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This text consists of four parts.

In the first one, we develop a fairly general potential theory related to
a kernel. Such notions as capacity, equilibrium potentials and equilibrium
measures, are studied.
In the second part, we consider the particular setting of the Wiener space
and we specially study the capacities c,, appearing in the Malliavin cal-
culus ([23]).
In the third part, we introduce the notion of a symmetric n-parameter
Markov process and we show that, for such processes, hitting probabil-
ities may be estimated in terms of capacities related to an L?-potential
theory. This is applied to give a probabilistic interpretation of capacities
cr2 on the Wiener space.
In the last part, we introduce, in the general context described in the first
part, “Sobolev spaces” of Banach-valued functions and we use them in
the so-called quasi-sure analysis. Here again, the case of Wiener space is
specially considered.

1 Analytic potential theory

In this first part, we study a general potential theory from an analytic
point of view. Such a theory was developped by H. Sugita ([32]) in the
framework of abstract Wiener spaces, with specific methods, and then
generalized by T. Kazumi and I. Shigekawa ([21]) to the case of an arbi-
trary separable metric space equipped with a probability measure and a
Markovian semi-group (under some additional assumptions). The theory
presented here is more general (since we do not assume the existence of
a Markovian semi-group), and the methods are different. In fact, in a
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recent joint paper with S. Song ([18]), we developped an even more gen-
eral theory where, in particular, the basic measure is only assumed to be
o-finite. This is important in many examples, even the most classical as
the potential theory related to the classical Sobolev spaces in R?. Here,
because of the main example that we shall consider (namely the case of
the Wiener space), we shall restrict ourselves to finite measures. The
methods are close to that of [15].

Hypotheses

We assume in what follows the following hypotheses:
(Hy) FE is a metric space and m is a Borel probability measure on E.

(Hy) U(z,dy) is a Borel kernel on E which satisfies:

Ul=1, mU=m, U(Cb)CCb.

These hypotheses are far to be minimal (see [18]), but they are simple
and often satisfied.

Notation 1.1 Henceforth, we fix a real p, 1 < p < 00, and we denote by
q the conjugate exponent of p. The symbol || ||, will denote the LP(m)-
norm. In what follows, L is set in place of LP”(m). Kernel U defines a
contraction of LP denoted by U,.

We also assume:
(H3) U, is injective on LP.

(Actually, this hypothesis is not necessary, because it is possible to use
quotient spaces.)

Notation 1.2 We define space H, as the image U(L?) equipped with the
norm [|Up fla, = [1flp-

Hence, H, is isometric to L? and therefore it is a uniformly convex Banach
space. If p = 2, H, is a Hilbert space. Space H), has to be viewed as a
“Sobolev space” defined as a space of “Bessel potentials”, which is the
classical situation.



Capacity

Notation 1.3 Following an old idea due to D. Feyel ([6]), we define a
functional capacity 7, by:
Vu ls.c., u >0, yp(u) = inf{||v||g,; v € Hy, and v > u m-a.s.}
(7p(u) = 400 if the above set is empty)
Vu: E — R, y,(u) = inf{7,(v); v Ls.c. and v > |ul|}.
Associated with v, the capacity c, is defined by

VACE c¢,(A) =,(1a).

It is easy to see that ¢, can also be defined directly, as usually, by:

VO open set, ¢,(0) = inf{||u||g,; w > 1 m-a.s. on O}, and

VA CFE, ¢,(A) = inf{c,(0); O open and O D A}.

Clearly, if u € LP, then v,(u) > [Ju|l,. In particular, if A is a Borel set,
cp(A) = (m(A)'.

In the rest of this section, we generally omit, for simplicity, p in the
notation.
Let us give some direct consequences of the definitions:

(0) Y A(f) =~(f]) and (1) = 1.

(i) Vf,9 = 09(f +9g) <v(f) +v(g) and f < g = ~(f) <(9),
VYA ERY(AS) = [Av(f).

(737) For any non negative l.s.c. function f such that vy(f) < oo, there
exists a unique ¢ € H such that ¢ > f m-a.s. and ||¢|lg = 7(f)-
(This is a consequence of the projection theorem in uniformly con-
vex spaces. )

(1v) Let (fn)n>0 be an increasing sequence of non negative l.s.c. functions,
then y(limy, oo frn) = lim, o Y(f0)-

We then easily obtain:

Proposition 1.1 For any sequence (f,) of functions

A fal) € SAfa)  (o-subadditivity)

For any sequence (A,,) of subsets of E

c(UpA,) < Z c(Ay).



Let us now give some basic definitions.

Definitions 1.1 e A polar set is a set A such that ¢(A) = 0. In
particular, a Borel polar set is m-negligible and, by o-subadditivity,
a countable union of polar sets is polar.

e A property is said to hold quasi-everywhere (q.e.) if it holds out of
a polar set.

e A nest is an increasing sequence (Fj) of closed sets in F such that
c(Ff) — 0 when k — oo. (Superscript ¢ denotes the complement. )

e A quasi-continuous function is a function f on E such that there
exists a nest (Fj) so that, for any k, f is finite continuous on Fy
(Lusin’s property with respect to the capacity).

It is easy to obtain from the definitions the following basic facts:
(v) Vf (f)=0<+= f=0qe

(vi) Yf ~(f) < +oo => [ is finite q.e.

(vii) Vf, g [f] <lgl a.e. = ~(f) <(9).

An important property is then the following.

Proposition 1.2 Let f be a real quasi-continuous function and let O be
an open set. Then,

f>0 m-a.s. onO = f >0 g.e onO.

Proof: Let N = ON{f < 0} and let (F)) be a nest such that f is
continuous on each Fj. The set O = {f < 0} U Ff is an open set and
we have O, NO = N U (F¢NO). Hence, by the definition of the capacity
of open sets, as N is m-negligible, ¢(Or N O) = ¢(F5 N O). Finally,
c¢(N) < (O NO) < ¢(Ff), and therefore, ¢(N) = 0. 2

Space L(v)
Notation 1.4 Again following D. Feyel [6], we define:

Fiv) = {f: E—R; f qe. defined and v(f) < 4+o0}
LYy) = {feF(); 3en) CC A —pn) = 0}
L'(y) = Quotient space of L(y) by the relation

of equality quasi-everywhere.



Then, L'(7) is a vector space that we equip with the norm || f]|, = v(f).
Proposition 1.3 1. Each element of L*(v) is quasi-continuous.
2. L'(v) is a Banach lattice.

The proof is not difficult. The following theorem relates space H with
space L'(7).

Theorem 1.1 1. FEach element h € H admits a quasi-continuous m-
representative h which is unique up to quasi-everywhere equality.

