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Abstract

In this contribution, recent methodological and theoretical developments in the �eld of semipara-

metric estimation for fractional processes are presented. Fractional processes are a special case of

long range dependent processes. The main subject is the semiparametric estimation of the fractional

di�erencing coe�cient or memory parameter. Emphasis is put on two directions : non stationary

processes and minimax and adaptive estimation.
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1 Introduction : spectral methods for fractional processes

This papers is concerned with the presentation of new methods and results in the �eld of semiparametric

estimation of long range dependent processes. Robinson's seminal papers of 1994 and 1995 [44, 46, 47] and

his review paper [45] presented the �rst rigourous treatment of the asymptotic theory of semiparametric

estimators of the memory parmeter, among which the famous GPH estimator which had been proposed

as early as 1983. The theoretical, methodological and technical ideas contained in these papers were so

powerful that they induced developments of the theory in many directions. First, new estimators of the

long memory parameters were introduced and their asymptotic theory was either direct applications or

re�nements of some of Robinson's results.

An important new direction of investigation was the extension of the class of fractional processes to

non incertible or non stationary processes. This was �rst investigated by Hurvich and Ray (1995) [31]

and later by Velasco in a series of papers [52, 54]. The key ingredient to study such processes is tapering.

The classical tapers such as the cosine bell taper, Kolmogorov tapers were investigated, and recently,

a new class of complex tapers, very well suited to the study of fractional processes was introduced by

Hurvich and Chen (1999) [27].

Models with a fractional pole outside zero were introduced very naturally as early as 1989 by Gray

Zhang and Woodward (1989) [19] and further extensions followed. Suprisingly, this direction was not

investigated from a statistical point of view until very recently, and no papers have been published yet

on the problems of estimation of the fractional pole and of the fractional di�erencing coe�cient when the

location of the fractional pole is unknown.

Giraitis, Robinson and Samarov (1997,2000) [15, 16] initiated the investigation of minimax and adap-

tive estimation of the fractional di�erencing coe�cient. research in this direction is very important since

all the semiparametric estimators of the fractional coe�cients involve parameters which depend on some

kind of smoothness of the spectral density and these parameters must be selected automatically from

the data. The adaptive estimation theory, still relatively new provides very simple and powerful tools to

select these parameters, which will probably be widely prefered to classical selection procedures.

The distribution of the processes for which a satisfactory theory is established is rather restircted.

The theory, if not the method, of adaptive estimation is restricted to Gaussian processes. The weak

convergence of some estimators has been recently extended to the class of linear non-Gaussian processes.

Very recently, non linear models exhibiting long range dependence have been introduced (cf. Giraitis,

Robinson and Surgailis (1999) [17]), but there is as yet no statistical theory for these processes. Frac-

tionally integrated processes with in�nte variance have been introduced by Kokoszka and Taqqu (1995)

[35], but semiparametric estimation has not yet been considered for these processes.

This contribution aims at presenting an overview of the problems described above, with an emphasis

on two directions : non invertible and non stationary processes and minimax and adaptive estimation.

It will not be an exhaustive review of all the existing literature, and the last two problems metioned

(in�nite variance and non linear processes) will be omitted.

The rest of this paper is organized as follows. Section 2 presents the fractional models under con-

sideration. Section 3 presents the speci�c tools and methodology of spectral estimation for fractional

processes. Sections 4 and 5 respectively present the two families of semiparametric estimators of the

fractional di�erencing coe�cient d, namely the local and global estimators in the case where the frac-

4



tional pole is known to be zero. Section 6 presents the asymptotic theory of these estimators. Emphasis

is put on minimax estimation theory and on the relatively new theory of adaptive estimation. Section

9 presents some of the main probability tools and technical results that are used in the derivations of

section 6

2 Fractional processes

Let Y = fY

t

g

t2Z

be a covariance stationary covariance process, with mean �, covariance (�) :=

cov(Y

t+�

; Y

t

) and spectral density f

�

(x). For d < 1=2, let X = fX

t

g

t2Z

be the covariance stationary

process de�ned by

(1�B)

d

X

t

= Y

t

(1)

where B is the backshift operator,

(1�B)

d

=

1

X

j=0

�(�d+ j)

�(�d)�(j + 1)

B

j

and � denotes the Gamma function. The process fX

t

g

t2Z

is said to be a fractionally integrated process

with fractional di�erencing parameter d. This class of processes was introduced by Granger and Joyeux

(1980) [18] and Hosking (1981) [23]. Allowing d to take fractional values produces a fundamental change in

the correlation structure that a fractional process can have when compared with the correlation structure

of a "standard" time-series model, such as an ARMA(p; q) process. The covariance coe�cients �(�) of a

fractional process decline at a hyperbolic rate (see Brockwell and Davis, (1991) [9], Theorem 13.2.2)

�(�) = O(�

�1+2d

)

while the autocovariance of a stationary ARMA process decays exponentially. For 0 < d < 1=2, a

fractional process is said to have long-memory or long-range dependence and its covariance sequence �(j)

is not summable. For d < 0, the process is said to have intermediate memory, in the sense that the

covariance coe�cients �(j) are summable, though declining at an hyperbolic rate. The spectral density

of the process X de�ned by (1) is given by

f(x) = j1� e

ix

j

�2d

f

�

(x) (2)

When 0 < d < 1=2, the spectral density is unbounded at zero, whereas the spectral density of an ARMA

process is bounded.

A popular class of fractional processes, introduced by Granger and Joyeux (1980) [18] is the class of

ARFIMA model (standing for AutoRegressive Fractionaly Integrated Moving Average), in which Y is a

causal invertible ARMA(p; q) process. Another class of fractional process of interest is the class of FEXP

models (standing for fractionaly integrated exponential models), in which the spectral density f

�

of Y

is modeled as the exponential of a �nite order trigonometric polynomial, i.e. there exist coe�cients �

j

,

1 � j � p such that

f

�

(x) = expf

q�1

X

j=0

�

j

cos(jx): (3)
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A fractional process with spectral density f satisfying (2) with f

�

as in (3) will be referred to in the sequel

as a FEXP(q) process. Such processes, which generalize the so-called Bloom�eld exponential models (cf.

Bloom�eld (1973) [7]), have been proposed as an alternative to ARFIMA processes by Beran (1993) [4]

and Robinson (1994) [45].

The model de�ned by (1) has been recently generalized to fractional models with a fractional pole

outside the origin. Gray, Zhang and Woodward (1989) [19] and Viano, Deniau and Oppenheim (1995)

[55] among others have considered general fractional models which allow complex as well as real roots on

the unit circle. The generic form is

�(B)X

t

= Y

t

(4)

where, as above, Y

t

is a covariance stationary process with positive and �nite spectral density and �(B)

is given by

�(B) = (1� 2 cos(�)B +B

2

)

d

;

where d < 1 if � 2 (0; �) speci�es the frequency at which the singularity occurs. If 0 < d < 1=2, the

process X is stationary and long-memory. When Y is a white noise, X is referred to as a Gegenbauer

process. Gray, Zhang and Woodward (1989) [19] have shown that, for d < 1=2 and smooth enough, f

�

(x)

the autocovariance function and the spectral density of Gegenbauer processes are given by

f(x) = [4fcos(x) � cos(�)g

2

]

�d

f

�

(x); (5)

�(�) = c�

2d�1

cos(2���)(1 + o(1)): (6)

When 0 < d < 1=2, Gegenbauer processes are particularly appropriate for data with slowly damping au-

tocovariances which also have cyclic patterns. Gray, Woodward and Zhang (1989) [19] further developped

the model through the inclusion of more than one Gengenbauer factor.

An important generalization of the previous models is to allow values of the fractional di�erencing

parameter d larger than 1=2 (see Hurvich and Ray (1995) [31], Beran, Bhansali and Ocker (1998) [5],

Velasco (1999) [52, 54]). Note however that in such case the de�nition (1) cannot be readily applied.

We follow here the construction presented Hurvich and Ray (1995) [31]. A process X is said to be a

fractional process of order d 2] � 1=2; p+ 1=2[, where p 2 N, if the p-th order di�erence of this process

~

X

t

= (1 � B)

p

X

t

satis�es equation (1) with

~

d := d � p < 1=2. Note that this class include processes

with deterministic polynomial trend of order (p� 1). Di�erencing arbitrarily p times a process X in this

class yields a stationary but possibly non-invertible process. Hence, it is important in practice to derive

procedures which are able to deal with possibly non-invertible processes of order �p� 1=2 < d < 1=2.

3 Spectral estimation

In classical time series analysis, it is customary to distinguish time domain and spectral domain ap-

proaches. Roughly speaking, time domain methods are based on empirical estimates autocovariance func-

tion (or other time-domain quantities, such as running mean empirical variance) while spectral methods

are based on the discrete Fourier transform coe�cients of the observed data. In the context of fractional

processes, spectral methods have been shown very convenient and powerful. We will describe in this

section the various problems, speci�c tools and methodology of spectral estimation.

