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Abstract

We study the absolute continuity of the image measure of the canoni-

cal Poisson probability measure under nonlinear shifts. The Radon-Nykodim

density function is expressed using a Carleman-Fredholm determinant and a

divergence operator. Results are obtained for non-necessarily invertible trans-

formations, under almost-sure di�erentiability hypothesis.

1 Introduction

The object of this work is to give conditions for the absolute continuity of the image

measure of the canonical Poisson probability measure under nonlinear shifts, and to

present a Girsanov theorem on Poisson space which is similar in its form to that

one given in [13] on the abstract Wiener space. This result can also be applied to

solve anticipative stochastic di�erential equations as in [4], [16], [?]. The Girsanov

theorem for semimartingales says that if a probability Q is absolutely continuous

with respect to a probability P , then a semimartingale under P is a semimartingale

under Q. On the Wiener space, this theorem can be specialized and gives conditions

for the absolute continuity of a translation of the trajectories of the Wiener process.

This kind of translations has no analogous version on the Poisson space, since the

continuous-time trajectories of the Poisson process are not preserved under the shifts

with absolutely continuous functions. The idea used here is to view the trajectories

of the Poisson process as sequences of exponentially distributed interjump times,

instead of right-continuous trajectories. The adequate translation of the trajectories

should then be expressed as a translation of the sequence of interjump times. Our

theorem says that if (�

k

)

k2IN

is a sequence of independent exponentially distributed
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random variables on a probability space (B;F ; P ), i.e. represents a standard Poisson

process, and if F is a sequence-valued random variable satisfying some regularity

conditions, then there exists a probability Q, absolutely continuous with respect to

P , such that (�

k

+F

k

)

k2IN

represents a standard Poisson process under Q. Moreover,

we express the involved density using a Carleman-Fredholm determinant and the

divergence operator on the Poisson space introduced in [18].

The problem of the absolute continuity of transformations of the Brownian motion

was �rst investigated by Cameron and Martin [6]. The Cameron-Martin theorem

has been generalized in di�erent ways: Gross [11] and Kuo [12] have showed its

validity on the abstract Wiener space. Girsanov [10] has treated the problem of

adapted shifts and showed the role played by the Itô integral in the expression of

the density. Ramer [19] and Kusuoka [13] have treated the nonlinear anticipative

case, using a generalized version of the Itô integral to express the density. These

works have been further extended to anticipative 
ows, by Cruzeiro [8], Buckdahn [5]

and

�

Ust�unel-Zakai [20]. The Girsanov theorem on Wiener space, especially under

the form given by Kusuoka [13] has been applied to solve anticipative stochastic

di�erential equations, cf. for instance Buckdahn [4], Pardoux [16].

We adapt here the methods of Kusuoka [13], Nualart [14] and Ramer [19] to

the Poisson space case and obtain the absolute continuity result for locally H � C

1

non-necessarily invertible shifts as in

�

Ust�unel-Zakai [21], [22]. In Sect. 2, we build a

measure P on a Banach space of sequences B which is the completion of a Hilbert

space H. This construction allows to proceed as in the Wiener space case and to

de�ne a directional derivative and its adjoint, the divergence operator. The main

result is presented at the end of Sect. 2. Complications in the proofs come from the

fact that the measure P does not have full support in B, because the interjump times

of the Poisson process are almost surely positive random variables. Consequently,

a necessary condition for the absolute continuity of a transformation of B is that

it has to leave invariant the cone B

+

of positive sequences in B. The expression

of the density is close to the expression obtained by Ramer [19] in the Gaussian

case. The main di�erence here lies in the fact that the square norm of F does not

appear in the exponential, hence no exponential integrability argument is needed as

in [22] to ensure the uniform integrability of the sequence of approximating densities.

First, in Sect. 3, we show that the absolute continuity result is valid for contractive

mappings. Then in Sect. 4, we show that the transformation can be written locally
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as the composition of a Lipschitz map, a linear map and a translation, in such a way

that we can use the result of Sect. 3. Finally, we study the connection between our

theorem and the usual Girsanov theorem for the Poisson process.

2 The triplet (H,B,P) and the stochastic calculus

of variations

The aim of this section is to present the tools of the stochastic calculus of variations

on the Poisson space and to state our main result, cf. Th. 1. In order to stay as

close as possible to the methods that are applied in the Wiener space case, we use

the triplet (H;B;P ) described in [18], where H = l

2

(IN) is the Hilbert space of real

square-summable sequences, B is a separable Banach space which is the completion

of H with respect to the norm

k ! k

B

= sup

n2IN

j !

n

j

n+ 1

and P is a probability measure on the Borel �-algebra F ofB such that the coordinate

functionals (�

n

)

n2IN

, de�ned as

�

n

: B ! IR

! 7! !

n

where ! 2 B is the sequence ! = (!