2.Yhe H, he L'y) and v(h) < ||h]g-

3. If h="Ug € H with g € L?, then for any Borel m-representative go
of g, Ugy is defined q.e. and h =Ugy q.e.

Proof. First of all, the uniqueness of the quasi-continuous representative
follows from proposition 1.2. Let g € LP. If ¢ is an l.s.c. function such
that ¢ > |gol,

1(Ulgol) <A (U) <[],

by definition of v and the fact that, by (Hs), Ut also is l.s.c. By exterior
regularity of m (£ is metric), we then have v(U|go|) < ||g]|,- In particular,
Ulgo| is finite q.e. and then Ugp is defined q.e. and v(Ugo) < ||gll,-
Let (¢n) be a sequence in C, converging to g in LP. By what precedes,
Y(Ugo — Upy) < |lg — ¢nll, and therefore, by (Ha), Ugo € L (7). 2

Remark 1.1 By identification of k and the class of h in £'(7), space H
may be considered as a subspace of L'(y) (with a finer norm). We shall
often do this identification. Then, space L'(7) is a Banach lattice which
contains space H. This is one of the main interests of L(v) because, in
general, H is not a lattice.

By a similar proof to that of theorem 1.1, we obtain the following result.

Proposition 1.4 Let V be a Borel kernel satisfying the same hypothesis
(Hs) as U. Assume that its extension V, to LP satisfies V,(LP) C H.
Then, for any g € LP, for any go Borel m-representative of g, Vg is
defined q.e. and belongs to LY (7). In particular, V gq is a quasi-continuous
representative of V,g.

We now have the following useful characterization of elements of £(v).

Proposition 1.5 For a function f, the following properties are equiva-
lent:



1) f € LY(y).
i) f € F'(vy) and f is quasi-continuous.
i) f is quasi-continuous and 3h € H such that |f| < h a.s.

Proof: By proposition 1.3, i) = i), and, by definition of F'(v), #1) =
1i1).

Suppose now that f is a bounded quasi-continuous function. Let (F)
be a nest such that, for any k, f is continuous on Fj. By Tietze’s the-
orem, there exists gp € Cp such that gr|p, = flr, and ||gklle < || f]loo-
Then v(f — gx) < 2||f|lcoc(F§) which tends to 0 when & tends to infinity.
Therefore f € L1(7).

Suppose finally that property #i7) holds. Let gy be a Borel representative
of g € LP such that h = Ug. Then, |f| < Ugy q.e. (by proposition 1.2
and theorem 1.1). Denoting in what follows sup (resp. inf) by V (resp.
A) and setting f, = nC{ﬂ, by what precedes f, € £'() and, on the other
hand,

|f = fal SiL—iL/\HSU(go—go/\n) q.e.

Therefore, by theorem 1.1, v(f — f,) < |l¢g — g A n||, which tends to 0
when n tends to infinity. This implies that property i) holds. 2

Potentials

The following proposition shows that, for any g € F'(v), 7(g) may be
realized as a minimum.

Proposition 1.6 Let g € F'(~). Then

v(g) = min{||h||z; h>|g| ¢e}.

This minimum is achieved by a unique ¢, € H which is called the equi-
librium potential of g.

Proof: By the projection theorem in uniformly convex spaces and the fact
that, by theorem 1.1, {h € H; h > |g| q.e.} is a closed (convex) subset
of H, the minimum is achieved by a unique ¢, € H. We have gAb; > |g|
q.e. and therefore, again by theorem 1.1, v(g9) < ||¢4||m. Let now A
satisfy v(¢g) < A. There exists an L.s.c. function ¢ such that |g| < ¢ and
v(¢) < A. There exists h € H such that [|h||z < A and b > ¢ m-a.s.
We then have, by proposition 1.2, h > ¢ q.e. and therefore i > lg| q.e.
Hence [[6 1 < bl < A and finally [[g,lli < (). 2

An important corollary is the following.
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Corollary 1.6.1 For any increasing sequence (f,) of non negative func-
tions,

y(lim f) = lim~y(fn).

In particular, if (A,) is an increasing sequence of subsets of E,
c(UnA,) = lim c(Ay).

Notation 1.5 We denote by U/ the set of non negative finite u.s.c. func-
tions on E with compact support.

Concerning decreasing sequences, it is clear that, if (¢,) is a decreas-
ing sequence in U, then y(lim, ¢,) = lim, y(¢,). Likewise, if (K,) is a
decreasing sequence of compact sets, ¢(N,K,) = lim, ¢(K,). As a con-
sequence of these properties of the capacity with respect to monotone
sequences, 7 is a so-called functional Choquet capacity and c is a Choquet
capacity, which implies that Choquet’s capacitability theorem is valid.
We now introduce the general definition of a potential.

Definition 1.2 A potential is an element u € H which satisfies:
Ywe H v>u=||v|g > |ulu.

Of course, equilibrium potentials are potentials: Namely, if v € H and
v > ¢y, then © > ¢, > |g| q.e., and therefore, |v||g > ||¢4llm. The
converse will follow from the following theorem which shows that any
potential is the equilibrium potential of itself. Let us first introduce
further notation.

Notation 1.6

P: The set of potentials.

T: The isometry from LP onto H given by U.

S=T1""1

T* (resp. S*) denotes the adjoint of T' (resp. S).

1 denotes the canonical embedding from H into LP. Consequently, U =
1o T. The adjoint of 7 is denoted by 7*.

For any set F' of (classes of ) functions, F't denotes the set of non negative
elements of F. If F' is a normed space, we denote by F’ (resp. F*) the
set of linear continuous functionals (resp. linear functionals) on F', and
by F'* (resp. F*T) the subspace consisting of those functionals which are
non negative on F. It can be noticed that T'((L?)") C H* and therefore
TH(H™) C (L9)*.



We have the following characterization which establishes a one-to-one
correspondence between P and H'™.

Theorem 1.2 Let u € H. The following statements are equivalent:
1

2) Su >0 and S*((Su)P/?) € H'*

1) w0 and (@) = |[ull s

b}

(1)
(2)
(3) v e H* w="T((T*)¥»)
(4)
() u=

If uw € P, then v given by (3) is unique. Potential u is then called the
potential generated by v and it is denoted by u, .

Proof: Let u € P. For any v € H' and for any t > 0, ||u+tv||g > ||ullx.
Then,

d+
(EHU + th%) = p/ |Su|P~sign(Su) Sv dm > 0.
=0

Consequently, Su > 0 and S*((Su)P~!) € H'". Thus (1) = (2).

If (2) holds, by what precedes and an argument of convexity, for any
v € HT and for any t > 0, ||u+ tv||g > |Ju|lg and (1) follows.

Clearly, (2) <= (3) and v is unique, given by S*((Su)P/9).

Suppose u € P. Then Su > 0 and hence v = T'Su > 0. By definition
of P, min{||v||g; © > 4} is achieved by u and therefore (4) holds.