6



3.1 The periodogram

The oldest and most natural tool of spectral estimation is the periodogram. Given an observation

X

1

; � � � ; X

n

, the ordinary discrete Fourier transform (DFT) and the periodogram are respectively de�ned

as

d

X

n

(x) = (2�n)

�1=2

n

X

t=1

X

t

e

itx

; (7)

I

X

n

(x) = jd

X

n

(x)j

2

= (2�n)

�1

�

�

n

X

t=1

X

t

e

itx

�

�

2

: (8)

It is well known that the periodogram ordinates of a standard Gaussian white noise evaluated at Fourier

frequencies x

k

= 2k�=n, 1 � k � ~n := [(n � 1)=2] form a sequence of i.i.d. r.v. distributed as standard

exponentials. This property no longer holds when the process X is not a Gaussian white noise. However,

under miscellaneous "weak dependence" conditions, it holds that

� the periodogram is an asymptotically unbiased estimate of the spectral density, i.e. E [I

X

n

(x

k

)] =

f(x

k

) +O(n

�1

), 1 � k � [(n� 1)=2], where the O(n

�1

) term is uniform in k,

� the periodogram ordinates are asymptotically uncorrelated, cov(I

X

n

(x

k

); I

X

n

(x

l

)) = O(n

�1

), for

1 � k 6= l � [n=2], where the O(n

�1

) is uniform in k; l,

� For any given u, and any u-tuple of distinct integers (k

1

; k

2

; � � � ; k

u

),

I

n

(x

k

1

)=f(x

k

1

); � � � ; I

n

(x

k

u

)=f(x

k

u

are asymptotically independent standard exponentials.

Note that the latter property is no longer true when considering an increasing number of Fourier frequen-

cies.

For fractional long-memory processes (0 < d < 1=2, x

0

= 0), K�unsch (1986) [36] and later Hurvich

and Beltrao (1993) [24] proved that none of the above mentioned properties remain valid. Indeed for a

fractional process with spectral density verifying (2), for �xed 1 � k < j � ~n, it holds that

lim

n!1

jE [I

n

(x

k

)=f(x

k

)]� 1j 6= 0; (9)

lim

n!1

jcov(I

n

(x

k

)=f(x

k

); I

n

(x

j

)=f(x

j

))j 6= 0: (10)

See Hurvich and Beltrao (1993) [24], Lemma xx for an expression of these limits. Note that because the

spectral density can be either in�nite (d > 0) or zero (d < 0) at zero, it is more appropriate to consider the

"normalized" periodogram, i.e. the raw periodogram normalized by the inverse of the spectral density. (9)

shows that the bias (generally) does not vanish for large n. Nevertheless, under appropriate conditions,

one may show (see section 9) that there exists a sequence r(f ; k) verifying for all n, and all 1 � k � ~n,

jE [I

n

(x

k

)=f(x

k

)]� 1j � r(f ; k)

and such that lim

k!1

r(f ; k) = 0, which means that the bias is small for frequencies su�ciently far

away from zero. Similarly, (10) shows that the normalized periodogram ordinates are not asymptotically
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uncorrelated. However, as shown e.g. by Robinson (1995) [47] or Moulines and Soulier (1999) [41],

under appropriate technical conditions, there exists a sequence r(f ; k; j) such that, for all n and all

1 � k < j � ~n,

jcov(I

n

(x

k

)=f(x

k

); I

n

(x

j

)=f(x

j

))j � r(f ; k; j):

The fact that this bound does not vanish for large n makes the derivations more intricate, but what really

matters is that, one can still obtains bounds such as

X

1�k<j�~n

r(f ; k; j) = o(n

�

);

for some relevant � > 0.

Finally, for any given u, and any u-tuples (k

1

; k

2

; � � � ; k

u

), the r.v. [I

n

(x

k

1

)=f(x

k

1

); � � � ; I

n

(x

k

u

)=f(x

k

u

)]

converges in distribution to

(Z

2

1

+ Z

2

2

)=2; (Z

2

3

+ Z

2

4

)=2; � � � ; (Z

2

2u�1

+ Z

2

2u

)=2

where Z := (Z

1

; Z

2

; � � � ; Z

2u

) is a zero-mean multivariate Gaussian vector with non-singular (non diago-

nal) covariance matrix �(k

1

; � � � ; k

u

) (see Deo (1997) [11], corollary 3 for an expression of this matrix).

3.1.1 Tapering

In some situations, it is required to have a better control of the bias term or the covariance term: a

classical way to achieve this objective in spectral analysis is to use a data taper, i.e. to apply a taper

on the observed data prior to computing the discrete Fourier transform. Another motivation to use a

taper is to deal with (possibly) over-di�erentiated processes, i.e. time-series for which d can be less that

�1=2: such values of the fractional di�erencing coe�cients can be observed as a consequence of a pre-

processing consisting in di�erencing the original time-series in order to combat either non-stationarity

in the data (e.g. fractionally integrated time-series) or the presence of polynomial trends. Such an

approach has already been suggested by Hurvich and Ray (1995) [31], Velasco (1999) [52, 53, 54] and

Hurvich and Chen (1999) [27] (see also Deo and Hurvich (1999) [28] who show that tapering can be

helpful for estimating the mean of a potentially over-di�erenced long-memory time-series)

1

.

Let (h

t;n

)

1�t�n

be a triangular array of complex numbers. The tapered discrete Fourier transform

and the tapered periodogram of (X

1

; � � � ; X

n

) are respectively de�ned as

d

X

h;n

(x) := (2�

n

X

t=1

jh

t;n

j

2

)

�1=2

n

X

t=1

h

t;n

X

t

e

itx

and I

X

h;n

(x) := j!

n

(x)j

2

: (11)

Velasco (1999) [52, 53, 54] has considered several tapering schemes such as the cosine bell taper and the

Kolmogorov tapers. Hurvich and Chen (1999) [27] have considered a novel family of data taper depending

on a single control parameter p, referred to as the taper order. This family of tapers is speci�ed as follows.

De�ne

h

t;n

= 1� e

2i�(t�1=2)=n

1

When the G-frequency x

0

6= 0, this type of behavior may occur as a consequence of �ltering the observed data with a

�lter having a zero at e

�jx

0
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and, for any integer p � 0, the tapered DFT of order p

d

X

p;n

(x) := (2�na

p

)

�1=2

n

X

t=1

h

p

t;n

X

t

e

itx

; I

X

p;n

(x) := jd

X

p;n

(x)j

2

(12)

where the subscript p (with a slight abuse of notation) denotes the taper order and a

p

:= n

�1

P

n

t=1

jh

t;n

j

2p

=

�

2p

p

�

is the normalization constant. Note that, contrary to most commonly used data tapers, this taper

is complex-valued. For p = 0, the ordinary periodogram (8) is obtained. De�ne for p 2 N, D

p;n

(x)

the normalized kernel function D

p;n

(x) := (2�na

p

)

�1=2

P

n

t=1

h

t;n

exp(itx). It follows from elementary

calculations that

D

p;n

(x) = (2�na

p

)

�1=2

p

X

k=0

(

p

k

) (�1)

k

exp(�ik�=n)D

n

(x+ x

k

): (13)

where D

n

(x) :=

P

n

t=1

e

�ixt

denotes the Dirichlet kernel. The latter relation implies that D

p;n

(x

k

) = 0 for

k 2 f1; � � � ; [(n�2p�1)=2]g, so that the tapered Fourier transform is invariant to shift in the mean. This

invariance is achieved without the need to restrict attention to a coarse grid of Fourier frequencies, as is

necessary for the Kolmogorov taper applied to the original (non-di�erentiated) time-series (see Velasco

(1999) [52]). As shown in Hurvich and Chen (1999) [27], the "decay rate" of the kernel in the frequency

domain increases with the kernel order. This property means that high-order kernel are more e�ective

to control leakage, which is of utmost importance when dealing with non-invertible (over-di�erentiated)

series. For p = 0, DFT ordinates of white noise at any two Fourier frequencies are uncorrelated. This

property is unfortunately lost by tapering. For p � 1, the correlation of the DFT ordinates of a white

noise sequenceX

1

; � � � ; X

n

at Fourier frequencies x

k

, x

j

, 1 � k < j � [n=2] does not vanish for (j�k) � p.

3.1.2 Pooling

When considering non linear transformations of the periodogram (such as the log-periodogram), it is

appropriate to consider the pooled periodogram, as introduced by Hannan (1970) [20] and later used

by Robinson (1995) [47]. Pooling consists in computing running averages of periodogram values along

blocks of size m, prior to applying the non-linear transformation. In order to guarantee independence

of the tapered periodogram ordinates, for a data taper of order p, we will pool m > p successive values

of the periodogram, and we drop, at the end of the block, p discrete Fourier transform coe�cients.