k

)

k2IN

, are independent exponentially distributed

random variables. The projection �

n

represents the time between the (n-1)-th and n-

th jumps of a Poisson process, de�ned as N

t

=

P

n�1

1

[T

n

;1[

(t), where T

n

=

P

k=n�1

k=0

�

k

,

n � 1, represents the n-th jump time of (N

t

)

t2IR

+

. We denote by B

+

, B

�

+

, B

�

the

subsets of B de�ned as

B

+

= fx 2 B : x

k

� 0; k 2 INg ;

B

�

+

= fx 2 B : x

k

> 0; k 2 INg ;

B

�

= fx 2 B : 9k 2 IN with x

k

< 0g :

Let S be the set of functionals on B of the form f(�

k

1

; :::; �

k

n

) on B

+

where n 2 IN ,

k

1

; :::; k

n

2 IN , and f is a polynomial or f 2 C

1

c

(IR

n

+

). It is known that S is

dense in L

2

(B;P ), cf. [18]. We denote by (e

k

)

k�0

the canonical basis of H =

l

2

(IN). If X is a real separable Hilbert space with orthonormal basis (h

i

)

i2IN

, let
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S(X) =

n

P

i=n

i=0

Q

i

h

i

: Q

0

; : : : ; Q

n

2 S; n 2 IN

o

and let H 
 X denote the com-

pleted Hilbert-Schmidt tensor product of H with X. If u 2 S(H 
 X), we write

u =

P

1

k=0

u

k

e

k

, u

k

2 S(X), k 2 IN .

De�nition 1 We de�ne the operators D : S(X) �! L

2

(B � IN ;X) and

� : S(H 
X) �! L

2

(B;X) by

(DF; h)

H

= lim

"!0

F (! + "h)� F (!)

"

; F 2 S(X);

and

�(u) =

1

X

k=0

u

k

�D

k

u

k

; u 2 S(H 
X):

The perturbation of the trajectories is performed by translating the sequences of

interjump times of the Poisson process. Let

U(X) =

(

1

X

k=0

�

k

u

k

e

k

: u 2 S(H 
X)

)

:

It can be shown that U(X) is dense in L

2

(B � IN ;X), since fx

n

: n � 2g is total

in L

2

(IR

+

; e

�x

dx), cf. [18]. We let U=U(IR) and S = S(IR).

Proposition 1 The operators D : S(X) ! L

2

(B � IN ;X) and

� : U(X)! L

2

(B;X) are closable and satisfy to

E [(DF; u)

H
X

] = E [(�(u); F )

X

] u 2 U(X); F 2 S(X):

Proof. cf. [18].

De�nition 2 For p � 1, we call D

p;1

(X) the completion of S(X) with respect to

the norm k F k

D

p;1

(X)

=kj F j

X

k

p

+ kj DF j

H
X

k

p

, and Dom(�;X) the domain of

the closed extension of � for p = 2. Denote by D

U

p;1

(H) the completion of U with

respect to the norm k � k

D

p;1

(H)

. We call D

1;1

(X), resp. D

U

1;1

(H) the subset of

D

2;1

(X), resp. D

U

2;1

(H) made of the random variables F for which k F k

D

1;1

(X)

,

resp. k F k

D

1;1

(H)

is bounded.

For the following result, we refer to [1] in the Wiener space case.

Proposition 2 The operator D is local. More precisely, if F 2 D

2;1

(X), then DF =

0 a.s. on fF = 0g. The operator � is also local, i.e. if u 2 Dom(�;X) then �(u) = 0

a.s. on fu = 0g.
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Proof. It is su�cient to do the proof for X = IR. Let � 2 C

1

c

([�1; 1]) with �(0) = 1

and � � 0. For " > 0, let �

"

(x) = �(x=") and 	

"

(x) =

R

x

�1

�

"

(y)dy. ThenD	

"

(F ) =

�

"

(F )DF . We have for u 2 U :

j E[�

"

(F )(DF; u)

H

] j = j E[(u;D	

"

(F ))

H

] j=j E[	

"

(F )�(u)] j

� k 	

"

(F ) k

1

k �(u) k

2

� " k � k

1

k �(u) k

2

:

Hence E

h

1

fF=0g

(DF; u)

H

i

= 0, u 2 U , and 1

fF=0g

DF = 0 a.s. The operator � is

local from its de�nition, since D is local. �

De�nition 3 For 1 � p � 1, we say that F 2 D

loc

p;1

(X) if there is a sequence

(F

n

; A

n

)

n2IN

such that F

n

2 D

p;1

(X), A

n

is measurable,

S

n2IN

A

n

= B a.s. and

F

n

= F a.s. on A

n

, n 2 IN . We de�ne D

U;loc

p;1

(H) in the same way.

Let K be a Hilbert-Schmidt operator. The Carleman-Fredholm determinant of I

H

+

K is de�ned as

det

2

(I

H

+K) =

1

Y

i=0

(1 + �

i

) exp(��

i

)

where (�

k

)

k2IN

are the eigenvalues of K, counted with their multiplicities, cf. [9],

Th. 26. Note that det

2

(I

H

+ � ) : H 
 H �! IR is continuous, with the bound

j det

2

(I

H

+K) j� (1+ j K j

H
H

) exp(1+ j K j

2

H
H

).

