the

squares in the second sum, leads to the fact that ln(θ, β)−ln(0) equals Pn(θ, β)(1+o(1))

plus terms which may be bounded with one of the following forms:

θkδk−1

N(β)k

n∑

i=1

f
(k−1)
γ0

g0

(Xi) k ≥ 3

θ5δ5

N(β)5
n

θk+1δk−1

N(β)k
n

θk+lδk+l−2

N(β)k+l
n k, l ≥ 3

θ3n
θk+2δk−1

N(β)k
n

θk+l+1δk+l−2

N(β)k+l
n

θk+l+mδk+l+m−3

N(β)k+l+m
n k, l,m ≥ 2

Now, since θ/N(β) ≤ 1, the first term in this list may be bounded by:

δ · θ2δ

N(β)2

n∑

i=1

f
(k−1)
γ0

g0

(Xi)

which is uniformly in probability

o(
θ2δ

N(β)2
Fn)

Some of the other terms will be proven to be o(nθ2) using Lemma 6.7 and the fact that

β is in Bn:
θ5δ5

N(β)5
n = O(nθ2 δ5

N(β)2
) = O(nθ2ηα/3)

θk+1δk−1

N(β)k
n = O(nθ2 δk−1

N(β)
) = O(nθ2ηα(k−3)/3) k ≥ 4
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θk+lδk+l−2

N(β)k+l
n = O(nθ2 δ

k+l−2

N(β)2
) = O(nθ2ηα(k+l−6)/3) k, l ≥ 3

θ3n = o(nθ2)
θk+2δk−1

N(β)k
= O(nθ2δk−1)

θk+l+1δk+l−2

N(β)k+l
n = O(nθ2 δ

k+l−2

N(β)
) = O(nθ2ηα(k+l−4/3))) k, l ≥ 2

θk+l+mδk+l+m−3

N(β)k+l+m
n = O(nθ2 δ

k+l+m−3

N(β)2
) = O(nθ2ηα(k+l+m−7)/3) k + l + m ≥ 8

The remaining terms may be proven to be o(n θ4δ2

N(β)4
). They are:

nθ4δ2

N(β)3
= O(N(β) · n θ4δ2

N(β)4
)

nθ5δ2

N(β)4
= O(θ · n θ4δ2

N(β)4
)

nθ6δ3

N(β)6
= O(δ · n θ4δ2

N(β)4
)

nθ7δ4

N(β)7
= O(δ2 · n θ4δ2

N(β)4
)

It is not possible now to conclude that (6) holds since the remaining terms are shown

to be negligible with respect to one of the terms of Pn. However, they are uniformly

negligible with respect to the involved term. Moreover, it will be seen that, at the

optimizing value (θ, β), all terms in Pn have the same order. Our aim is to conclude

that (6) holds and that to optimize ln(θ, β) − ln(0) we just have to maximize Pn and

verify that all terms in Pn have the same order at the maximum point. To be able to

conclude, we shall then only need to prove that, it is not possible that Pn(θ, β) becomes

small together with the fact that some of its terms become of order bigger than that

of the maximum value. Now, at the maximum value, all terms of Pn have the same

order, which is 0(1), and not o(1). Let us prove that the supremum of ln is not reached

when one of the terms of Pn tends to infinity, together with the fact that Pn is close

to 0. Define φ = δ
N(β)2

• If φFnθ
2 tends to infinity, then it is small with respect to −θ4φ2na2 which is

negative. If this last term is compared to nφθ3, it is much smaller only in case θφ

tends to 0, in which case nφθ3 is small with respect to −nθ2 which is negative.

We may conclude that in this case, Pn is not small.

• If θDn(β) tends to infinity, it is much smaller than −nθ2 which is negative. In

case nφθ3 is much bigger than −nθ2, θφ tends to infinity and teh only leading

term is then −nφ2θ4 which is negative.
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• If φnθ3 tends to infinity, then it has been seen that in case θφ tends to infinity,

the only leading term is −nφ2θ4, and in case θφ tends to 0, the only leading term

is −nθ2. Now, in case θ|φ| is lower and upper bounded, let α be an accumulation

value of φθ. On the subsequence, αnauθ2 − 1
2
α2θ2na2 − 1

2
nθ2 is negative.

We may conclude that the supremum value of ln is attained in the region where all

terms of Pn are O(1), where (6) holds.