More precisely, de�ne K(m;n; p) = [(n=2 � p)=(m + p � 1)] and for k 2 f1; � � � ;K(m;n; p)g, J

m;p;k

=

f(m+ p� 1)(k � 1) + 1; � � � ; (m+ p� 1)(k � 1) +mg. The pooled periodogram is de�ned as

�

I

m;p;n;k

=

X

j2J

m;p;k

I

X

p;n

(x

j

):

For p � 1 and m � 2, the distribution of

�

I

m;p;n;k

is not a central chi-square, even when (X

1

; � � � ; X

n

)

is a white Gaussian noise. In such case however, it is possible to determine the distribution of

�

I

m;p;n;k

exactly. It follows from (13) that

d

X

p;n

(x

k

) = a

�1=2

p

p

X

j=0

�

p

j

�

(�1)

j

exp(�ij�=n)U

n;k+j

:

where U

n;l

:= d

X

n

(x

l

). The r.v.'s U

n;l

are complex Gaussian with zero mean and, for 0 � j; l � ~n,

E [U

n;j

�

U

n;l

] = (2�)

�1

�

j;l

and E [U

n;j

U

n;l

] = 0, where � is the Kronecker symbol. Hence, we have, for

9



1 � l; j � ~n, E [d

X

p;n

(x

l

)d

X

p;n

(x

j

)] = 0, E [d

X

p;n

(x

j

)

�

d

X

p;n

(x

l

)] = 0, if jl � jj > p and

E [d

X

p;n

(x

j

)

�

d

X

p;n

(x

l

)] = (2�)

�1

a

�1

p

(�1)

l�j

p�l+j

X

u=0

�

p

j�l+u

�

(

p

u

) exp(�i((l � j) + 2u)�=n)

=: &

p;n

(l � j) (14)

if jl�jj � p. When X := (X

k

)

k2Z

is a white Gaussian noise,

�

I

m;p;n;k

is distributed as kW

m;p;n

k

2

=2 where

W

m;p;n

= [W

(1)

m;p;n

;W

(2)

m;p;n

; � � � ;W

(2m)

m;p;n

] is a 2m-dimensional zero-mean Gaussian vector with covariance

matrix �

m;p;n

, with entries [�

n;m;p

]

u;v

, 1 � u; v � 2m de�ned as

[�

m;p;n

]

2u�1;2v�1

= [�

m;p;n

]

2u;2v

= &

p;n

(u� v)=2; (15)

[�

n;m;p

]

2u�1;2v

= [�

m;p;n

]

2u;2v�1

= 0: (16)

where we have set &

p;n

(t) = 0 for t � p. It is worthwhile to note that this covariance matrix does not

depend on the frequency index k and that, as n goes to in�nity, �

n;m;p

converges to �

m;p

de�ned as in

(15) with

&

p

(v) = lim

n!1

&

n;p

(v) = (2�)

�1

a

�1

p

(�1)

v

p�v

X

u=0

�

p

v+u

�

(

p

u

) = (2�)

�1

a

�1

p

(�1)

v

�

2p

p+v

�

:

Hence, the r.v. W

m;p;n

converges in distribution to W

m;p

, where W

m;p

is a zero-mean multivari-

ate Gaussian r.v. with covariance �

m;p

and, by the continuous mapping theorem,

�

I

m;p;n;k

converges

in distribution to kW

m;p

k

2

=2. We will use the following notations. Let � be a function such that

E j�(kW

m;p

k

2

=2)j

2

<1. De�ne



m;p;n

(�) = E [�(kW

m;p;n

k

2

=2)]; �

2

m;p;n

(�) = var[�(kW

m;p;n

k

2

=2)]; (17)



m;p

(�) = E [�(kW

m;p

k

2

=2)]; �

2

m;p

(�) = var[�(kW

m;p

k

2

=2)]: (18)

For p = 0, and �(x) = log(x) it is well known that 

m;0

(�) =  (m) and �

2

m;0

(�) =  

0

(m) where

 (z) = �

0

(z)=�(z) is the digamma function (see for instance Johnson and Kotz (1970) [33]). In the sequel,

since we will mainly state results for the logarithm, we denote 

m;p

:= 

m;p

(log) and �

2

m;p

:= �

2

m;p

(log)

(resp. 

m;p;n

and �

m;p;n

).

3.2 Semiparametric estimation

In the semi-parametric setting, a full parametric model is not speci�ed for the spectral density f of the

observed process X , but the parameter of interest is �nite dimensional. In the context of fractional

processes, the most important semiparametric problem is the estimation of the fractional di�erencing

parameter d and of the G-frequency when unknown. f

�

is then considered as an in�nite dimensional

nuisance parameter.

A very classical way to obtain a semiparametric estimator is to consider an increasing family of

parametric models �

p

, p 2 N

�

, and for a given sample size n, to �t a parametric model of size p

n

, where

p

n

is an increasing sequence of integers. This type of method yields simultaneously an estimator of the

spectral density (and of any functional thereof) over the whole frequency range [��; �]. These methods

are therefore referred to as global methods. The di�culty of such methods is to �nd a criterion to choose p

n

10



from the data, a problem known as model selection. In the previous section, several parametric models

were descirbed. There are many ways to estimate e�ciently (or with a reasonable loss of e�ciency)

parameters of a parametric model. It is well known however that there are speci�c contrast functions

which are particularly well suited to a parametric model (see e.g. Taniguchi (1987) [50]). The parametric

models of fractional processes described above include in particular the fractional autoregressive (FAR),

which is a particular case of the ARFIMA model, and the fractional exponential model (FEXP). For

these models, the natural contrast functions are respectively Whittle's contrast and the logarithmic

contrast. These contrast functions de�ne minimum contrast estimators (orM -estimators) by minimizing

an empirical contrast function :

� ! K

n

(�) = n

�1

[(n�1)=2]

X

i=1

k(f

�

(x

i

); I

n

(x

i

)); (19)

where f

�

is the spectral density corresponding to the value of the parameter �, and k(u; v) = log(u)+v=u

in the case of Whittle's contrast and k(u; v) = (log(u)� log(v))

2

in the case of the logarithmic contrast.

Whittle's contrast is well suited to �nite order non fractional AR models when the parameters are the

coe�cients of the regression. In the case of a FAR process, the minimization procedure is not so simple,

but still reasonably complex, see section 5.1 below. The logartihmic contrast yields an estimator which

is extremely simple for a �nite order FEXP process when the parameters to estimate are d and the

coe�cients of the trigonometric polynomial de�ning the spectral density (cf. (3)), since it has a linear

explicit expression with respect to the log-periodogram ordinates, see section 5.2 below.

When the only parameter of interest is d, the drawback of global methods is that they may seem

to imply unnecessary assumptions on the spectral density. Since, for instance, in the case of a known

fractional pole at zero, d determines the behaviour of f at zero, it seems natural to try to obtain a

consistant estimator of d without any prior knowledge about f outside an arbitrarily small neighborhood

of zero. These methods are therefore referred to as local methods. Whittle's contrast yields the Gaussian

semiparametric estimator (GSE) proposed by K�unsch (1987) [37] and the logarithmic contrast yields the

GPH estimator of Geweke and Porter-Hudak (1983) [14]. (see sections 4.1 and 4.2 below).

4 Semi-parametric spectral estimation of d : local methods

The so-called local methods aim at constructing estimators that are consistent without any restrictions

on f

�

(x) away from zero, apart from integrability on [��;+�]. The range of applications of local methods

will thus by nature be limited to the estimation of the fractional di�erencing coe�cient d and, incidentally,

to the estimation of f

�

(0). Since the behavior of the spectral density is speci�ed only in a neighborhood

of the zero frequency, local estimators use only periodogram ordinates belonging to this neighborhood.

The idea of using local techniques has been initiated in the early work of Geweke and Porter-Hudak

(1983) [14], who proposed to estimate d by regressing �2d log(x) + C on the �rst M

n

log-periodogram

ordinates (where M

n

is a non-decreasing sequence), leading to the so-called GPH estimator, which is

most famous estimator of the fractional di�erencing coe�cient. K�unsch (1987) [37] later introduced the

so-called Gaussian semi-parametric estimator (GSE), which is a local version of the discrete form of the

Whittle likelihood. Other, but less popular local methods include the averaged periodogram, proposed

by Robinson (1994) [44], (see also, Lobato, 1997 [39]), the smoothed periodogram estimate, introduced by

Reisen (1994) [43], and the log-spectral density regression estimators (see Aza��s and Lang, 1999, [38]). We

will describe in detail the GSE and the GPH estimators, and will briey review other methods proposed

11



in an already vast literature.

4.1 The Gaussian semi-parametric estimator

The discrete local Whittle contrast function is de�ned as

Q

M

(C; d) =M

�1

M

X

k=1

(

log(Cj1� e

ix

k

j

�2d

) +

I

X

p;n

(x

k

)

Cj1� e

ix

j

j

�2d

)

(20)

whereM :=M

n

, the trimming number, is a non-decreasing sequence such that lim

n!1

(M

�1

n

+M

n

=n) =

0. Note that, since I

X

p;n

(x

k

), for 1 � j � [(n�1)=2] is invariant to shift in the mean, the Whittle contrast

function also is invariant, which is a signi�cant advantage in the long-memory context. The integral form

of the Whittle likelihood, which is not mean-shift invariant, is thus not used. Compared to the exact

form Whittle' contrast fucntion (19), the two main di�erences are (i) the range of the sum is f1; � � � ;Mg,

i.e. only the Fourier frequencies in a neighborhood of the zero frequency are taken into account, and (ii)

the spectral density is replaced by its equivalent at zero. Note that pooling is irrelevant since Whittle's

contrast is based on a linear functional of the periodogram.

Replacing in (20) the unknown constant C by its estimate

^

C

M

(d) (obtained for a given value of d),

^

C

M

(d) =M

�1

M

X

j=1

I

p;n

(x

j

)j1� e

ix

j

j

2d

yields the following pro�le likelihood

R(M ; d) := Q

M

(

^

C

M

(d); d) = log

0

@

M

�1

M

X

j=1

j1� e

ix

j

j

2d

I

p;n

(x

j

)

1

A

+ dM

�1

M

X

j=1

g(x

j

): (21)

Let [�

1

;�

2

] �]�p�1=2; 1=2[ be a closed interval of admissible estimates of d (note that the lower bound

depends on the kernel order p; see below). �

1

and �

2

can be chosen arbitrarily close to �p� 1=2 and

1=2 or can reect a priori knowledge on d. For instance, �

1

> �1=2 precludes non-invertibility. The

local Whittle estimator of d is de�ned as the value of d 2 [�

1

;�

2

] which minimizes (21).

^

d

GSE

p

(M) := arg min

�

d2[�

1

;�

2

]

R(M;

�

d): (22)

This can be done by searching this minimum over a grid, or by using any form of one-dimensional

minimization algorithms.