Proposition 3 We have D

U

2;1

(H) � Dom(�; IR) and

E

h

�(u)

2

i

� E

h

j Du j

2

H
H

i

; u 2 D

U

2;1

(H): (1)

Proof. cf. [18].

De�nition 4 For F 2 D

U;loc

2;1

(H), let

�

F

= det

2

(I

H

+DF ) exp(��(F )):

The image measure of P by I

B

+ F with F : B �! H measurable is denoted by

(I

B

+F )

�

P . The nonlinear transformations of B that we consider are of the following

form:

De�nition 5 We say that a random variable F : B ! H is H � C

1

loc

if there is

a random variable Q with Q > 0 a.s. such that h ! F (! + h) is continuously

di�erentiable on fh 2 H : j h j

H

< Q(!) and ! + h 2 B

+

g, for any ! 2 B

+

. If Q =

1 a.s., then F is said to be H � C

1

.
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Our main result is the following. It will be proved in Sect. 3 and 4.

Theorem 1 Let F 2 H �C

1

loc

with F (k) = 0 on f�

k

= 0g, k 2 IN . Let T = I

B

+F

and

M = f! 2 B

+

: det

2

(I

H

+DF ) 6= 0g :

Assume that T (B

�

+

) � B

�

+

and let N(!;M) = card(T

�1

(!)

T

M). Then N(!;M) is

at most countably in�nite and

E [fN(!;M)] = E [f � T j �

F

j]

for f 2 C

+

b

(B). The restriction of (I

B

+ F )

�

P to M is absolutely continuous with

respect to P , and

d(I

B

+ F )

�

P

jM

dP

(!) =

X

�2(I

B

+F )

�1

(!)\M

1

j �

F

(�) j

:

The following two lemmata and their proofs are directly adapted from [5], [14], [15].

Lemma 1 Let F

n

denote the �-algebra generated by �

0

; : : : ; �

n

. If F 2 L

2

(B), then

F 2 D

2;1

if and only if F

n

= E[F j F

n

] 2 D

2;1

for all n 2 IN . In this case,

j DF

n

j

H

�j DF j

H

; a:s:; n 2 IN:

Moreover, F

n

belongs to D

2;1

if and only if there exists

f 2 W

2;1

(IR

n+1

+

; e

�(x

0

+���+x

n

)

dx)

such that F

n

= f(�

0

; : : : ; �

n

). Then DF

n

= (@

k

f(�

0

; : : : ; �

n

))

k2IN

.

Proof. Let (G

k

)

k2IN

� S be a sequence converging to F in L

2

(B). we have

j DE[G

k

j F

n

] j

H

�j E[DG

k

j F

n

] j

H

;

hence the �rst part. There is a smooth function f

k

such that E[G

k

j F

n

] =

f

k

(�

0

; : : : ; �

n

), k 2 IN . In order to prove the second part, it su�ces to notice that the

convergence of (f

k

)

k2IN

to a function f in W

2;1

(IR

n+1

+

; e

�(x

0

+���+x

n

)

dx) is equivalent

to the convergence of (E[G

k

j F

n

])

k2IN

to F

n

in D

2;1

.

�

De�ne �

�

n

: IR

n+1

! H by �

�

n

(x) = (x

0

; : : : ; x

n

; 0; : : :).
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Lemma 2 Let F 2 L

2

(B;X) and c > 0. Assume that for any h 2 H,

j F (! + h)� F (!) j

X

� c j h j

H

for ! 2 B

+

such that ! + h 2 B

+

. Then F 2 D

2;1

(X) and j DF j

H
X

� c, a.s.

Proof. It is su�cient to show this statement with X = IR. Let F

n

= E[F j F

n

]. For

n 2 IN , there is f

n

2 L

2

(IR

n+1

+

; e

�(x

0

+���+x

n

)

dx) such that E[F j F

n

] = f

n

(�

0

; : : : ; �

n

).

Let y 2 IR

n+1

and A = f! 2 B

+

: ! + �

�

n

(y) 2 B

+

g. We have for a.s. !

1

A

(!) j F

n

(! + �

�

n

(y))� F

n

(!) j = j E[1

A

(!)(F

n

(! + �

�

n

(y))� F

n

(!)) j F

n

] j

� E[1

A

(!) j F (! + �

�

n

(y))� F (!)) jj F

n

]

� c1

A

(!) j �

�

n

(y) j

H

:

This implies that f

n

2 W

2;1

(IR

n+1

+

; e

�(x

0

+���+x

n

)

dx) with derivative a.s. bounded by

c. The conclusion is given by Lemma 1.

�

De�nition 6 If A � B is measurable we let for ! 2 B

�

A

(!) = inf

h2H

fj h j

H

: ! + h 2 Ag

and �

A

(!) =1 if ! =2 A+H.