By uniqueness of the equilibrium potential, (4) = (5), and, since
equilibrium potentials are potentials, (5) = (1). 2

Remark 1.2 If p = 2, themap v € H'tY — u,, € P given in the previous
theorem is the restriction to H'" of the linear isometry TT* from H' onto
H, which is the Riesz isometry from H' onto H. Namely, for any ¢ € H,

<o, v>gm=(Sp,Su,)r2 = (o, u)n

The following density property is an easy consequence of the Hahn-
Banach theorem.

Proposition 1.7 The set i*((L%)") is dense in H'" (with respect to the
metric defined by the norm of H').

The following corollary could be used for defining P in the Hilbert case.
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Corollary 1.7.1 In the case p = 2, the set UU*((L?)") is dense in P
(with respect to the metric defined by the norm of H).

We now study the dual of L'(v).
Proposition 1.8

L'(y) = L'(y)™" = L' (y)**

The proof is standard. In particular, L*(y)*t = L' (y)'*.

Theorem 1.3 For any L € L'(y)'*, denote by vy, the “restriction” of
LtoH: he H—<h,L >p)npy. Thenvy € HY and ||vp|g =
1Ll L1 ¢y -
The map L € L*(y)*" — vy € H'" is surjective and H** = H'".
<

Proof. Let L € L'(y)*. By theorem 1.1, v, € H™ and |vg| g
Ll 21(yy- Let w € L'(y). Then |u| < ¢, q.e. and hence

| <, L >pi(y) ¢y | €< Gus L >110), 01 (1) =

< Gu, v >u < vl dullu = llvelay(u).
Therefore ||L|| 11y < ||vz||mr. Finally, since for any u € £'() there exists

h € H such that |u| < h q.e., by a classical consequence of the Hahn-
Banach theorem, for any v € H*', map v extends into L € L'(y)*".
Then v = v, € H''. 2

Remark 1.3 If we assume that H is dense in L'(7), of course the above
map L — vy is a one-to-one correspondence between L'(y)'™ and H'T,
preserving the norms.

Finite energy measures
From now on, we assume a fourth hypothesis:

(Hy) (Tightness of capacity ¢) There exists a nest (Kj) consisting of
compact sets.

Proposition 1.9 For any non negative Borel function f,

Y(f) =sup{v(p); ¢ €U and p < f}

(where U was defined in notation 1.5). Likewise, for any Borel subset A
of E,
c(A) =sup{c(K); K compact and K C A}.



This is a consequence of Choquet’s capacitability theorem because, thanks
to (Hy), Borel sets are analytic up to a polar set. Another consequence
of hypothesis (H,) is the following.

Proposition 1.10 Space L'(v) is a separable Banach space.

Proof. Let D be a countable set in C,, dense for the topology of uniform
convergence on the sets Ky, k > 0. Then {plg,; o€ D, k >0} =D is
countable and L!(7)is contained in the closure of D in F'(v). 2

Definition 1.3 The o-algebra generated by Borel sets and polar sets will
be called the o-algebra of quasi-Borel sets.

It is clear that a set A is quasi-Borel iff there exist B; and B, Borel sets
such that B; C A C By and ¢(B3\B;1) = 0. The o-algebra of quasi-Borel
sets also is the o-algebra generated by £1(v). We have then the following
representation theorem.

Theorem 1.4 For any L € L'(y)'", there exists a unique measure on
the o-algebra of quasi-Borel sets, 1, such that

LYy) € L) and Yf € LY() < L >pippi = /f dl,

where L1(1) denotes the set of l-integrable functions. Moreover, for any
quasi-Borel set A,

1(A) < [IL]|zrpye(A)
(and, in particular, | does not charge polar sets).

Proof. By Daniell’s theorem, we have essentially to prove that, if (p,,) is a
decreasing sequence in £!(y) pointwise converging to 0, then lim,, y(¢,) =
0. Let (¢,) be such a sequence. Let (Ax) be a nest such that, for any n
and k, @, is continuous on Ay, (such a nest exists). By Dini’s lemma, for
all k,m, lim,, .o ¢,1k,,n4, = 0 uniformly. Therefore, for any N > 0,

limsupy(pn) < Y(P1lixnnan:) < N(e(Kp) +c(A7)) +7(p1 — @1 AN).

There exists h € H such that ¢; < h q.e. There exists g € LP such
that h = Ug. By the same argument as in the proof of proposition 1.5,
Y(p1 —1 AN) < |lg — g A N||,. It then suffices to let m, k and N tend
to infinity.

In particular, if ¢ € G/, then [ ¢ dl < ||L||y(¢). By increasing limit, for
any open set O, [(O) < ||L||c(O) and then, by definition of the capacity,
for any quasi-Borel set A, [(A) < ||L||c(A). 2
This leads to the following definition.
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Definition 1.4 The measures [ appearing in the previous theorem are
called finite energy measures.

Notation 1.7 We shall denote by £ the set of finite energy measures.

Clearly v € £ iff v is a measure on the quasi-Borel o-algebra such that

30 >0 Vf € £1(7)* /f dv < Cy(f).

In particular, a quasi-Borel measure which is dominated by a finite energy
measure is a finite energy measure. By theorems 1.3 and 1.4, we obtain
the following correspondence between H'" and .

Proposition 1.11 For any v € H'", there exists | € € such that
VheH <hv>gm= /iL dl.

Conversely, any element | in € thus defines a unique v € H'*.
As a consequence we obtain:

Corollary 1.11.1 Any finite energy measure | defines, according to the
previous proposition, an element v of H't which generates, by theorem
1.2, a potential u. We shall also say that u is the potential generated by
[ and we shall use the notation uw = w;. Conversely, any potential u s
generated by a finite energy measure [. We then have

Vhe H /iz dl = /(Sh)(Sul)p/q dm (= (h,u)u if p=2).
In particular, [u; dl = ||wll%.

Notation 1.8 We denote by (Hj) the following hypothesis:
(Hs) Space H is dense in L'(7).

Clearly, if (Hj) is satisfied, the finite energy measure generating a given

potential is uniquely determined by this potential and there are bijective
correspondences between (L'(v)) ", H'", € and P.
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Equilibrium measures

We assume hypotheses (H;) to (Hy).

Definitions 1.5 o Let g € F'(v). Any finite energy measure gener-
ating the equilibrium potential ¢4 is called an equilibrium measure
of g. (If (Hs) also is satisfied, this measure is uniquely determined.)

o A quasi-upper semicontinuous (q.u.s.c.) function is a function g
such that there exists a decreasing sequence (g,,) in £'(7) such that

g = lim, g, q.e.
The main result is the following.

Theorem 1.5 Let g € F'(y)" be a qu.s.c. function. Then there is an
equilibrium measure of g, denoted by v,, which is carried by {g > 0}N{g =

bg}. In particular
1(9)" = /9 dvy.

Proof: The following proof was suggested by D. Feyel.