4.2 The GPH estimator

Consider the pooled periodogram

�

I

m;p;n;k

(see section 3.1.2), and de�ne

Y

k

= log(

�

I

m;p;n;k

)� 

m;p;n

; (23)

12



Given a trimming number M , the local log-periodogram regression estimator is de�ned as the minimum

of the local least-squares criterion,

(

^

d

GPH

M

; ĉ

M

)) = argmin

�

d;�c

M

X

k=1

(Y

k

�

�

dg(y

k

)� �c)

2

; (24)

where

y

k

:= (2k � 1)�=2K(m; p; n); 1 � k � K(m; p; n); (25)

g(x) = �2 log j1� e

ix

j = 2

1

X

j=1

cos(jx)

j

: (26)

Contrary to the GSE estimator, (24) can be solved in close form

^

d

GPH

m;p

(M) =

M

X

k=1

�

k

(M)Y

k

; (27)

with �

k

(M) =

(g(y

k

)� �g

M

)

P

M

k=1

(g(y

k

)� �g

M

)

2

; and �g

M

=

M

X

k=1

g(y

k

): (28)

Note that this estimator is also mean-shift invariant. This estimator was �rst introduced (with p = 0,

m = 1) by Geweke and Porter-Hudak (GPH) (1983) [14].

4.3 Other local estimators

4.3.1 The average periodogram

The averaged periodogram method, introduced by Robinson (1994a) [44] (see also Lobato (1997) [39] for

multi-dimensional extensions) also is based upon the idea of regressing the low-frequency periodogram

ordinates. The approach is however slightly di�erent because it is based on an estimate of a statistics

referred to as the averaged periodogram,

^

F

p;n

(x) =

2�

n

[nx=2�]

X

j=1

I

X

p;n

(x

j

) (29)

Note again that F

p;n

(x) is mean-shift invariant. There are many available statistical results on the

averaged periodogram, including pointwise converge (for �xed x), and functional weak limit theorem of

Donsker's type (on [0; �]). Most of these results assume that X

t

is weakly dependent (e.g. having spectral

density which is smooth and bounded). Robinson (1994a) [44] shows that (with p = 0, 0 < d < 1=2)

provided that

f(x) = L(1=x)x

�2d

; x! 0

+

(30)

where L is a slowly-varying function at in�nity, and additional conditions on the dependence and the

heterogeneity of the white noise sequence in the Wold's representation of the process X

t

, that

^

F

0;n

(x

M

)=F (x

M

)!

P

1 (31)

13



where

F (x) :=

Z

x

0

f(u)du

and M is a sequence such that M

�1

+Mn

�1

! 0 as n!1. It may be conjectured that this result still

holds when p � 1. Eq. (30) implies that

F (x) ' L(1=x)x

1�2d

1� 2d; x! 0

+

Thus, L(x

�1

M

)x

1�2d

M

=(1� 2d) can be substituted for the denominator in (31), whenever needed. Observe

that the previous relation implies, for any q > 0,

F (qx)

F (x)

' q

1�2d

L(q

�1

x

�1

)=L(x

�1

) ' q

1�2d

; x! 0

+

The form of the slowly-varying function L need not be speci�ed, which is an advantage when compared

to both the local Whittle and the GPH estimators. This suggests the following estimator

^

d

p;n

= 0:5�

log(

^

F

p;n

(qx

M

)=

^

F

p;n

(x

M

))

2 log(q)

Note that this estimator is location and scale invariant. It is shown in Robinson (1994a) [44] (Theorem

3, pp. 532) that this estimator is consistent for 0 < d < 1=2 (with p = 0). Lobato and Robinson (1996)

[40] have shown that this estimator is asymptotically normal for 0 < d < 1=4, but has non-Gaussian limit

for 1=4 < d < 1=2, with a rate convergence depending on the unknown parameter d. This is a serious

drawback in practice.

4.3.2 Smoothed log-periodogram regression

Reisen [43] and Aza

�

is et Lang (1993,1999) [38] suggested to replace in the GPH estimator the periodogram

by a "smoothed" estimate of the spectral density. Reisen proposed to use a Blackman-Tukey type estimate

of the spectral density

^

f

M

(x) =

1

2�

M

X

s=�M

k(s=M)�̂(s) cos(sx) (32)

where k(u) is the so-called lag-window generator, a �xed continuous even function in the range �1 �

u � 1, with k(0) = 1 and k(�u) = �k(u) and �̂(s) are the sample (biased) autocovariance coe�cients,

de�ned as

�̂(s) = n

�1

n�j� j

X

t=1

(X

t

�

�

X)(X

t+�

�

�

X)

with

�

X = n

�1

P

n

t=1

X

t

. The parameter M (usually referred to as the truncation point or the window

bandwidth) is a function of n (the sample size), chosen such that, as n!1, m=n! 0. Reisen (1994) [43]

suggested to use a Parzen lag window generator (which has the property to produce positive estimates

of the spectral density).
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Aza

�

is and Lang (1993,1999) suggested, instead of using (32), to use a Daniell type estimate of the

spectral density,

^

f

M

(x) :=

X

k

K((x� x

k

)=M)I

p;n

(x

k

) (33)

whereK(u) is the (frequency-domain) lag-window generator andM is the window bandwidth, also chosen

in such a way that M

�1

+M=n! 0. Using either (32) or (33), estimators of the spectral density can be

obtained at frequencies, say 0 < z

1;n

� z

2;n

� � � � � z

L;n

. The value L and the frequencies z

1;n

; � � � ; z

L;n

must verify: L � 2 and lim

n!1

z

L;n

= 0 , but can otherwise be chosen arbitrarily.

Reisen (1994) [43] suggested to set z

i;n

= x

i

, and L such that L

�1

+ L=n ! 1 (much like for the

GPH estimator). In a limited Monte-Carlo experiment, Reisen (1994) showed that the smoothed estimator

compares favorably with the raw GPH estimator (m = 1), for a set of zero-mean ARFIMA(1; d; 0) and

ARFIMA(0; d; 1) processes. Reisen (1994) discusses the consistency and the asymptotic normality of this

estimator, but his arguments are mainly heuristics and do not appear to amount to a proof.

Aza��s and Lang (1993,1999) [2, 38] recommended to use M = 2 and proved the consistency and

asymptotic normality of their semi-parametric estimator in the Gaussian case. It must be noted that

even though this estimator might be of little practical use, it was the �rst for which an asymptotic theory

was rigorously established. We will not discuss these estimators further.

5 Semi-parametric spectral estimation of d : global methods

The local Whittle and the GPH estimators have global counterparts. Instead of estimating d and f

�

(0)

on a vanishing neighborhood of zero frequency, global estimators jointly estimate d and f

�

over [��; �].

Examples of global methods include the FAR estimator introduced by Bhansali and Kokozska (1999) [34],

and the FEXP estimator, proposed by Robinson (1994) [45] and investigated independently by Moulines

and Soulier (1999) [41] and Hurvich and Brodsky (1997) [26]). These estimators share the common

feature, in contrast with local estimators, that they provide simultaneously a non-parametric estimator

of the spectral density f .

5.1 The FAR estimator

The FAR estimator is obtained by �tting a �nite order fractional autoregressive process (FAR(q)) and

letting the order increase with the sample size. Any estimator of the parameters of an autoregressive

process could be used in principle, but the most natural one is Whittle's estimator. We follow here the

construction of Kokoszka and Bhansali who consider stationary invertible linear process and thus do

not make use of tapers, and consider the integral form of Whittle's contrast. To state the results more

precisely, let

F = f� = (d; b

0

; b

1

; � � � ) : jdj < 1=2;

1

X

j=0

jb

j

j <1g: (34)
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De�ne

f(�; x) = j1� e

ix

j

�2d

�

�

�

X

1

j=0

b

j

e

ix

�

�

�

�2

; (35)

G(�) =

Z

�

��

I

n

(x)

f

�

(x)

dx: (36)

f

�

is the spectral density of a process X which admits the following representation

(I �B)

d

X = Y; Y

t

=

1

X

j=0

b

j

Y

t�j

+ Z

t

; t 2 Z;

where Z is a white noise (Z is the innovation sequence of Y , provided that b(z) := 1 �

P

1

i=1

b

i

z

i

6= 0

for jzj � 1). Denote �

2

the innovation variance. The FAR(p) estimator of the di�erencing coe�cient

(and, as a by-product, of the spectral density) is then de�ned by minimizing Whittle's contrast over the

�nite FAR models of order p. For � = (d; b

0

; b

1

; � � � ) 2 F, denote �(q) = (d; b

0

; b

1

; � � � ; b

q

; 0; 0; � � � ), the

truncation of � of order q, and let E be a compact subset of F such that the true parameter �

0

is an

interior point of E. De�ne

^

�(q) = argminfG(�(q)); � 2 Eg;

�̂

2

(q) = G(

^

�(q)):

If q is �xed, then this estimator is not consistent except if the true model has a �nite order smaller than

q. Now, letting the truncation order q = q

n

increase to in�nity, yet slowly enough so that consistent

estimates of the AR coe�cients can be obtained, one can expect to construct a consistent sequence of

estimators of d and of the spectral density. Here, the choice of the trimming number is replaced by the

selection of a truncation point (i.e. by model selection).