We notice that as in [14], �

A

(!) = 0, ! 2 A, and if � 2 C

1

c

(IR) with A �-compact,

then

j �(�

A

(! + h))� �(�

A

(!)) j

H

�k �

0

k

1

j h j

H

; ! 2 B; h 2 H;

hence �(�

A

) 2 D

1;1

with j D�(�

A

) j

H

�k �

0

k

1

. Denote by �

n

the application

�

n

: B �! H de�ned by �

n

(!) =

�

�

k

1

fk�ng

�

k2IN

.

Lemma 3 Let F : B ! H measurable with bounded support in B, kj F j

H

k

1

< 1,

such that F (k) = 0 on f�

k

= 0g, k 2 IN , and for some c > 0

j F (! + h)� F (!) j

H

< c j h j

H

h 2 H, !; ! + h 2 B

+

. Then F 2 D

U

1;1

, and there is a sequence (�

n

)

n2IN

� U that

converges to F in D

2;1

(H) with for n 2 IN :

(i) kj �

n

j

H

k

1

�kj F j

H

k

1

.

(ii) kj D�

n

j

H
H

k

1

� c:

Assume moreover that �

k

+ F (k) � 0 a.s., k > n

0

, for some n

0

2 IN

S

f1g. Then

the sequence (�

n

)

n2IN

can be chosen to verify

(iii) �

k

+ �

n

(k) � 0, k > n

0

, n 2 IN .
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Proof. Let F

n

= �

n

E[F j F

n

], n 2 IN . The sequence (F

n

)

n2IN

converges to F

in D

2;1

(H) and satis�es to (i), (ii). Let F

n

(k) = 0 a.e. on f�

k

< 0g. There is a

version of F

n

(k) which is Lipschitz on B

+

and such that F

n

(k) = 0 on f�

k

� 0g. Let

! 2 B

+

, h 2 H such that !

k

+ h

k

� 0 and

~

h = �!

k

1

fkg

+

P

1

i=0

h

i

e

i

1

fi 6=kg

. Then

F

n

(k)(! + h) = F

n

(k)(! +

~

h) = 0, and

j F

n

(k)(! + h) � F

n

(k)(!) j

H

= j F

n

(k)(! +

~

h)� F (!) j

H

� c j

~

h j

H

� c

 

!

2

k

+

1

X

i=0

1

fi 6=kg

h

2

i

!

1=2

� c j h j

H

:

There exists f

k

2 W

2;1

(IR

n+1

+

; e

�(x

0

+���+x

n

)

dx), such that F

n

(k) = f

k

(�

0

; : : : ; �

n

) a.e.,

k = 0; : : : ; n. Let f

k

= 0 a.e. on IR

k�1

+

�IR

�

�

�IR

n�k

+

. Then, from the above argument

concerning F

n

(k), f

k

has a Lipschitz version on IR

k�1

+

�IR�IR

n�k

+

such that f

k

= 0 on

IR

k�1

+

�IR

�

�IR

n�k

. Let 	 2 C

1

c

(IR

n

) with support in [�2; 0]

k�1

� [0; 2]� [�2; 0]

n�k

,

0 � 	 � 1 and

R

IR

n+1 	(x)dx = 1. Let for m � 2

�

k;m

(y) =

1

m

n+1

Z

IR

k�1

+

�IR�IR

n�k

+

	(m(y � x))f

k

(x)dx; y 2 IR

n+1

+

;

and �

m

(k) = �

k;m

(�

0

; : : : ; �

n

), k = 0; : : : ; n, �

m

(k) = 0, k > n. Then (�

m

)

m�2

� U

converges to F

n

in D

2;1

and satis�es to (i), (ii). If �

k

+ F (k) � 0, it can be checked

that �

k

+ �

n

(k) � 0 from the de�nition of �

n

.

�

Let � 2 C

1

c

(IR) with k � k

1

� 1, such that � = 0 on [2=3;1[, � = 1 on [0; 1=3] and

k �

0

k

1

< 4.

Lemma 4 Let F 2 H �C

1

loc

with F (k) = 0 on f�

k

= 0g, k > n

0

, for some n

0

2 IN .

Then F 2 D

U;loc

1;1

(H). More precisely, for a; b > 0, let

A = f ! 2 B

�

+

: k ! k

B

� a;

w

k

> 4=a; k � n

0

;

Q(!) � 4=a;

sup

jhj

H

�2=a

j F (! + h) j

H

� b=(6a);

sup

jhj

H

�2=a

j DF (! + h) j

H
H

� b=6

)

and

~

F = �(a�

G

)F , where G is a �-compact set contained in A. Then

j

~

F (! + h)�

~

F (!) j

H

� (5b=6) j h j

H

;

8



for h 2 H, !; ! + h 2 B

+

, and kj

~

F j

H

k

1

� b=(6a). Consequently

~

F 2 D

U

1;1

(H).