We identify, by theorem 1.4, £ with L' ()" and we denote by K the set
{ve& |v|ey <1} equipped with the weak topology o(L'(7)’, L'(7))
for which it is compact. Let g € F!'(y)" be a q.u.s.c. function and let (g,)
be a corresponding decreasing sequence in £'(7). By the Hahn-Banach
theorem, for any n there exists a linear functional L, on L!(y) such
that L,(g.) = 7(gn) and, for any ¢ € L*(7), L.(¢) < v(¢T). Clearly
L, € L'(y)" and || Ly || 11(yy < 1. Therefore there exists v, € K such that
J gn dvy, = v(g,). Hence v(g,) = max,ex [ gn dv. By a classical min-max
theorem, since K is compact, we then have

> p— 1 pr— 1 pr— 1 >
7(g) > max / g dv = maxinf / gn dv = inf max / gn dv =inf(gn) = ¥(9g).

Consequently, there exists v € K such that v(g) = [ ¢g dv. Replacing v by
Lg>0yV, we may assume that v is carried by {g > 0}. We may also assume
that v(g) # 0. Let us still denote by v the element of H't associated
with v by proposition 1.11. By theorem 1.3, ||v||z = V|1 = 1 and
therefore y(g) = [g dv < fgg; dv =< ¢g, v >g =< S¢g, TV >pap<
gl 2zl |z = 7(g). Tt follows that v is carried by {g = ¢,} and, by the
case of equality in Holder’s inequality, S¢, = v(g)[T"*V] 4/P Therefore we
can set v, = (y(g))"v. 2
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Corollary 1.5.1 Let F' be a closed set. Denote by ¢r the equilibrium
potential of 1p and by vp a corresponding equilibrium measure as in the
previous theorem. Then

ve(F) =0, ¢p=1 vp-ae, c(F)P= /dl/F.

As a consequence, we have the following dual characterization of polar
sets.

Corollary 1.5.2 Let A be a quasi-Borel set. Then A is polar if and only

of
Vve& v(A)=0.

Proof: The necessity has been shown in theorem 1.4. Conversely, if A is
not polar, by proposition 1.9 there exists a compact subset K of A which
is not polar. Then vg(A) > vg(K) = ¢(K)? > 0. 2

2 Capacities on Wiener space

We shall now consider the framework of the classical Wiener space (ac-
cording to [7], we could, more generally, consider the case of a locally
convex Lusin space with a centered Gaussian measure). We shall prove
that the classical capacities c,, appearing in Malliavin’s calculus are of
the type studied in the first section whose hypotheses are satisfied.

Notation 2.1 In this section, E denotes the classical Wiener space Co (R ; RY)
equipped with its usual topology and m denotes the Wiener measure on
E, considered as a Borel measure. Hence, hypothesis (H;) is satisfied.

We denote by (B;):>o the coordinates process which is, under m, the
standard Brownian process in R? starting from 0. We denote by B,
1 < j <d, the components of B;.

For t > 0, if f is a non negative Borel function on F, we set

P f(z)= /f(e_t/Qx +Vv1—ety)dm(y) ( Mehler’s formula).
Then P, is a Borel kernel, P,1 = 1, mP, = m, P,(Cy) C Cp and
Vfig=0 / Bif gdm = / f Pgdm  (symmetry),

Vt,s >0 P, = PP, (semi-group property).

The semi-group of Borel kernels (P;);>¢ is called the Ornstein-Uhlenbeck
SEMI-group.
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We denote, for 1 < p < oo, by (P;,)i>0 the LP(m)-extension of (P;):>o.
Then (P¢,):i>0 is a strongly continuous sub-Markovian contraction semi-
group on LP(m), and, for t > 0, P, is symmetric on L?(m). We denote
by A, the infinitesimal generator of the semi-group (P:,);>0: Operator
A, is called the Ornstein-Uhlenbeck operator in LP(m).

We set, for any real number r > 0,

1
(r/2)

Then U" satisfies the same properties as P;. In particular, kernel U"
satisfies (Hy). We denote by U, the LP(m)-extension of U". We then
have U7 = (I — A,)™"/%. Consequently, hypothesis (H3) also is satisfied
(U}, is injective). The associated space H, = Uy (LF(m)) will be denoted
by Djy. According to the previous section, Dj, is equipped with the norm
15 ey = 11

The previous potential theory can then be developped for any fixed
r >0 and 1 < p < oco. The corresponding capacities will be denoted by
Yrp and ¢.,. We shall also use the terminology (r, p)-polar, (r, p)-quasi-
continuous, . .. in place of ¢, ,-polar, ¢, -quasi-continuous, ... Space D}, is
decreasing with respect to r and p, while v, , and ¢, , are increasing with
respect to r and p. We shall denote by D> the set 1,5 p>1 D}

U = = /t%_le_tPt dt.

Definition 2.1 A slim set is a set which is (r, p)-polar for any r > 0 and
1 <p.

The following proposition comes easily from the definitions.

Proposition 2.1 If f € D>, then there exists an m-representative of f,
J, which belongs to N,~0p>1 LY(y,,) and which is unique up to equality
out of a slim set.

The following result was first proved in [32] by using the differential def-
inition of D) (Meyer’s inequalities). It also is a direct consequence of the
holomorphy of P;,, which follows from the symmetry of (P:2) (see [31]).

Proposition 2.2

Vr>0 Vp>1Vt>0 Py,(L°(m)) C D,

Then, by proposition 1.4, we get:

Corollary 2.2.1 For all r > 0, for all p > 1, for all Borel function f
such that [ |f|P dm < oo, P.f is defined (r,p)-g.e. and P,f € L (7).
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As a consequence, we have the following improvement of a classical 0-1
law (cf. [7]).

Proposition 2.3 Let G be a Borel linear subspace of E. If m(G) > 0,
then m(G) = 1 and, more precisely, the complement G° is a slim set.

Proof. We have, by Mehler’s formula, Pi1g = m(G) on G. Letting ¢
tend to 0, we obtain 1 = m(G) a.s. on G. Therefore, if m(G) > 0, then
m(G) = 1. We then have, again by Mehler’s formula, P15 = 15 for any
t > 0. Hence, by corollary 2.2.1, 1¢ € L}(v,,). As lg =1 as., lg =1
(r,p)-q.e. and therefore ¢, ,(G¢) = 0. 2
Example If 0 < o < 1/2, the set of elements of F which are not locally
Holder continuous of order « is a slim set.
The following result ([7]) has many applications.

Proposition 2.4 Let q : E — [0,00| be a Borel function which is
sublinear (i.e. Vx,y q(x +y) < q(x) +q(y), ¢(0) =0, YA > 0 Vx g(\z) =
Aq(x)). If q is finite a.s., then q € Nyspp=1 LMY p).