Note that the criterion G(�(q)) is non-convex. However, for a �xed value of d,

�

b(q) := (

�

b

0

; � � � ;

�

b

q

)! G(d;

�

b

0

; � � � ;

�

b

q

)

is convex and, using any standard convex optimization procedure, one can obtain

^

b(d; q) = (

^

b

0

(d); � � � ;

^

b

q

(d)) = arg min

�

b

0

;��� ;

�

b

q

G(d;

�

b

0

; � � � ;

�

b

q

)

Plugging this estimate into G(d;

�

b(q)) yields the following pro�le likelihood

d! G(d;

^

b(d; q))

which can now be minimized over a one-dimensional grid.

5.2 The FEXP estimator

Like the GPH estimator, the FEXP estimator is based on log-periodogram regression. The principle of

the FEXP estimator is to estimate simultaneously d and the coe�cients of a truncated expansion of log f

�

on the cosine basis. These coe�cients are often referred to as the cepstrum coe�cient in the time-series

16



literature. We use the following conventions. De�ne h

0

= 1=

p

2� and h

j

(x) = cos(jx)=

p

�, j � 1 and,

assuming that f

�

is positive over [��; �],

�

j

=

Z

�

��

h

j

(x) log(f

�

(x))dx: (37)

Write now l

�

: log(f

�

) =

P

q�1

j=0

�

j

h

j

+ l

�

q

, with

l

�

q

= log(f

�

)�

q�1

X

j=0

�

j

h

j

=

1

X

j=q

�

j

h

j

: (38)

The in�nite series in the rhs of (38) is well de�ned if

P

1

j=0

j�

j

j < 1. The log-periodogram regression

estimates of d and of �

0

; � � � ; �

q

are given by

(

^

d

FEXP

m;p

(q);

^

�

0

; � � � ;

^

�

q�1

) = arg min

�

d;

�

�

0

;��� ;

�

�

q�1

K

X

k=1

�

Y

k

�

�

dg(y

k

)�

q�1

X

j=0

�

�

j

h

j

(y

k

)

�

2

: (39)

Compared with the FAR estimator, which requires the minimization of a non-convex function, the

FEXP estimator is substantially simpler, because the estimators in (39) can be expressed in close

form as a linear combination of the "observations" Y

k

. To give the explicit expression of

^

d

FEXP

m;p

(q),

some additional notations are needed. De�ne the following norm on R

K

(m; p; n) (see section 3.1.2) :

kuk

n

= 2�K(m; p; n)

�1

P

K

k=1

(m; p; n)u

2

k

, let < :; : >

n

denote the associated scalar product and identify

any function � with the vector (�(y

1

); � � � ; �(y

K(m;p;n)

)). Let H

q;n

be the orthogonal projector on the

q-dimensional linear subspace of R

K

spanned by the vectors [h

0

; � � � ; h

q�1

]. Note that these vectors are

orthonormal w.r.t the scalar product < :; : >

n

. Denote

~g

�

q

:= g �H

q;n

g = ~g

�

q

= g �

q�1

X

j=0

< g; h

j

>

n

h

j

; and ~

q

= k~g

�

q

k

2

n

: (40)

Denote �nally Y

n

= (Y

1

; � � � ; Y

K(m;p;n)

)

T

. It is then easily seen that

^

d

FEXP

m;p

(q) =

< ~g

�

q

;Y

n

>

n

~

q

=

2�

K~

q

K(m;p;n)

X

k=1

~g

�

q

(y

k

)Y

k

: (41)

A noteworthy computational adavantage of the FEXP estimator over the FAR estimator is that when d

is the sole parameter of interest, it is not necessary to evaluate

^

�

0

; � � � ;

^

�

q�1

to determine d

FEXP

m;p

(q) (the

complexity of this algorithm is thus considerably smaller than that of the FAR estimator).

6 Asymptotic theory in the case of a single pole at zero

6.1 Assumptions

In the sequel, it is assumed that X = (X

t

)

t2Z

admits a linear representation with respect to a weak

white noise sequence Z = (Z

t

)

t2Z

such that E [Z

0

] = 0 and E [Z

2

0

] = 1, i.e. there exists a sequence of real
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numbers (a

j

)

j2Z

such that

P

j2Z

a

2

j

<1 and

X

t

= �+

1

X

j=�1

a

j

Z

t�j

: (42)

Note that X is a Gaussian process if and only if Z is a Gaussian white noise. Eq. (42) is equivalent to

the existence of the spectral density of X which then reads

f(x) = (2�)

�1

ja(x)j

2

;

where a(x) :=

P

j2Z

a

j

e

ijx

is de�ned in L

2

([��; �]; dx). This class of processes is still too large and must

be restricted to three subclasses. Gaussian processes, linear processes in the strict sense i.e. with respect

to an i.i.d. sequence and linear processes with respect to a fourth order stationary martingale increment

sequence.

(A1) The processus X (or equivalently Z) is Gaussian.

(A2) Z is a sequence of i.i.d. random variables with �nite moments up to the fourth-order and there

exists a real r � 1 such that

Z

1

�1

jE [e

itZ

0

]j

r

dt <1: (43)

This integrability condition is a strengthening of the so-called Cramer condition (see, e.g. Bhattacharya

and Rao [6]). This condition ensures in particular that, for n � r, d

Z

n

(x

k

) has a density w.r.t the Lebesgue

measure, and thus that the periodogram I

Z

n

(x

k

) is, for n � r and all k, almost surely positive.

(A3) Z is a martingale increment sequence, i.e. E[Z

k

jF

k�1

] = 0 where F

k

= �(Z

l

; l � k) the �ltration

of the process Z. Moreover,

E [Z

2

k

jF

k�1

] = 1; a.e. (44)

E [Z

3

k

jF

k�1

] := �

3

; a.e. (45)

E [Z

4

k

] := �

4

+ 3; (46)

where �

4

denotes the 4th-order cumulant of Z. We now state assumptions allowing to derive moment

bounds for the approximation of the normalized periodogram I

X

p;n

(x

k

)=f(x

k

) by the periodogram of the

white noise sequence I

Z

p;n

(x

k

) := (2�a

p

)

�1=2

P

n

t=1

h

p

t;n

Z

t

exp(�itx

k

) and moment bounds for normalized

DFT coe�cients d

X

p;n

(x

k

)=

p

f(x

k

). These assumptions are conveniently stated in terms of the function

a

�

de�ned by

a

�

(x) = j1� e

ix

j

d

a(x): (47)

The following rather weak assumption has been originally proposed in Robinson (1995) [47] and has since

been used in many contributions. It is conveniently expressed in terms of a functional class.
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De�nition 1 For � > 1 and 0 < � � �, let L

�

(�; �) be the class of square integrable functions a

�

on

[��; �], positive and continuous on [��; �] and such that for all 0 < jxj; jyj � �,

max

0�z��

ja

�

(z)j

min

0�z��

ja

�

(z)j

� �; (48)

ja

�

(x) � a

�

(y)j

min

0�z��

ja

�

(z)j

� �

jy � xj

jxj ^ jyj

: (49)

De�nition 2 For � > 1, � > 1 and 0 < � � �, let L

�

(�; �; �) be the class of square integrable functions

a

�

on [��; �], positive and continuously di�erentiable on [��; �] and such that (48) holds and for all

0 < jxj; jyj � �,

ja

�

(x) � a

�

(y)� (x � y)a

�

0

(x)j

min

0�z��

ja

�

(z)j

� �

jy � xj

�

(jxj ^ jyj)

�

(50)

Finally, an assumption of a di�erent nature is needed to obtain bounds on the bias of the estimators of d.

This assumption is naturally written in terms of the function f

�

de�ned in (1), which can be expressed

here as f

�

= ja

�

j

2

, since the bounds for the bias depend on the distribution of the process only through

f

�

. It is convenient to de�ne functional classes on which uniform bounds for the bias can be obtained.

We consider two di�erent classes. The �rst one is tailored to obtain uniform bounds for local estimators.

For � > 0, C

1

> 1, C

2

> 0 and � 2 (0; �], de�ne

F

�

(�;C

1

; C

2

; �) =

�

f

�

: C

�1

1

� jf

�

(0)j � C

1

; 8x 2 [0; �]; jf

�

(x) � f

�

(0)j � C

2

jxj

�

	

: (51)

The bias of the FEXP estimator is naturally controlled by the rate of decay of the Fourier coe�cients of

log(f

�

). Let w be a decreasing sequence and de�ne the following class :

G

�

(w) =

�

f

�

: f

�

(x) = expf

X

1

j=0

�

j

h

j

(x)g; 8q � 0;

1

X

j=q

j�

j

j � w(q):

	

: (52)

Two examples of sequences w are of interest. For � > 0 and L > 0, let w

�;L

(p) = L(1+p)

�

. It can be easily

seen that G

�

(w

�;L

) � F

�

(�;C

1

; C

2

; �)) with C

1

= e

4=�

and C

2

= 8e

4=�

=�. De�ne now v

;L

(p) = Le

��

.

for  > 0 and L > 0. The class G

�

(v

;L

) is of special interest since the spectral density of any causal stable

and invertible ARMA processes is contained in such class. More precisely, the class G

�

(w

;L

) contains

the spectral densities of all ARMA processes with spectral density f

�

(x) = jP (e

ix

)=Q(e

ix

)j

2

where P

and Q are polynomials with no common root and no root inside the disk with radius e



. Note that for a

suitable value of �, the following inculsion hold.