Proof. We have j

~

F j

H

� 1

fa�

G

<2=3g

j F j

H

� (b=6a). If ! 2 B

+

with !

k

= 0, then

�

G

(!) � 4=a, k � n

0

. This implies

~

F (k) = 0 on f�

k

= 0g, k 2 IN . Let ! 2 B

+

,

h 2 H, with ! + h 2 B

+

and j h j

H

� 1=a. We have

j

~

F (! + h)�

~

F (!) j

H

� j F (! + h) (�(a�

G

(! + h))� �(a�

G

(!))) j

H

+ j �(a�

G

(!)) (F (! + h)� F (!)) j

H

� (4b=6) j h j

H

+1

fa�

G

<2=3g

j h j

H

Z

1

0

j DF (! + th) j

H
H

dt

� (5b=6) j h j

H

;

because a�

G

(!) < 2=3 implies that there is

~

h 2 H with j

~

h j

H

< 2=(3a) such that

! +

~

h 2 G. If h 2 H, let

~

h = h= j h j

H

, and choose n 2 IN such that n=a �j h j

H

<

(n+ 1)=a. If !; ! + h 2 B

+

, then ! + k

~

h=a 2 B

+

, k = 0; : : : ; n, and

j F (! + h) � F (!) j

H

�

k=n�1

X

k=0

j F (! + (k + 1)

~

h=a)� F (! + k

~

h=a) j

H

+ j F (! + h)� F (! + n

~

h=a) j

H

� (n5b)=(6a) + (5b=6) j h�

~

hn=a j

H

� (5b=6) j h j

H

:

The support of

~

F is bounded sinceA is bounded, hence from Lemma 3,

~

F 2 D

U

1;1

(H).

We have that F 2 D

U;loc

1;1

since B

�

+

can be covered by a countable collection of sets

of the above form, with a 2 IN

�

.

�

Proposition 4 Let F;G 2 S(H) and T = I

B

+ F . We have G � T 2 Dom(�) and

�(G) � T = �(G � T ) + trace(DF

�

(DG) � T ):

Proof. We have �(G � T ) 2 S and

�(G � T ) =

1

X

k=0

G(k) � T �D

k

(G(k) � T )

=

1

X

k=0

G(k) � T �

1

X

k=0

D

k

(I

B

+ F )

�

(DG(k)) � T

= �(G) � T �

1

X

k;l=0

D

k

F (l)(D

l

G(k)) � T:

�

9



To end this section, we construct from � an operator

~

� that coincides with the

Poisson stochastic integral on the predictable processes in L

2

(B)
L

2

(IR

+

), in view

of applications to anticipative stochastic di�erential equations, cf. [?]. Given D :

L

2

(B) �! L

2

(B)
H, we �rst de�ne a gradient

~

D : L

2

(B) �! L

2

(B)
L

2

(IR

+

) by

composition with the Poisson process (N

t

)

t2IR

+

. We de�ne an injection

i : L

2

(B)
H ! L

2

(B)
 L

2

(IR

+

) by i

t

(f) = �f(N

t

�
), t 2 IR

+

, and let

~

D = i �D:

The injection i has a dual operator j : L

2

(B)
 L

2

(IR

+

) �! L

2

(B)
H such that

(i(f); u)

L

2

(IR

+

)

= (f; j(u))

H

for f 2 L

2

(B)
 l

2

(IN) et u 2 L

2

(B)
 L

2

(IR

+

). Let

~

� = � � j. It is easily checked

that

~

D et

~

� are closable on L

2

(B;P ) and adjoint of each other, as well as D and �

are adjoints, cf. [18]. Let Dom(

~

�) denote the domain of

~

� and let (F

t

)

t2IR

+

be the

�ltration generated by the Poisson process (N

t

)

t2IR

+

. If v 2 L

2

(B)
L

2

(IR

+

) is (F

t

)-

predictable, then

~

�(v) coincides with the compensated Poisson stochastic integral of

v, cf. [2], [7], [18]. If F 2 D

U

2;1

(H) is such that F = j(u) with u 2 Dom(

~

�), then:

�

F

= det

2

(I

H

+Dj(u)) exp(�

~

�(u)):

3 The case of contractive transformations

Let K denote the set of �nite rank linear operators K : H ! H with rational

coe�cients such that I

H

+ K is invertible and let 
(K) = (k (I

H

+K)

�1

k

1

)

�1

,

K 2 K. Let V denote the subset of H made of sequences with rational coe�cients

and �nite support in IN . We now show an absolute continuity result for contractive

mappings. In the general case, cf. the next section, F will be written locally as the

composition of a Lipschitz map, a linear map and a translation.

Proposition 5 LetK 2 K, v 2 V and n

0

2 IN such that Support(v); Support(Kh) �

f0; : : : ; n

0

g, h 2 H. Let A be a bounded Borel set in B

�

+

, and let F : B ! H be

measurable. Let T = I

B

+ F + K + v. We make the following assumptions on

(F;K; v;A):

� F has a bounded support in B,

� kj F j

H

k

1

<1,

10



� F (k) = 0 on f�

k

= 0g, k 2 IN ,

� There is c 2 IR

+

, 0 < c < 1, such that

j F (! + h)� F (!) j

H

� c
(K) j h j

H

; (2)

for h 2 H, !; ! + h 2 B

+

,

� �

k

+ F (k) � 0 a.s., k > n

0

,

� T (A) � B

�

+

.