Proof: Let ¢(xz) = q(z) + g(—z). Then § also is finite a.s. Since Z =
{¢ < oo} is a Borel linear subspace of F, Z¢ is, by proposition 2.3, a slim
set. By Fernique’s theorem, ¢ € Ny~1LP(m). Then, by corollary 2.2.1,
Piq € Nr=0p=1L (7). Now, by Mehler’s formula and the sublinearity of
q, for any x € F,

e_t/Qq(x) — m/q dm < Pyq(z) < e_t/2q(x) + \/1—7e*t/q dm

and therefore, |e"/?P,q — q| < Vet — 1 [ ¢ dm on Z. Consequently, ¢!/2P,q
tends to ¢ uniformly on Z and the result follows. 2
Remark Under the assumptions of the proposition, by [7], ¢ € Np>1D}
also holds.

We now give a few corollaries (see [7]).
Corollary 2.4.1 For anyr > 0 andp > 1, capacity c,, satisfies tightness
property (Hy).

Proof: Let K be a convex symmetric compact subset of E such that
m(K) > 0 (such a set obviously exists) and let ¢ be the Minkowski
functional associated with K:

q(z) =inf{\ > 0; z € AK} < +o0.

Then ¢ is an l.s.c. sublinear symmetric function and m(q < +o0) > 0.
Therefore, by propositions 2.3 and 2.4, ¢ € L(v,,). Set K, = {q¢ < n}.
Then K,, = nK is a compact set and ¢, ,(KS) < n~'~,,(q) tends to 0 as
n tends to oo. 2
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Corollary 2.4.2 For1 < j <d,

: B}
lim sup

et S—
t—oo  +/2tloglogt

out of a slim set.

. — s Bl () :
Proof. Define ¢ on E by ¢(w) = limsup,_, e Then ¢ satisfies
hypotheses of proposition 2.4. Hence ¢ € £'(7,,) and consequently ¢ is
(r, p)-quasi-continuous. As ¢ =1 a.s., ¢ =1 (r,p)-q.e. 2

Corollary 2.4.3 LetH be the Cameron-Martin space (H = {J; ¢(s) ds; ¢ €
L*(R;RY)}). Then H is a slim set.

Proof. As, for any h € H, limsup, AL — it suffices to apply
’ ’ 0 \/2tloglogt ’

the previous corollary. 2
We now prove that the last assumption (Hj) also holds.

Proposition 2.5 For anyr > 0 andp > 1, D} is dense in L' (v,), which
means that property (Hs) is satisfied.

Proof: There are many proofs of this fact. Here we use a general method
based on the Hahn-Banach theorem. Let L € L'(y)" which vanishes on
D,. By proposition 1.8, theorem 1.4 and proposition 2.2, there exist [;
and [y (7, p)-finite energy measures such that, for any ¢ > 0 and ¢ € C,,
J Pyp dly = [ P,y dly. Then, by dominated convergence, for any ¢ € C,
[ dly = [ dly. Therefore L vanishes on Cp, which is dense in L'(,,).2
As a consequence, an (r, p)-finite energy measure generating a given (r, p)-
potential is uniquely determined by this potential.
Another example of slim set is the following.

Proposition 2.6 Any countable set is a slim set.

Proof: 1t is enough to prove that, if r > 0, p > 1 and x € E, then {z}
is (r, p)-polar. By corollary 1.5.2; we have to prove that v({z}) = 0 for
any (r, p)-finite energy measure v, or equivalently, that the Dirac measure
6, is not an (r, p)-finite energy measure. Let (I,,),>0 be an orthonormal
sequence in L?(m) consisting of continuous linear functionals on E. We
can assume 7 € N. By the differential characterization of the (r, p)-norm,
we have, if ¢, is an (7, p)-finite energy measure,

3C >0, VN €N, Yy € D(RY),
lo(h (@), In(2)P < C URN o) (y) e 2y + /RN o) P2y
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Let ¢ € D(RY) with ¢(0) = 1. We apply the above inequality to p(y) =
v(n(yy — Li(z), -, ynv — Iny(x))). Letting n tend to infinity, we get, if
rp < N,1<0. 2

We finish this section with some examples of finite energy measures
and remarks. Let o be a measure on R” such that there exists 0 < o < 1/2
with [e " do(z) < co. Let (Iy,---,1,) be a set of r continuous linear
functionals on E which is an orthonormal system in L?(m). We can
define by approximation o(ly,---,l.) as an (r,p)-finite energy measure
for any p > — (cf. [2]). In particular, if [ € E' and |||, = 1, 6(1)
is a (1,2)-finite energy measure (v/278(1) is the conditionning measure
given {I = 0}). Clearly [ d(5(])) = 0, therefore the support of §(1) is
contained in Kerl (which implies that §(1) is singular with respect to m).
Thus, Kerl is a closed subspace of E which satisfies m(Kerl) = 0 and
c12(Kerl) > 0 (because §(1)(Kerl) = (27)~%/2 > 0). In another direction,
it is proved in [8] that if a Borel linear subspace G satisfies m(G) = 0
and H C G, then G is (1, p)-polar for any p > 1. Finally, we notice that
according to [34], if X is an R%valued non degenerate (in Malliavin’s
sense) Wiener functional and if o is a temperated measure on R?, o(X)
may be defined and it is a finite energy measure.

3 Multiparameter processes

We introduce,in this section (essentially based on [18]), a class of sym-
metric Markov multiparameter processes and we show that they allow
us to interpret probabilistically some capacities. We shall see that, in
particular, the capacities ¢.o (r > 0) defined in the previous section can
be interpreted in such a way.

n-parameter symmetric Markov processes

We fix a metric space EF and a Borel probability measure m on E. We
also fix a positive integer n. We consider X, an n-parameter E-valued
measurable process defined on a probability space (2,4, P). We begin
with some notation.

Notation 3.1 If B C {1,2,...,n}, we denote by B¢ the complement of
B in {1,2,...,n}. Ift € R}, we set tg = (t;; ¢ € B) and we identify
R with RP x RY" by identifying ¢ with (¢5,tpc). The order on R is the
product order and |tp| denotes > ;cp t;.
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Definitions 3.1 Process X is called an F-valued m-symmetric n-parameter
Markov process if there exist (P'; 1 <1 < n), a family of n strongly con-
tinuous semi-groups of sub-Markovian symmetric operators on L?(m),
and (F%; 1 <i < n), a family of n filtrations on (£, .A) such that

1. Vt e Ry, X; € Mi<i<n ‘7:;7 and the law of X; is m.
2. V1<i<n,VfeL}(m), VuerRY va,berl,

E[f(Xaer,u) | fé] = PZf(Xa,U>~
The semi-groups (P') are called the transition semi-groups of X.

Remark The problem to know for which family of semi-groups there
exists a process admitting them as transition semi-groups is open. A
necessary (but not sufficient, according to [30]) condition is that the semi-
groups commute: Vi,j € {1,---,n}, Vt;,t; € Ry, ]P;‘;iIP’{j = IP’%J}P’; Namely,

P, P, f(Xo) = E[P] f(Xou,) | Fol = E[f(Xog.,) | Fol
where Fy denotes N;F.