Now, we then have to optimize Pn(θ, β) for θ ≤ ηn and β in Bn. First notice that on

Bn

Dn(β) =
1

N(β)

(

(γ − γ0 + δ)
n∑

i=1

f ′
γ0

g0

+
(γ − γ0)2

2

n∑

i=1

f”γ0

g0

)

(Xi)(1 + o(1))

where N(β) has the same expansion. Depending on the leading terms in the expansion,

the only possible approximations of Dn(β) are the following:

Dn(β) =

(
n∑

i=1

d1(Xi)

)

(1 + o(1)) (7)

or

Dn(β) =

(
n∑

i=1

λd1(Xi) + d2(Xi)√
1 + λ2 + 2uλ

)

(1 + o(1)) = Dn(λ)(1 + o(1)) (8)

for some real number λ. Moreover, the o(1) terms may be uniformly bounded using a

function of ηn. It follows that,

Bn = Bn(∞) ∪ (∪λ∈IR+Bn(λ))

where Bn(∞) is the set of β such that δ/N(β)2 ≥ 1/ηαn and (7) holds, and Bn(λ) is the

set of β such that δ/N(β)2 ≥ 1/ηαn and (8) holds.

Maximization over Bn(∞).

On this set, we have, up to a multiplying factor 1 + o(1):

Pn(θ, β) = θ
Fn

a
− θ2

2
n− φFnθ

2 + φnaθ3 − φ2

2
na2θ4

where φ = δ/N(β)2. We shall maximize it over φ and then over θ, and‘then verify that

the optimizing values verify β ∈ Bn(∞) and θ/N(β) ≤ 1. Maximizing in φ leads to

φ =
1

aθ
− Fn

na2θ2

and the value of Pn(θ, β) for this value of φ is then

F 2
n

2na2
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which does not depend on θ, and converges to 1/2 · ξ2
d1

.

Let us now verify that the optimizing value may correspond to some β ∈ Bn(∞) and

θ/N(β) ≤ 1. Indeed, we may choose β such that N(β) ∼ cδ for a constant c, so that

φ ∼ 1/c2δ, and θ/N(β) ∼ cθφ. Now for the optimizing value of φ we have

θ · φ =
1

a
− Fn

na2θ

and since any θ now is an optimizing value we may choose θ = |Fn|
n

where the constraints

hold.

Maximization over Bn(λ).

On this set, we have, up to a multiplying factor 1 + o(1):

Pn(θ, β) = θDn(λ) − θ2

2
n− φFnθ

2 + φnau(λ)θ3 − φ2

2
na2θ4

where φ = δ/N(β)2 and u(λ) = (λ + u)/
√

1 + λ2 + 2uλ. We shall again maximize it

over φ and then over θ, and‘then verify that the optimizing values verify β ∈ Bn(λ)

and θ/N(β) ≤ 1. Maximizing in φ leads to

φ =
u(λ)

aθ
− Fn

na2θ2

and the value of Pn(θ, β) for this value of φ is then

F 2
n

2na2
+ θ(Dn(λ) − u(λ)

Fn

a
) − n

θ2

2
(1 − u2(λ)

The maximization over θ leads to

θ =
1

n

(
Dn(λ) − Fnu(λ)/a

1 − u2(λ)

)

1Dn(λ)−Fnu(λ)/a>0

On the event

1Dn(λ)−Fnu(λ)/a>0 = 0

we have

sup
(θ,β),β∈Bn

Pn(θ, β) ≤ F 2
n

2na2

and then, letting θ tend to 0,

sup
(θ,β),β∈Bn

Pn(θ, β) =
F 2
n

2na2

On the event

1Dn(λ)−Fnu(λ)/a>0 = 1
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easy computation gives

θ =
1

n

(
Dn(0) − uFn/a

1 − u2

√
1 + λ2 + 2λu

)

1Dn(0)−uFn/a>0

The maximizing value of Pn(θ, β) is then

F 2
n

2na2
+

1

2n

(Dn(0) − uFn/a)
2

1 − u2
1Dn(0)−uFn/a>0

In all cases, the optimizing value of Pn converges to

1

2
ξ2
d1

+
1

2
ξ2
(d2−ud1)/

√
1−u21ξ

(d2−ud1)/
√

1−u2>0

Let us now verify that the optimizing value may correspond to some β ∈ Bn(λ) and

θ/N(β) ≤ 1. Indeed, we may choose β such that N(β) ∼ c(λ)δ2 for a constant c(λ)

(depending on λ), so that θ/N(β) ∼ c̃(λ)θφ2/3. Now for the optimizing value of φ we

have

θ3/2 · φ =
u

a

√
θ − Fn

na2θ

√
θ

Now, Fn

na2θ
converges in distribution for the optimizing value of θ, θ converges to 0 in

probability, so that the constraints hold.

Lemma 6.6 is thus proved.

Proof of Theorem 4.3.

The proof follows the same line as that of Theorem 4.2.