8� > 1;8L > 0; G

�

(w

�;L

) � L

�

(�; �); (53)

8� > 3=2;8L > 0; G

�

(w

�;L

) � L

�

(�; 2; �); (54)

8 > 0;8L > 0; G

�

(v

;L

) � L

�

(�; 2; �): (55)

6.2 Weak convergence

In this section, we review the limiting distribution of some of the estimators presented in the previous

section. We will restrain the study of the local estimators to the GSE and the GPH estimator.
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6.2.1 Gaussian semi-parametric estimator

The consistency and asymptotic normality of the Gaussian semi-parametric estimator (GSE) have been

established by Robinson (1995b) [46], for stationary invertible process �1=2 < d < 1=2 with no data

taper (p = 0). Velasco (1999) [52] established asymptotic normality of the non-tapered version of the

GSE estimator for d 2 [0:7; 0:75), and explained why the theory breaks down when d exceeds 3=4.

This served to motivate either

� tapering, and more speci�cally the use of speci�c data tapers in the Kolmogorov class, following

the suggestion by Velasco (1999) [52]; the problem with this approach stems from the fact that the

e�ciency loss incurred from using these tapers may be quite substantial.

� di�erencing and tapering, as suggested by Hurvich and Ray (1995) [31] and Hurvich and Chen (1999)

[27]. This solution leads to a certain ination in the variance, yet this increase is moderate. This is

the approach considered in this contribution. The problem is equivalent to estimate the di�erencing

coe�cient of a potentially over-di�erentiated, and thus not invertible, time-series. Hurvich and

Chen, 1999 shows consistency and asymptotic normality with p = 1 for �3=2 < d < 1=2 (or

�1=2 <

~

d < 3=2 prior to di�erencing).

Note again that since the GSE is based on linear functionals of the periodogram, pooling is irrelevant.

Theorem 1 Assume that X is a process such that (A3), a

�

2 L

�

(�; �) for some � > 1 and � 2 (0; �]

and �p� 1=2 < d < 1=2. Assume that

lim

n!1

(M

�1

+M

2�=(2�+1)

log

1=�

(M)n

�1

) = 0: (56)

Then,

p

M(

^

d

GSE

p

(M)� d) is asymptotically zero-mean Gaussian with variance �(p)=4.

The values of �(p) are given in Hurvich and Chen (1999) [27].

6.2.2 GPH estimator

We now study the GPH estimator.

^

d

GPH

m;p

(M)�d is naturally decomposed between a stochastic term and

a bias term as follows.

^

d

GPH

m;p

(M)� d =

M

X

k=1

�

k

(M)�

k

+

M

X

k=1

�

k

(M) log(f

�

(y

k

)=f

�

(0))

:= �

m;p

(M) + b

M

(f

�

); (57)

where �

k

are de�ned in (28) and

�

k

:= log(

�

I

m;p;n;k

)� 

m;p;n

: (58)
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�

m;p

(M) is a stochastic uctuation term, whereas b

M

(f

�

) is the bias caused by the approximation of f

�

by a constant. The asymptotic theory for the GPH estimator thus follows from weak convergence of the

stochastic term �

m;p

(M) and from a bound for the bias b

M

(f

�

). The former requires assumptions on the

distribution of the process X while the latter requires an assumption on f

�

.

Theorem 2 Let p be an integer. Assume (A2), f

�

2 F

�

(�;C

1

; C

2

; �), �p� 1=2 < d < 1=2 and

lim

n!1

(M

�1

+M

2�+1

n

�2�

) = 0: (59)

If X is non Gaussian, assume in addition that m � 4. Then

p

M(

^

d

GPH

m;p

(M) � d) is asymptotically

zero-mean Gaussian with variance �

2

m;p

=4.

Remarks

� Theorem 2 improves on Robinson (1995) [47] Velasco (1999) [53] in the following way.

1. The regularity condition on f

�

is minimal. Robinson (1995) [47] Theorem 3 requires that

f

�

2 L

�

(�; �) for some � > 0 to obtain bias and covariance bounds which yield the central

limit theorem. However, it is possible to avoid this assumption by adapting the proof using

bounds similar to Eqs. (3.5)-(3.6) in Giraitis, Robinson and Samarov (1997) [15] and Lemmas

3.1 and 3.2 in Giraitis, Robinson and Samarov (2000) [16].

2. Theorem 3 in Robinson (1995) [47] is stated with a lower trimming number, which must go to

in�nity at a certain rate. This was suggested by K�unsch (1986) [36], in view of the bias and

the correlation of the periodogram ordinates at low-frequencies. It has now been shown that

this lower trimming is not necessary. Hurvich, Deo and Brodsky (1998) [29], Theorem 2, also

do not make use of the lower trimming number, but at the cost of the unnecessary assumption

that f

�

is twice di�erentiable at zero.

3. The use of Hurvich's taper allows to consider non invertible (or equivalently, non station-

ary) processes, whereas Theorem 3 in Robinson (1995) [47] is stated for stationary invertible

processes.

4. We also improve on Velasco (1999) [53] since we require only a �nite number of moments on

the innovation sequence Z.

� Note that (59) implies that M !1 as n!1. It is noteworthy that asymptotic normality holds

for

^

d

GPH

m;p

(M) no matter how slowlyM tends to in�nity. The conditionM

1+2�

n

�2�

! 0 guarantees

that the squared bias is negligible compared to the variance of the uctuation term.

� The variance in the limiting distribution does not depend on d or any other unknown parameters,

so Theorem 2 is simple to use to construct asymptotic con�dence intervals.

6.2.3 The FAR estimator

The asymptotic theory for the FAR estimator is still incomplete. Kokoszka (1999) and Bhansali [34]

have proved the consistency and conjectured the asymptotic normality of the FAR estimator when the

coe�cients of the AR representation of the short-memory component of the spectral density, (b

j

)

j2N

decay exponentially fast, i.e. jb

j

j � C�

j

, with � < 1.
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Theorem 3 (Kokoszka (1999) and Bhansali [34] Theorem 3.1) Let E be a compact subset of F

and assume that the true parameter �

0

is an interior point of E. Assume also that, there exists C < 1

and � < 1 such that ja

j

j � C�

j

. Let q be an non-decreasing sequence such that lim

n!1

(q

�1

+n

�1

q) = 0.

Then the

^

d

FAR

is consistent sequence of estimator of d.

6.2.4 The FEXP estimator

The FEXP estimtor

^

d

FEXP

m;p

(q) admits a similar decomposition as the GPH estimator.

^

d

FEXP

m;p

(q) = d+ �

m;p

(q) + b

q

(f

�

); (60)

with (see (41) and (58) for notations)

�

m;p

(q) =

2�

K~

q

K

X

k=1

~g

�

q

(y

k

)�

k

;

b

q

(f

�

) =

2�

K~

q

K

X

k=1

~g

�

q

(y

k

)l

�

q

(y

k

):

The FEXP estimator has been studied over a much wider class of spectral densities than the FAR

estimator. The minimal condition to obtain a bound for the bias of the FEXP estimator is the summability

of the cepstrum coe�cients (�

j

)

j2N

.

Lemma 1 (Iouditsky, Moulines and Soulier (1999), Proposition 1) De�ne

�

�

q

=

1

X

j=q

j�

j

j: (61)

There exists a constant & <1 such that for all q � K=2,

jb

q

(f

�

)j � (1 + &q=K)�

�

q

=(2

p

�):

Here, we state two theorems, because the assumptions for Gaussian and non-Gaussian processes are

di�erent. More precisely, a weaker assumption on a

�

is su�cient when the process is Gaussian.

Theorem 4 Assume that X is a Gaussian process with spectral density given by (1) f

�

2 L

�

(�; �) and

�p � 1=2 < d < 1=2 . If the Fourier coe�cient of l

�

= log(f

�

) are absolutely summable and if q is a

non-decreasing sequence of integers such that

lim

n!1

(q

�1

+ q log

5

(n)n

�1

) = 0; (62)

lim

n!1

p

n=q

1

X

k=q

j�

j

j = 0; (63)

then

p

n=q(

^

d

FEXP

m;p

(q)� d) is asymptotically zero-mean Gaussian with variance m�

2

m;p

.
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Theorem 5 Assume (A2), a

�

2 L

�

(�; �; �) for some � > 1, and �p � 1=2 < d < 1=2. If the Fourier

coe�cient of l

�

= log(f

�

) are absolutely summable and if q is a non-decreasing sequence of integers such

that (62) and (63) hold, then

p

n=q(

^

d

FEXP

m;p

(q) � d) is asymptotically zero-mean Gaussian with variance

m�

2

m;p

.

6.3 Minimax Estimation

From a theoretical point of view, a usual way to assess the quality of a semi- or non-parametric estimator is

through its minimax properties. In the minimax approach, the performance of an estimator are evaluated

w.r.t to aminimax lower bound. When dealing with the estimation of the fractional di�erencing coe�cient,

such lower bounds are de�ned as follow. Let R be an admissible risk function, i.e.

R

X

(

^

d

n

; d) = E

X

[c(

^

d

n

� d)]

where c is a positive bowl-shaped loss function, E

X

is the expectation under the law of process X , and

^

d

n

is any estimator based on X

1

; � � � ; X

n

. Let P be a given class of processes i.e. P is a set of laws de�ned

on a probability space. L

n

is a lower bound for (R;F) if

L

n

� inf

^

d

n

sup

X2P

R

X

(

^

d

n

; d):

where the in�mum inf

^

d

n

is taken over all possible estimators

^

d

n

of d based on fX

1

; � � � ; X

n

g and the

supremum is evaluated over all processes in the class P . An estimator

^

d

n

which attains this bound up to

a constant,

lim sup

n!1

sup

X2P

R

X

(

^

d

n

; d)

L

n

<1

is said to be minimax rate-optimal. It is called minimax e�cient if it attains the exact bound,

lim sup

n!1

sup

X2F

R

X

(

^

d

n

; d)

L

n

= 1:

For the quadratic loss function, such minimax lower bounds have been found for functional classes of

spectral densities related to the local methods by Giraitis, Robinson and Samarov (1997) [15] and for

functional classes related to the FEXP estimator by Iouditsky, Moulines and Soulier (1999) [32]. In

both case, the tapered log-periodogram regression estimator (

^

d

GPH

m;p

and

^

d

FEXP

m;p

) has been proved to be

asymptotically minimax rate optimal for stationary possibly non-invertible processes (�p�1=2 < d < 1=2)

Gaussian processes. Soulier (1999) [49] has proved minimax rates of convergence for the quadratic risk

of the spectral density.