Notation 3.2 If B C {1,2,...,n}, we adopt the following notation:
U = [li<i<n ﬁ a2 Pl da. If B # 0, VB = [Lep Jo° e P! da and
v? = I (identity in L?(m)). When B = {1,---,n}, we simply denote V7
by V (Vv = U?). Fort € R}, F; = M<i<nFi. Operator U is called the
1/2- potential operator of X. Actually, U= [];<;<,(I — A;)~/? where A;
is the infinitesimal generator of P*. o

If g e L*(m), s € R} and B € {1,---,n}, we set

e Mg(Xy) dt | F), ML= [ eMg(x,)

My = E[[

t>0

B A0, Hy, = [ e g(X,.,.) dig and
SUBSSB

if B=10, H]gg’s = Vg(Xs).
In what follows, N, denotes the L?-norm, with respect to P as well
as with respect to m.

We have the following easy consequences of the definitions.

Theorem 3.1 Assume that X is an E-valued m-symmetric n-parameter
Markov process. Then

18



1. (Doob’s inequality) Vg € L*(m), VD finite subset of R™,

Na[sup [M7]] < 2" No[M{]
seD

2. (Generalized Dynkin’s formula) Vg € L*(m), Vs € R",

9 — —lsel 79
MI= 3 eleelgy

’ BC{1,2,+n}
3. Vg € L*(m), Yo non negative bounded Borel function on R,

No[ME] = Na[uig] and Nol [ e Mip()g(X,) df] < ]l NalUg]

t>0

First inequality

In the remainder of this section, we assume that X is an E-valued m-
symmetric n-parameter Markov process and that the associated 1/2-
potential operator U is the natural extension to L?(m) of a Borel kernel
U(z,dy) satistying U(Cy) C Cp. Then, fixing p = 2 and identifying U
and Uy (cf. notation 1.1), hypotheses (H;), (Haz), (Hs) of section 1 are
satisfied. We adopt henceforth the notation of section 1. In particular,
we denote by v and ¢ the capacities associated with U and p = 2, and H
denotes the space U(L?*(m)). By the symmetry of U and corollary 1.7.1,
we obtain directly:

Proposition 3.1 For any u € P, there exists a sequence (pi) in L?(m)*
such that limy, Vpr, = u i H.

In what follows, if F' is any non negative function on 2, we denote by
E(F) the upper integral with respect to P, which means:

E(F) =inf{E(G); G measurable and G > F'}.

Finally, we also assume the following weak regularity property:
Right continuity hypothesis: P-a.s., Vt limy, Xy = X;.
The first inequality is then stated in the following theorem.

Theorem 3.2 For any function f on F,

2

E < 4"[y(NI*.

[stgg e £1(X)
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Proof: Suppose first f = Vg with g € L?(m)*. By theorem 3.1,
e Flvg(X,) < MY and therefore N, {supseD e_‘s|Vg(Xs)} < 2"Ny(Ug) <
2°[[Vg||u, or, N [sup,ep e I f(X,)] < 27(|f ]l

Suppose then f € P. By proposition 3.1, the same inequality holds.
Now, if f € F'(v), then |f| < ¢y a.s. and ||¢¢]|w = v(f), therefore

Ny [sup,ep e FI(X)] < 2v(f).

By right continuity hypothesis, if f € F1(y)NC, N, [SUPtzo e"t‘\f](Xt)} <
2"y(f). This extends to any non negative l.s.c. function by increasing
limit.

Finally the general result follows by the definition of ~. 2

Finite energy measures and additive functionals

Besides the previous hypotheses, we henceforth assume that hypothesis
(Hy) (tightness of ¢) and hypothesis (Hs) (density of H in L'(y)) are
satisfied.

Theorem 3.3 Let v € £ be a finite energy measure and denote by u,
the potential generated by v. Then there exists a unique random mea-
sure A, (dt) on R" such that, for any sequence (pg) in L*(m)* such that
limg, Vpr, = u,, in H,one has

Vo € CRY) Aule) =lim [ @(tpu(X) dt in L*(P).

Then, for any non negative Borel function ¢ (resp. g) on Ry (resp. E),

E [ / o(t) g(X,) A,,(dt)] _ / o(t) dt / gdv.

Sketch of the proof: By theorem 3.1, for any bounded Borel function ¢
on R", for any g € L*(m),

Nal [ e Mia(t)g(X.) dt] < 2ol [Vl

Then A, can be defined as a vague limit (weak limit) of some subsequence
pir(X¢) dt (in this sense, T — A, ([0, 7)) is an “additive functional”).
For the second part of the statement, we remark that if p € L*(m)™,

/gp g(Xy)p(Xy) dt] = /gp dt/gpdm

We have to pass to the limit in this formula, but there are some technical
difficulties, and, in particular, we need the right continuity hypothesis
and additional assumption (Hs). For details, we refer to [18]. 2
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Second inequality

Under the same assumptions as in the previous theorem, we have:

Theorem 3.4 For any Borel function f on E, for any T € R,

</[0,T} e_“dt)Q WP <E

Proof. By proposition 1.9, it suffices to consider the case where f is a
non negative u.s.c. function with compact support. Let then v be the
equilibrium measure of f and let A, be the associated random measure
(theorem 3.3). By theorem 1.5, we obtain

e dt ) v*(f) = e dt | fdv=E] e Mf(x,) A (dt))
0,7] 0,7] 0,7

< 8 (sup 1C001) o ([ e Mautan)

t€[0,T]

B |f|<Xt)r

te[0,T]

Now, by the definition of A,,

Ny ( [, e—'tAywt)) < Nl = A(F).

The result follows. 2
As a consequence of theorems 3.2 and 3.4, we have:

Corollary 3.4.1 For any Borel subset B of I, for any T' € RY},
2
(/[ }e"tdt> [¢(B))? < P[3t € [0,T); X; e B] <4"?[¢(B)]>
0,7

In particular, a Borel set B is polar if and only if, almost surely, X; ¢ B
for any t.

These results can be used to give a probabilistic characterization of quasi-
continuity (see [18]).

Capacities ¢, 2, n € N*

We now consider the framework of section 2, and we fix n € N*. In
particular, E denotes the Wiener space and m is the Wiener measure.
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Let W+ be an R?-valued (n + 1)-parameter Brownian sheet defined on
a probability space (€, .4, P). We set

X -G,

Then X is an E-valued n-parameter process, called the E-valued n-
parameter Ornstein-Uhlenbeck process (see [25] for n = 1, [33] for n = 2,
and [29], [14] for the general case). The following proposition follows
easily from the definitions.