Then T is injective and

E

h

f1

T (A)

i

= E [1

A

f � T j �

F+K+v

j]

for f bounded measurable on B.

Proof. We �rst prove the injectivity of T . Assume that !; !

0

2 B

+

are such that

T (!) = T (!

0

). Then (I +K)(! � !

0

) = F (!

0

)� F (!), and ! � !

0

2 H. Now,

j (I +K)(! � !

0

) j

H

� c
(K) j F (!

0

)� F (!) j

H

� c
(K) j (I +K)

�1

(I +K)(!

0

� !) j

H

� c j (I +K)(!

0

� !) j

H

;

and since c < 1, we get ! = !

0

.

We modify F with F = 0 on B

�

. Let (F

n

)

n�n

0

� U be a sequence given by Lemma 3,

converging to F in D

2;1

(H) with F

n

= 0 on B

�

, such that F

n

(k) = 0 if k > n, F

n

depending only on �

0

; : : : ; �

n

, and let T

n

= I

B

+ F

n

+K + v. Then

j D

�

F

n

� (I

B

+K)

�1

�

j

H
H

� c < 1:

By a classical argument, cf. [13], [22], I

B

+ F

n

� (I

B

+K)

�1

+ v can be shown to be

bijective on B with inverse I

B

+G

n

, where G

n

satis�es

G

n

= �F

n

� (I

B

+K)

�1

� (I

B

+G

n

)� v; (3)

and

j DG

n

j

H
H

� c=(1 � c): (4)

11



We have T

n

= (I

B

+ v) � (I

B

+F

n

� (I

B

+K)

�1

) � (I

B

+K) and T

�1

n

= (I

B

+K)

�1

�

(I

B

+G

n

). Moreover,

T

n

(f! 2 B : !

k

� 0; k > n

0

g) = f! 2 B : !

k

� 0; k > n

0

g (5)

since �

k

+F

n

(k) � 0 on B and �

k

+G

n

(k) � 0 on f! 2 B : !

l

� 0; l > n

0

g, k > n

0

,

from (3). Let � > 0 and

B

�

+

(�) = f! 2 B

�

+

: k ! k

B

< �g:

By boundedness of F and B

�

+

(�), there is V 2 V with Support(V ) � f0; : : : ; n

0

g such

that T

�1

n

(k) > V

k

on B

�

+

(�), k; n 2 IN , since (F

n

)

n�n

0

and (G

n

)

n�n

0

are uniformly

bounded in n and !. Let T

V

: B �! B denote the translation T

V

(!) = ! + V , and

let

�

�

= exp

 

�

i=n

0

X

i=0

V

i

!

(T

V

)

�

P:

There is a function g 2 C

1

(IR

n+1

; IR

n+1

) with at most linear growth such that

F

n

+K + v = �

�

n

g(�

0

; : : : ; �

n

), n � n

0

. Let �

?

n

= I

B

� �

n

, denote by P

?

n

the image

measure of P by �

?

n

and let B

?

n

= �

?

n

(B). The Jacobi theorem in �nite dimension

gives for n > n

0

:

Z

B

1

B

�

+

(�)

� T

n

f � T

n

j �

F

n

+K+v

j d�

�

=

Z

B

?

n

Z

IR

n+1

1

B

�

+

(�)

(! + �

�

n

(x

0

+ g

0

; : : : ; x

n

+ g

n

))f(! + �

�

n

(x

0

+ g

0

; : : : ; x

n

+ g

n

))

j det(I

IR

n+1
+ @g) j exp(�(g

0

+ � � �+ g

n

+ x

0

+ � � �+ x

n

))dxdP

?

n

(!)

=

Z

B

?

n

Z

IR

n+1

+

1

B

�

+

(�)

(! + �

�

n

y)f(! + �

�

n

y) exp(�(y

0

+ � � �+ y

n

))dydP

?

n

(!)

= E

h

1

B

�

+

(�)

f

i

for f 2 C

+

b

(B). We need a uniform integrability argument for the left hand side,

namely we have to show that

sup

n2IN

Z

B

1

B

�

+

(�)

� T

n

j �

F

n

+K+v

log j �

F

n

+K+v

jj d�

�

<1:

Since (j DF

n

j

H
H

)

n2IN

is bounded uniformly in n and !, (j det

2

DT

n

j)

n2IN

is uni-

formly lower and upper bounded, hence we only need to estimate

Z

B

1

B

�

+

(�)

� T

n

j �(F

n

+K + v)�

F

n

+K+v

j d�

�

= E

h

1

B

�

+

(�)

j �(F

n

+K + v) � T

�1

n

j

i

:

12



We have

sup

n2IN

E

h

1

B

�

+

(�)

j �(�

n

0

F

n

+K + v) � T

�1

n

j

i

<1

since �

n

0

F

n

is uniformly bounded with its derivative and T

�1

n

is uniformly bounded

in n and ! on B

�

+

(�). It remains to study

sup

n2IN

E

h

1

B

�

+

(�)

j �(�

?