6.3.1 Minimax lower bounds

Theorem 6 (Giraitis Robinson and Samarov (1997), Theorem 1) Let �;� > 0, C

1

� 1, C

2

> 0

and � � 0, � > 0. There exists a constant c > 0 such that,

lim inf

n

inf

^

d

n

sup

���d��

sup

f

�

2F

�

(�;C

1

;C

2

;�)

P

d;f

�

�

n

�=(2�+1)

j

^

d

n

� dj � c

�

> 0; (64)
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where the in�mum inf

^

d

n

is taken over all possible estimators d based on fX

1

; � � � ; X

n

g of a covariance

stationary process fX

t

g

t2Z

with spectral density f = e

dg

f

�

.

Remarks

� Having in mind an optimality result for the GPH estimator, it is very important that the rate

n

2�=(2�+1

depends neither on � nor � since the GPH estimator can be shown to be rate optimal

only if d is bounded from below and bounded away from 1=2.

� (64) is equivalent to the following minimax lower bound for the quadratic of any estimator of d.

lim inf

n

inf

^

d

n

sup

���d��

sup

f2F

�

(�;C

1

;C

2

;�)

n

�2�=(2�+1)

E

d;f

�

[(

^

d

n

� d(f))

2

] > 0: (65)

We now give the minimax lower bounds for the classes G

�

(w

�;L

) and G

�

(v

;L

). Bounds for more general

classes are given in Iouditsky, Moulines and Soulier (1999).

Theorem 7 (Iouditsky, Moulines and Soulier (1999) [32], Theorem 1) Let � > 0,  > 0, L >

0, � > 0 and � > 0. There exists a positive constant c such that

lim inf

n

inf

^

d

n

sup

���d��

sup

f

�

2G

�

(w

�;L

)

n

2�=(2�+1)

E

d;f

�

[(

^

d

n

� d)

2

] � c; (66)

lim inf

n

inf

^

d

n

sup

���d��

sup

f

�

2G

�

(v

;L

)

n log

�1

(n)E

d;f

�

[(

^

d

n

� d)

2

] � 1=2; (67)

where the in�mum inf

^

d

n

is taken over all possible estimators of d based on fX

1

; � � � ; X

n

g of a covariance

stationary process fX

t

g

t2Z

with spectral density f = e

dg

f

�

.

Remark The inclusion G

�

(w

�;L

) � F(�;C

1

; C

2

; �) (for appropriate values of C

1

; C

2

) shows that the

bound (64) is actually implied by (66).

We now consider the estimation of the spectral density f . In a context of weak dependence, i.e.

d = 0, it is pertinent to assess the performance of an estimator

^

f

n

by its L

2

risk E

f

[kf�

^

f

n

k

2

L

2

]. Minimax

bounds in that framework have been given by Efroimovich and Pinsker (1982) [12]. In the context of

fractional processes, the spectral density is not necessarily square integrable, but its logarithm is, so a

natural choice for the risk of an estimator

^

l

n

of l = log(f) is kl�

^

l

n

k

2

n

, where the norm k:k

n

is de�ned in

section 5.2. We must introduce another functional class. De�ne

S

�

(�; L) = ff

�

: f

�

expf

1

X

j=0

�

j

h

j

g;

1

X

j=0

(1 + j)

2�

�

2

j

� L

2

g:

Theorem 8 (Soulier (1999) [49], Theorem 1) Let � > 0,  > 0, L > 0, � > 0 and � > 0. There

exists a positive constant c such that

lim inf

n

inf

^

l

n

sup

���d��

sup

f

�

2S

�

(�;L)

n

2�=(2�+1)

E

d;f

�

[k

^

l

n

� lk

2

n

] � c; (68)

lim inf

n

inf

^

d

n

sup

���d��

sup

f

�

2G

�

(v

;L

)

n log

�1

(n)E

d;f

�

[k

^

l

n

� lk

2

n

] � 2�=; (69)
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where the in�mum inf

^

l

n

is taken over all possible estimators of l = log(f) based on fX

1

; � � � ; X

n

g of a

covariance stationary process fX

t

g

t2Z

with spectral density f = e

dg

f

�

.

6.3.2 Upper bounds

The GPH estimator and the FEXP estimator can both be expressed in the following way :

^

d

m;p

(q) = �

m;p

(q) + b

q

(f

�

):

where q is the upper trimming number (denoted M above) in the case of the GPH estimator, and the

truncation number in the case of the FEXP estimator. When f

�

belongs to one of the functional classes

introduced above, it has been shown that the leading term in the variance of the stochastic term is the

same as in the case of a white noise, i.e.

�

2

q

= �

2

m;p

K

X

k=1

�

2

n;k

(q);

(cf. Giraitis, Robinson and Samarov (1997,2000) [16, 16], Moulines and Soulier (1999) [41] and Iouditsky,

Moulines and Soulier (1999) [32]). It is easily seen that q�

2

q

is uniformly (with respect to n) bounded

and that for each n, �

2

q

is strictly decreasing in the case of the GPH estimator and strictly increasing

in the case of the FEXP estimator. In the minimax framework discussed above, it is assumed that f

�

belongs to some functional class, say F

�

. If a uniform bound, say v

q

, is available for the bias term b

q

(f

�

),

i.e. for all f

�

2 F

�

, jb

q

(f

�

)j � v

q

and if moreover v

q

is either non decreasing or non increasing with

respect to q (for a given n, the dependence in n being implicit), then theoretical best choice for q is thus

the one that balances the variance �

2

q

and the squared bias v

2

q

: the sequence q

n

must be chosen such

that c

�1

� lim inf

n

�

q

n

v

q

n

� lim sup

n

�

�1

q

n

v

q

n

� c for some real c > 1. Such a choice yields the following

uniform bound for the mean square error of

^

d(q

n

).

lim sup

n

X

���d��

sup

f

�

2F

�

�

�1

q

n

E

d;f

�

[(

^

d(q

n

)� d)

2

] � C:

We now illustrate this method for the GPH and the FEXP estimators.

Rate optimality of the GPH estimator First we state a theorem that generalizes Theorem 2 of

Giraitis, Robinson and Samarov (1997) [15] to the non invertible case.

Theorem 9 Let � > 0 and p � 0, � 2 (0; �]. Let � 2 (0; p+ 1=2) and � 2 (0; 1=2). Consider the GPH

estimator

^

d

GPH

m;p

(q

n

) with M

n

= [n

2�=(2�+1)

].

lim sup

n

sup

���d��

sup

f

�

2F

�

(�;C

1

;C

2

;�)

n

2�=(2�+1)

E

d;f

�

[(

^

d

GPH

m;p

(M

n

)� d(f))

2

] �

�

C(�;C

1

; C

2

; �;�):

where E

d;f

�

denotes the expectation with respect to the distribution of a Gaussian process with spectral

density e

dg

f

�

.
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Rate optimality of the FEXP estimator

Theorem 10 (Iouditsky, Moulines and Soulier (1999) [32]) Let � > 1,  > 0, L > 0, � > 0 and

0 < � < 1=2. De�ne q

n

(�; L) = [(Ln)

1=(1+2�)

] and q

n

() = [log(n)=2].

lim sup

n

sup

��<d<�

sup

f

�

2G

�

(w

�;L

)

n

2�=(2�+1)

E

d;f

�

[(

^

d

FEXP

m;p

(q

n

(�; L))� d)

2

] �

�

C(�; �;�)L

1=(2�+1)

; (70)

lim

n!1

sup

��<d<�

sup

f

�

2G

�

(�

;L

)

log

�1

(n)E

f

[(

^

d

FEXP

m;p

(q

n

())� d)

2

] = m�

2

m;p

=2; (71)

where E

d;f

�

denotes the expectation with respect to the distribution of a Gaussian process with spectral

density e

dg

f

�

.

Remarks

� Note that when p = 0, �

2

m;0

=  

0

(m). Since m 

0

(m) tends to 1 as m tends to in�nity, (71) implies

that the lim inf in (67) is actually a limit and is equal to 1=2.

� (70) can be extended to the case � < 1 if the supremum is restricted to functions f

�

2 L

�

(�; �).

The constant on the right-hand side of (70) in that case also depends on �.

� Here again, it is possible to deal with over-di�erenced time-series, by using tapers. The resulting

estimators are still rate optimal but the loss of e�ciency m�

2

m;p

in the analytic case does not tend

to 1 as m tends to in�nity for �xed p � 1.

The FEXP estimator provides also an estimator of the spectral density. More precisely, de�ne

^

l

FEXP

m;p

(q) =

^

d

FEXP

m;p

(q) +

q�1

X

j=0

^

�

j

h

j

: (72)

The next theorem states its rate optimality (cf. Moulines and Soulier (2000) [42] and Soulier (1999) [49]).