We first prove that Lemma 6.7 still holds. Again, assume that βn is a sequence such

that δ2n
N(βn)

tends to infinity. Then, using (M3*), δn tends to 0 and also λi,n(γ
i
n − γ0)2

for each i = 1, . . . , p− 1. By eventually extracting convergent subsequences, let now I

be the set of i such that γi
n converges to some γi,∗ different from γ0, and let J be the

complementary set of indices. Then:

N(βn) = ‖(
∑

i∈I
λi,n

fγi,∗ − fγ0

g0

)(1 + o(1)) + (
∑

i∈J
λi,n(γ

i
n − γ0) + δn)

f ′
γ0

g0

)

+
1

2
(
∑

i∈J
λi,n(γ

i
n − γ0)2f”γ0

g0

)(1 + o(1))‖

There are only three possibilities:

1). If

N(βn) = ‖(
∑

i∈I
λi,∗

fγi,∗ − fγ0

g0

) + µ
f ′
γ0

g0

+
f”γ0

g0

‖1

2
(
∑

i∈J
λi,n(γ

i
n − γ0)2)(1 + o(1))
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where the λi,∗ are non negative real numbers and µ is a real number. Then

δ2
n

N(βn)
= O

(
(
∑

i∈J λi,n(γ
i
n − γ0))2

∑
i∈J λi,n(γi

n − γ0)2

)

= O(1)

2). If

N(βn) = ‖(
∑

i∈I
λi,∗

fγi,∗ − fγ0

g0

) + µ
f ′
γ0

g0

‖ · |
∑

i∈J
λi,n(γ

i
n − γ0) + δn|(1 + o(1))

where now µ is 1 or −1. Then

δ2
n

N(βn)
= O

(
δ2
n

(
∑

i∈J λi,n(γi
n − γ0) + δn)2

)

= O(1)

3). If

N(βn) = ‖(
∑

i∈I
λi,∗

fγi,∗ − fγ0

g0

)‖ · C max
i∈I

λi,n(1 + o(1))

where C is some constant. Then

∑

i∈J
λi,n(γ

i
n − γ0) + δn = o(max

i∈I
λi,n) and

∑

i∈J
λi,n(γ

i
n − γ0)2 = o(max

i∈I
λi,n)

This implies that

δn = o(
√

max
i∈I

λi,n)

so that
δ2
n

N(βn)
= O

(
δ2
n

maxi∈I λi,n

)

= o(1)

and Lemma 6.7 is proved.

The formula for g(k) still holds for k ≥ 2, and that for k = 1 is obviously changed.

Now, in all expansions, only Lemma 6.7 is used, and not the particular form of Dn(β),

till the end of the proof of Lemma 6.6. So that, following the same lines we see that

Lemma 6.5 still holds, and that on δ/N(β) ≥ 1/ηαn we have the uniform approximation

of ln(θ, β) − ln(0) by Pn(θ, β) with the same formula. Difference in the proof comes

when approximating Dn(β). For non negative λ1, . . . , λp−1, any λ and ǫ = 0 or 1, if

Λ = (λ1, . . . , λp−1, λ, ǫ), define

d(Λ) =

∑p−1
i=1 λi

fγi−fγ0

g0
+ λd1 + ǫd2

‖∑p−1
i=1 λi

fγi−fγ0

g0
+ λd1 + ǫd2‖H

then the only possible approximations of Dn(β) take the form

Dn(β) =

(
n∑

i=1

d(Λ)(Xi)

)

(1 + o(1)) = Dn(Λ)(1 + o(1)) (9)
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Define u(Λ) = 〈d(Λ), d1〉. Following the same lines as for Lemma 6.6, we only need to

maximize Pn(θ, β) replacing Dn(β) by some Dn(Λ) and u(β) by u(Λ) (The fact that

we only need to maximize Pn(θ, β) follows the same arguments a posteriori than in the

proof of Lemma 6.6). We perform the maximization similarly in φ then in θ, which

leads to the optimizing values:

φ =
u(Λ)

aθ
− Fn

na2θ2

θ =
Dn(Λ) − u(Λ)Fn/a

n(1 − u2(Λ))
1Dn(Λ)−u(Λ)Fn/a>0

On the event

1Dn(Λ)−u(Λ)Fn/a>0 = 0

we again have supPn = F 2
n

2na2 . On the event

1Dn(Λ)−u(Λ)Fn/a>0 = 1

computation leads to the maximum value for Pn:

F 2
n

2na2
+

1

2n

(Dn(Λ) − u(Λ)Fn/a)
2

1 − u2(Λ)
1Dn(Λ)−u(Λ)Fn/a>0

Verification that the optimizing values ly in the right set are straightforward. Then,

notice that d(Λ) − u(λ)d1 is orthogonal to d1, and use assumption (A4) to end the

proof.
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of a random process. , Université P. Sabatier, Toulouse, 1995. .
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