n

0

F

n

) � T

�1

n

j

i

:

We have from Prop. 4:

�(�

?

n

0

F

n

) � T

�1

n

= �(�

?

n

0

F

n

� T

�1

n

)

+trace

h�

D�

?

n

0

F

n

�

�

� T

�1

n

�D

�

�K � (I +K)

�1

+ (I +K)

�1

�G

n

�i

:

The trace term is uniformly bounded in n and ! from (4). From the construction

of G

n

by iterations, cf. (3), it can be shown that T

�1

n

(k) = 0 on f�

k

= 0g, k > n

0

,

since F

n

(k) = 0 on f�

k

= 0g, k 2 IN . We have �

?

n

0

G

n

= ��

?

n

0

F

n

� T

�1

n

, D�

?

n

0

G

n

=

�(DT

�1

n

)

�

:(D�

?

n

o

F

n

� T

�1

n

), hence �

?

n

0

G

n

2 U and

E

h

1

B

�

+

(�)

j �(�

?

n

0

G

n

) j

i

� E

h

j �(�

?

n

0

G

n

) j

i

� E

h

j D�

?

n

0

G

n

j

2

H
H

i

� (c=(1 � c))

2

; n 2 IN;

from (1). Choosing a subsequence if necessary and assuming that g 2 C

+

b

(B) is zero

outside of B

�

+

(�), we have the �

�

-a.e. convergence of (g � T

n

j �

F

n

+K+v

j)

n�n

0

to

g � T j �

F+K+v

j (we set F = F

n

= 0 on B

�

, n 2 IN). Hence

Z

B

g � T j �

F+K+v

j d�

�

= E [g] : (6)

The set T (A) is bounded since A and F are bounded, so that we can choose � > 0

such that T (A) � B

�

+

(�). Then (6) remains true for g = 1

O

where O is successively

an open ball, an open set and a measurable set in B

�

+

(�). Hence it is still satis�ed

for g = f1

T (A)

where f is measurable and bounded. This gives

E[f � T1

A

j �

F+K+v

j] =

Z

B

g � T j �

F+K+v

j d�

�

= E[g] = E[f1

T (A)

]:

�
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4 The case of non-Lipschitz transformations

In this section, we use Prop. 5 to obtain a more general result, valid for F 2 H�C

1

loc

.

Next, we prove Th. 1 by locally splitting I

B

+ F into the composition of a linear

operator of �nite rank, a contractive map and a translation, following the approaches

of [13], [14], [22]. Again, the added di�culty relies on the fact that P does not have

full support in B.

Proof of Th. 1. For K 2 K, v 2 V, n 2 IN , we let

A(n;K; v) = f ! 2 B

�

+

: k ! k

B

� n;

!

k

> 4=n; k � n

0

;

Q(!) >

4

n

;

sup

jhj

H

�1=n

j F (! + h) �K(! + h)� v j

H

< 
(K)=(6n);

sup

jhj

H

�1=n

j DF (! + h)�K j

H
H

< 
(K)=6

)

;

where n

0

is the smallest integer such that Support(v); Support(Kh) � f0; : : : ; n

0

g,

h 2 H. Let F

K;v

= �(n�

G(n;K;v)

)(F � K � v), where G(n;K; v) is a �-compact

modi�cation of A(n;K; v)

T

M . Then from Lemma 4, F

K;v

and G(n;K; v) satisfy

the hypothesis of Prop. 5. We have F

K;v

= F �K � v a.s. on G(n;K; v), hence by

locality of D, � and Prop. 5,

E

h

1

T (G(n;K;v))

f

i

= E

h

1

G(n;K;v)

f � T j �

F

j

i

:

We can now proceed as in [22]. Denote by (G

k

)

k2IN

the countable family (G(n;K; v))

and letM

n

= G

n

T

�

S

i=n�1

i=0

G

i

�

c

, n 2 IN

�

. We have

S

n2IN

�

M

n

= M , this union being

a partition,

T

�1

(!)

\

M =

1

[

n=0

f� 2M

n

: T (�) = !g ; ! 2 B;

and T is injective on M

n

, n 2 IN . Hence N(!;M) is at most countable. Now,

E [f � T j �

F

j] =

1

X

n=0

E [1

M

n

f � T j �

F

j]

=

1

X

n=0

E

h

1

T (M

n

)

f

i

= E [fN(!;M)] :

We also have

E [1

M

f � T ] =

1

X

n=0

E

�

1

M

n

f � T

n

�

F

�

F

� T � T

�1

�
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=

1

X

n=0

E

�

1

T (M

n

)

f

1

�

F

� T

�

= E

2

6

4

f

X

�2T

�1

(!)

T

M

1

�

F

(�)

3

7

5

:

�

Remark. The expression of the density using the Carleman-Fredholm determinant

and a divergence operator relies in both Wiener and Poisson cases on the simple

forms of the Gaussian and exponential densities. Thus this method does not seem

to be applicable to general renewal processes.