Proposition 3.2 Process X™ is an E-valued m-symmetric n-parameter
Markov process with continuous paths. Its transition semi-groups are
gien by:

V1<i<n Vt>0 P, =Py (Ornstein-Uhlenbeck semi-group on L*(m)).

The 1/2-potential operator of X then is operator U} and the corre-
sponding capacity is ¢, 2. Consequently, all assumptions of the previous
paragraph are satisfied. In particular, corollary 3.4.1 is valid with £ =
the Wiener space, ¢ = ¢, 2 and X = X ("), This situation was generalized
in [1],[9].

Capacities ¢,142, n €N, 0 < a <1

The framework and the notation are the same as in the previous para-
graph. We set » = n + a. Let X1 be the E-valued (n 4 1)-parameter
Ornstein-Uhlenbeck process. We consider (7;):>o a one-sided stable pro-

cess of index «, starting from 0, with cad-lag paths and independent of

Wm+2)  We set
Y;(T) (n+1)

Leotng1r = ELetn, Ty, g

Process Y is an E-valued (n + 1)-parameter right continuous process.
We set, as before,
V1SZSTL Pi:Pt?g

and P! = /IPSQ dvy(s) where vy is the law of 7.

Proposition 3.3 Process Y (") is an E-valued m-symmetric n+1-parameter
Markov process of which the transition semi-groups are (P'; 1 <i < n+1).

The proof is almost classical (cf. [17], [18]). The 1/2-potential opera-
tor of Y is UB(I + (—Ay)*)~1/2, where A, is the Ornstein-Uhlenbeck
operator in L?*(m), and then the corresponding space H is D} with an
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equivalent norm. The associated capacity is therefore equivalent to ¢, s.
The assumptions (H;) to (Hs) are again satisfied. In particular, for any
T > 0, there exist ar and by, positive constants, such that, for any Borel
subset B of F,

arle,o(B) < PBte [0, 71" V") € B < brle,a(B)).

Remark In the context of the previous examples, we can prove more
precise properties of the random measure A, associated with a finite
energy measure v, in particular 7' € R — A,([0,7]) is almost surely
continuous (see [19]).

4 Quasi-sure analysis

The quasi-sure analysis (terminology introduced by P. Malliavin) is the
study of properties up to a slim set (in place of negligible set). The
interest comes from the fact that the finite energy measures, which appear
in particular in the context of conditionning, do not charge slim sets but
may be singular with respect to the Wiener measure (see at the end of
section 2). A useful tool is to consider spaces of Banach-valued functions
(we refer to [7], [2], [4, 5], [24], [28]). In fact, there are different definitions
which are not equivalent in general.

Banach-valued functions

This paragraph is close to the work of L. Denis [4, 5], but the context is
slightly different and we also adopt slightly different definitions.

The context here is that of the first section: We consider (E,m,U)
satisfying (H;) and (H). We fix 1 < p < oo and we assume (H3) too.
The notation is that of section 1. We also fix a separable Banach space
B. It is clear that U can be naturally extended to L?(m;B).

Notation 4.1 We denote by U the natural extension of U to LP(m;B)
(operator U is a contraction in LP(m;B)).

Proposition 4.1 Operator U is injective on LP(m;B).

This is an easy consequence of the Hahn-Banach theorem and of the
property:

VE € LP(m;B) Ve € B' @(U(F)) = U(p(F)).
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Notation 4.2 We denote by H® the image U(LP(m;B)) equipped with
the norm
[OF e = 1 Fll 2o mem) -

Therefore, H® is a separable Banach space isometric to £P(m;B).
We then define F!(~;B) as the set of functions f : E — B, defined
q.e., such that || f|lz € F*(y). For such a function f, we set y(f) =

V(I £ls)-
We set

L'(7v;B) ={f € F'(v;B); Ipx) € Co(E;B) Y(f — 1) — 0},

and we define L'(;B) as the quotient space with respect to the q.e.
equality.

A function f: E — B is said to be quasi-continuous if there is a nest
(F)) such that, for any k, f|p, € C(F;B). We obtain easily, as in the
scalar case, the following proposition.

Proposition 4.2 1. Each element of L*(v;B) is quasi-continuous.
2. L'(;B) is a Banach space.

One of the main results is the following extension of the scalar case (the-
orem 1.1).

Theorem 4.1 Any h € H® admits a quasi-continuous m-representative
h, unique up to quasi-everywhere equality, and

h € £'(v;B) and y(h) < ||h| .
Proof: As Cy(E;B) is dense in LP(m;B), then C,(F;B) N H® is dense in
H®. Now, for any f = Ug in C,(E;B) N H®, by theorem 1.1,
V() <v(Ullglle) < [1f[|a=-

The result follows. 2
Hence, as in the scalar case, H® may be considered as a subspace of
L'(v;B). We also have:

Theorem 4.2 Assume that (Hy) is satisfied. Then f € L'(v;B) if and
only if f € FY(v;B) and f is quasi-continuous. If in addition (Hs) is
satisfied, then H® is dense in L'(v;B).
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Proof: Consider first a bounded B-valued function f which is quasi-
continuous. By (Hy), there exists a nest (K}) consisting of compact
sets, such that, for any k, f|x, is continuous. It is easy to see that the
algebraic tensor product C(Kj) ® B is dense in C(Ky;B). Therefore, there
exists ¢y € C(Ky) @B such that ||f — ¢lls <e <1 on K. By extension,
we may assume that ¢ € Cp(E) @ B and ||¢k|lee < ||flloo + 1. If (Hs) is

satisfied, there exists hy € H® such that v(pr — hy) < e. We then have

Y(f = o) < e+ 2l flloo + De(Ky) and y(f — hi) < v(f — ¢x) + €.

This proves that f € L£'(y;B) and, if (Hs) is satisfied, any bounded
function in £'(;B) can be approximated by elements of HE.

The general case may be obtained by the following remark which can be
proved as in proposition 1.5: If f € F'(y;B) and f, = n(n V ||f|s) "'/,
then v(f — f.) tends to 0 when n tends to infinity. Now, f,, is bounded,
and quasi-continuous if so is f. 2
Theorem 4.1 is a useful tool to transform almost-sure convergence results
into quasi-sure convergence results. We follow L. Denis ([4, 5]).

Theorem 4.3 Let (f,,)n>0 be a sequence of H. Let, for anyn, g =U"'f,.
We assume

1. dgso such that lim, .. gn = Goo @.S.
2. sup,, |gn| € LP(m).
Then, setting foo = Ugso, we have
i 7o = T e

Proof: Let N be the compact set NU{oo}, and B = C(N). We may consider
g. as an element of LP(m;B) and f. = U(g.). Therefore f. € H* and hence
f. admits a quasi-continuous representative f . Clearly, (f)n = ﬁ q.e.
for any n € N. Therefore f.(w) € C(N) for quasi-every w and the result
follows. 2
In the same way, the continuous analogue holds too:

Theorem 4.4 Let T € [0,00] and let (fi)icpm be a family in H. We
assume that there exists a family of functions (g¢)icjo,r such that

1. ¥t € 0,T], g; is an m-representative of U™ f,,

2. For almost allw € E, t — g(w) € C([0,T7,
3. supyeio ) |9 € LP(m).

25



Then, there is a family (ﬁ)te[oﬂ“] such that
e foranyt € [0,T], ﬁ 1S a quasi-continuous m-representative of fi,
e for quasi-every w, t — fy(w) € C([0,T7]).