We now check that in the adapted case, Th. 1 yields the usual Girsanov

theorem for the change of intensity of the Poisson process, cf. for instance [3].

Theorem 2 Let (N

t

)

t�0

denote the Poisson process on (B;P ) and let � 2 C

1

c

(IR

+

)

with � > �1. Let also

L = exp

�

�

Z

1

0

�(s)ds

�

Y

k�1

(1 + �(T

k

))

Then (N

t

)

t�0

has intensity (1 + �(t))

t�0

under LP .

Proof. De�ne F = j(�). Then F 2 H�C

1

since P�a:s:, only a �nite number of jump

times are in the support of �. Moreover, I

B

+F is bijective with (I

B

+F )(B

�

+

) = B

�

+

.

The di�erential DF is given by

D

l

F (k) =

8

>

<

>

:

0; l > k;

�(T

k

); k = l;

�(T

k

)� �(T

k�1

); l < k:

Hence I

H

+ DF is invertible 8! 2 B and F satis�es to the assumptions of Th. 1.

For f 2 C

+

b

(B), we have

Z

B

f � (I

B

+ F )

�1

dP =

Z

B

f j �

F

j dP:

Moreover, L =j �

F

j, as follows:

�

F

= det

2

(I

H

+DF ) exp(��(F ))

= exp(� � j(�))

Y

k�1

(1 + �(T

k

)) exp

 

1

X

k=1

�(T

k

)

!

= exp

�

�

Z

1

0

�(s)ds

�

Y

k�1

(1 + �(T

k

)) = L:
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We used the fact that

~

� = � � j coincides with the compensated Poisson stochastic

integral on the square-integrable predictable processes. We have now that (N

�(t)

)

t�0

is a standard Poisson process under LP , where the time change � is de�ned as

Z

�(t)

0

(1 + �(s))ds = t:

The rest of the proof comes from the following proposition.

�

Proposition 6 With the above notations, if (N

�(t)

)

t�0

is a standard Poisson process

under a probability P , then (N

t

)

t�0

has intensity (1 + �(t))

t�0

.

Proof. cf. [3]. We need to show that for any process of the form

~

C

t

(!) = 1

A

(!)1

]�(a);�(b)]

(t)

where 0 � a � b and A 2 F

�(a)

,

E

�

Z

1

0

~

C

s

dN

�(s)

�

= E

�

Z

1

0

(1 + �(s))

~

C

s

ds

�

Let C

s

(!) = 1

A

(!)1

]�(a);�(b)]

(s). We have

E

�

Z

1

0

~

C

s

dN

s

�

= E

h

1

A

(N

�(b)

�N

�(a)

)

i

= E

�

Z

1

0

C

s

dN

�(s)

�

= E [1

A

(b� a)] = E

"

1

A

Z

�(b)

�(a)

(1 + �(s))ds

#

= E

�

Z

1

0

(1 + �(s))

~

C

s

ds

�

:

�

We end this section with an example which uses the discrete chaotic decomposition

of L

2

(B;P ) described in [18]. Discrete multiple stochastic integrals I

n

of functions

in the symmetric tensor product l

2

(IN)

�n

are de�ned with the Laguerre polynomials

in such a way that every F 2 L

2

(B;P ) admits the unique orthogonal decomposition

F =

1

X

n=0

I

n

(f

n

);

with f

n

2 l

2

(IN)

�n

, n 2 IN . For f 2 l

2

(IN), we de�ne an exponential vector �(f) by

�(f) =

1

X

n=0

I

n

(f

on

):
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The following simple example of a linear non-anticipative transformation shows the

role played by the discrete chaotic decomposition of L

2

(B;P ) in the expression of

the density function. Let f 2 l

2

(IN) with k f k

2

< 1. We let F (k) = �

k

f

k

, k 2 IN ,

i.e. F = �j � i(f). Let G(k) = �

k

f

k

1�f

k

, 8k 2 IN . Then

(I

B

+ F )

�1

= I

B

+G:

It is clear that G 2 H � C

1

, I

B

+ G : B ! B is bijective, I

H

+ DG : H ! H is

invertible 8! 2 B, and (I

B

+G)(B

�

+

) = B

�

+

. From Th. 1, (I

B

+F )

�

P =j �

G

j P: But

D

l

G(k) =

(

f

k

=(1 � f

k

); k = l;

0; k 6= l:

Hence

j �

G

j =

1

Y

k=0

 

1 +

f

k

1� f

k

!

exp

 

1

X

k=0

�

f

k

1� f

k

!

exp(��(G))

=

1

Y

k=0

1

1 � f

k

exp

 

��

k

f

k

1 � f

k

!

;

=

1

X

n=0

1

n!

I

n

(f

on

) = �(f)

from a result in [18], and (I

B

� j � i(f))

�

P = �(f)P . We notice that in this case, the

density has an exponential form in the discrete chaotic decomposition of L

2

(B;P ).
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