More precisely, f. € L(v;C([0,T))) and

v(sgplftb < [lsup lgi] [l

Following the same ideas, we can prove a quasi-sure version of Kol-
mogorov’s theorem.

Theorem 4.5 Let (X;)icjo1)2 be a family in H. We assume
3C >0, 3 >0, Vs,t € [0,1]7 || X, — X,|% < Ot — s]**=.
Then there ezists ()?Jt)te[o’l]d such that
o Vte[0,1]? X, = X; m-a.s.
o Vit e [0,1)¢ X, is quasi-continuous

o for quasi-every w € E, t — )Z(w) is Hélder continuous of order
a for any o € [0,¢/p].

Proof: Let for « € [0,¢/p[, H* be the space of continuous functions f on
[0,1]%, nul at 0, such that lims_y g2 [t —s| 7| f(£) — f(s)| = 0, equipped
with the usual norm

50 = F)]

a = Su
Il = sup L=

We can assume X, = 0. Define ¥; = U'X,. Then Y, € LP and
|Y; = Yi|[5 < C|t — s|**¢. Therefore, by the classical Kolmogorov the-
orem, there exists a version of Y, still denoted by Y, which belongs to
LP(m;H®). Clearly X = T(Y) is a version of X belonging to H™" C
Ly HE). 2

Still following L. Denis ([4, 5]), we now give applications to Wiener
space.

Applications to Wiener space

We use here the results of the previous paragraph in the framework of
section 2. We denote by (F;):>o the natural filtration of (B;);>o.
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Brownian martingales

Theorem 4.6 Let f € L1(7,,). Then, there exists F' € L(v,.,; C([0, oc]))
such that, for any t > 0, F, is an m-representative of E(f | F;) and
F. = f (r,p)-quasi-everywhere. Consequently, for any t € [0,00], F; is
(r, p)-quasi-continuous, and, for (r,p)-quasi-every w, t € [0, 00] — F;(w)
15 continuous. Moreover, following capacitary Doob’s inequality holds:

p
%,p(sgp |Fy|) < ——p(f).

p—1
(See [12] for a similar, slightly weaker, result by another method.)
Proof. First assume f € Dj. There exists g € L? such that f = Upg.
It is easy to see that U commutes with E( | 7). Then, E(f | F;) =
U,(E(g | F¢)). By Doob’s inequality, there exists G € LP(m;C([0, +0o0]))
such that, for any t > 0 Gy = E(g | F;) a.s. and

p
Hﬂmmmmmmégjﬂwb

Therefore theorem 4.4 applies and the first part of the statement of the
theorem holds. Let ¢ be the (r, p)-equilibrium potential of f, p = Upy.
We can associate as before ® with . Clearly, (r, p)-quasi-everywhere, for
any t |Fy| < ®,;. Therefore, by theorem 4.4

p p
T F|) < Oy) < —— = 7 r
Yro(SUP |F1]) < Yrp(sup a_p_ﬂwm p_ﬂmwp
and [[¢|rp = Yrp(f)-
The general result then follows from the density of D} in L'(y,.,). 2

Quadratic variation

We fix T' > 0. For any subdivision A = {0 =1ty <t;--- <t, =T} of the
interval [0, 7], we denote by Sa the d X d-matrix

n—1
SA = Z(Bti+1 - Btz‘)(Btz'+1 - Bt1>*
=0
(where (By,,, — By,)* denotes the transposed matrix of the column matrix
(Bt,., — By,). We denote by I; the d x d-identity matrix.

Theorem 4.7 Let (A,)n>0 be a sequence of subdivisions of [0,T] such
that
lim Sa, =T1; m-a.s.

n—oo

Then, lim,, .o, Sa, = T1, outside a slim set.
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(The same result was proved by Feyel-de La Pradelle ([7]), using their
result on sublinear functionals (proposition 2.4).)
Proof: 1t is easy to see that, for r > 0,

Sa = U"(2"2(Sa — T1,) + T1).

On the other hand, by Fernique’s theorem, if lim, Sn, = T1; m-a.s.,
sup,, |Sa,| € LP (where | | denotes a norm on R™?). We may then
apply theorem 4.3. 2

Stochastic differential equations

We fix T'> 0, n € N*, and we denote by B the Banach space C([0, T]; R").
We begin with a preliminary result (cf. [7]).
Proposition 4.3 Let o € LP([0,T7]; (D;)"*%) be an R™“-valued adapted

process. Then / as dBg belongs to (D;)IB.
0

Sketch of the proof. Set

- 1
Ur — —(3/2)tt(r/2)—1]P, dlf.
T(r/2) / © ¢

There exists an adapted process 8 € LP([0,T]); (LP)"*?) such that o, =
U"(3,). Then [; 8 dBs € LP([0,T]; B) and
/' a, dB, = W(/' 3, dB,).
0 0

2
We then obtain by successive approximations the following result which
was obtained by other methods in [32], [27], ...

Theorem 4.8 Let o (resp. b) be a C5° function from R™ into R™? (resp.
R"). For x € R", we consider the continuous strong solution X of

dXt = U(Xt)dBt + b(Xt)dt, XO = XT.

Then, for any r >0, p>1, X € (D})®. As a consequence, there exists a
version of X belonging to Ny=0p>1L (Yrp; B).
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Quasi-sure continuity of the Ornstein-Uhlenbeck semi-group

Theorem 4.9 Let f € L'(v,,). Then limy_o P.f = f (r,p)-q.e. More
precisely, for any T > 0, w € E — (t € [0,T] — P,f(w)) belongs to
L (7,; C((0, T1)).

Proof: Suppose first f € D. Then f = Uyg with g € LP and P, f = U"Pg
(r,p)-q.e. By [31], hypotheses of theorem 4.4 are satisfied with f, = P, f,
g = P,g. As, for any t, f, € L(v,,), the result is obtained in this case
and y(sup, |P.f]) < C| fllrp. We can then proceed as in the proof of
theorem 4.6.

2

Many other results of quasi-sure analysis can be found in [5]. Never-
theless, it is not always true that an m-a.s. convergence theorem admits
a quasi-sure version. For example, if d = 3 or 4, lim;_ |Bi(w)| = o0
m-a.s., but it is proved in [22] that, for any € > 0,

c1a({w; lim inf |Bi(w)| < e}) > 0.
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