Theorem 11 Let � > 1,  > 0, L > 0, � > 0 and 0 < � < 1=2. De�ne q

n

(�; L) = [(Ln)

1=(1+2�)

] and

q

n

() = [log(n)=2].

lim sup

n

sup

��<d<�

sup

f

�

2S

�

(�;L)

n

2�=(2�+1)

E

d;f

�

[kl�

^

l

FEXP

m;p

(q)k

2

n

] �

�

C(�; �;�)L

1=(2�+1)

; (73)

lim

n!1

sup

��<d<�

sup

f

�

2G

�

(�

;L

)

log

�1

(n)E

d;f

�

[kl�

^

l

FEXP

m;p

(q)k

2

n

] = 2�m�

2

m;p

=; (74)

where E

d;f

�

denotes the expectation with respect to the distribution of a Gaussian process with spectral

density e

dg

f

�

.

Remarks

� As for the estimation of d, a consequence of theorems 8 and 11 is that in the case p = 0, the liminf

in (68) is actually a limit, and the FEXP estimator is quasi e�cient.
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� It is remarkable that in the analytic class G

�

(�

;L

), the minimax rate of convergence is the same

for the estimation of d and of log(f), whereas for � > 1=2, the inclusion S

�

(�; L) � G

�

(w

��1=2;L

)

shows that the minimax rate of convergence for the estimation of d is slower than the minimax rate

of convergence for the estimation of log(f). This situtation is similar to the problem of pointwise

or global estimation of a density.

7 Model selection for the estimation of d

The problem of the minimax approach of the previous section is that it provides unfeasible estimators.

Thus automatic selection procedures are needed for the choice of the trimming number in local methods

or for the truncation number in the FEXP estimator or the FAR estimator. Based on simulations, Geweke

and Porter-Hudak (1983) [14] suggested that M = K

1=2

be used as an upper trimming number for the

GPH estimator, and this choice has been since widely adopted in the literature. As can be seen from

theorem 9, this choice is not asymptotically optimal, and even practitioners may prefer a theoretically

founded choice. Traditional approaches have been proposed for the selection of the upper trimming

number of local estimators : plug-in methods (Henry and Robinson (1996) [21], Hurvich and Deo (1999)

[28]), frequency-domain cross-validation (Hurvich and Beltrao (1994) [25]). For the estimation of log(f),

Moulines and Soulier (2000) [42] have proved a certain type of asymptotic optimality of a selection

procedure based on Mallows' C

p

statistics for the FEXP estimator. These traditional approaches, even

when not purely heuristically justi�ed lack a rigorous measure of accuracy for the estimators they are

used to built. For instance, the plug-in procedure of Hurvich and Deo (1999) provides a choice of an

"optimal" trimming number

^

M

n

such that ifM

opt

n

asymptotically minimizes the mean square error of the

GPH estimator, then lim

n!1

(M

opt

n

=

^

M

n

) = 1, but this result could be said irrelevant since the relevant

objective should be for instance to bound E [(

^

d

GPH

m;p

(

^

M) � d)

2

]. In sharp contrast, the relatively recent

theory of adaptive estimation, initiated among others by Lepski (1990) proposes a very simple method

for automatically selecting from the data the parameters of a semi- or non-parametric estimator (such

as the trimming number M in the GPH estimator or the truncation order q in the FEXP estimator). In

the context of the estimation d, this method yields

� a bound for the mean square error of

^

d(q̂) for a given spectral density that is equal to the optimal

mean square error for this spectral density, possibly up to a logarithmic factor; this property is

referred to as adaptivity to the target function;

� a uniform bound the mean square error of

^

d(q̂) over classes of spectral densities which is usually

the minimax rate for these classes, up to a logarithmic factor; this logarithmic loss can usually be

proved unavoidable in absence of prior knowledge on the functional class. This property is referred

to as adaptivity in the minimax sense.

We will mainly focus on the description of this method in the next section and briey present the

traditional plug-in methods in sections 7.2 and 7.3 below.
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7.1 Adaptive estimation of the fractional di�erencing coe�cient

Consider an estimator of d such that

^

d(q) can be decomposed in a stochastic uctuation term �(q) and a

bias term b

q

(f

�

). This situation is generic, but is more speci�cally adapted to the case of the GPH and

FEXP estimators. Assume that E [�

2

(q)] = �

2

q

(1+ o(1)) where the term o(1) is uniform with respect to q

(i.e. tends to zero uniformly wrt q as the sample size n increases), and �

2

q

is either non increasing or non

decreasing. In order to handle the GPH and the FEXP estimators at the same time, we will consider that

in both case, the variance �

2

q

is decreasing. This amounts to a reparametrization of the FEXP estimator.

Let � be a positive real number (the value of which will be given later). A truncation index q is said

admissible if

8q

0

< q; j

^

d(q

0

)�

^

d(q)j � �

p

log(n)�

q

0

:

q̂ is then de�ned as the largest admissible integer, and the adaptive estimator is

^

d(q̂).

In order to assess the performance of the adaptive estimator, we introduce a deterministic sequence

of integers q

�

n

(f

�

) (depending upon the spectral density under consideration) that satis�es the following

properties.

8q � q

�

n

(f

�

); jb

n;q

(f

�

)j �

p

log(n)�

q

: (75)

(75) means that it is not required that the sequence q

�

n

(f

�

) balances the squared bias and variance.

Rather, the bias term is allowed to exceed the variance by a logarithmic factor. The aim of this method

is to prove that under certain technical conditions, q̂ is greater than q

�

n

(f

�

) with a high probability. We

now state precisely these technical conditions and the theorem they allow to prove on the mean square

error of the adaptive estimator.

(T1) Let � 2 (0; 1=2) and let F

�

be a functional class. For all p � 1, there exists a constant C(�;F

�

; p)

such that for all jdj � �, all f

�

2 F

�

and all q � q

�

n

(f

�

),

E

d;f

�

[�

2p

n;q

] � C

p

(�;F

�

; p)�

p

q

:

(T2) F

�

is a functional class such that there exists a constant C(F

�

) such that

8f

�

2 F

�

; 8q � q

�

n

(f

�

); jb

n;q

(f

�

)j � C(F

�

):

(T3) Let � 2 (0; 1=2), � > 0 and let F

�

be a functional class. There exists a constant C(�;F

�

) and an

integer N(�;F

�

; �) such that for all n � N(�;F

�

; �), q � q

�

n

(f

�

), and for all jdj � � and f 2 F

�

),

P

d;f

�

�

j�

n;q

j > (�=2� 1)

p

log(n)�

q

�

� C(�;F

�

)n

�(�=2�1)

2

=2(1+�)

:

The functional class is introduced to allow for both kinds of adaptivity described above. If adaptivity to

the target function is seeked, then the class F

�

can be restricted to a single function f

�

. If adaptivity

in the minimax sense is the objective, then the class F

�

should be, on the contrary, chosen as large as

possible.
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Theorem 12 Let � 2 (0; 1=2). Let F

�

be a functional class and for each f

�

2 F

�

, let q

�

n

(f

�

) be a

sequence of integers such that (75), (T1), (T2) and (T3) hold. Then if � > 6, there exists a constant

C(�;F

�

; �) such that for large enough n (depending on �, F

�

and �), and for all f 2 F

�

,

E

d;f

�

[(

^

d(q̂)� d)

2

] � (1 + �)

2

�

2

q

�

n

(f

�

)

log(n) + C(�;F

�

; �)n

�1

:

Remarks

� It must be stressed that the sequence q

�

n

(f

�

) is only used to assess the performance of the adaptive

estimator

^

d(q̂). The dependence in f

�

is also stressed, since it means that

^

d(q̂) is adaptive to the

target function. The bound for the mean square error depends only on f

�

, but not on any prior

assumption on this function, except the minimal ones that allow the derivation of (T1)-(T3).

� Since �

q

is non increasing, then q

�

n

(f

�

) should be chosen as the greatest integer such that (T2) and

(T3) hold. Whenever possible, q

�

n

(f

�

) must be chosen such that �

2

q

�

n

(f

�

)

balances b

2

n;q

�

n

(f

�

)

(f

�

) log(n)

and the adaptive estimator then balances the squared bias and variance for a given spectral density,

up to a logarithmic factor. This is usually the best that can be achieved by an adaptive estimator

over a functional class, as is illustrated in the next subsections.

� The exponential inequality (T3) is obviously the hardest of the three tools to obtain. In the context

of log-periodogram regression, such an inequality has been proved only for Gaussian processes and

using a taper of order at least one, under both intermediate (d � 0) and long memory (d >

0) conditions. Thus the range of application of Theorem 12 is implicitly restricted to Gaussian

processes. The technique to obtain such an inequality was �rst presented in Giraitis, Robinson and

Samarov (2000) and adapted to the form (T3), by Iouditsky, Moulines and Soulier (1999).

� The value of � is optimal given the technique of proof. It could not be improved even if the

regression noise was actually i.i.d. zero-mean Gaussian with known variance. The di�erence would

be that � could be chosen exactly equal to 6 instead of strictly greater and that the bound would

not depend on the class F

�

and would be valid for all n. If an upper bound is assumed for q

�

n

(f

�

),

as is the case in Giraitis et al. then � can be chosen smaller. This is not advisable however, if one

wants the estimator to be really adaptive, that is with the least possible prior knowledge about f

�

.

This result is illustrated in the next sections for the GPH and the FEXP estimator.

7.1.1 Adaptive GPH estimator

If f

�

belongs to a class F

�

(�;C

1

; C

2

; �) for some unknown � > 0, Lemma 3.1 and 3.2 in Giraitis,

Robinson and Samarov (2000) [16] can be adapted to prove that (75), (T1), (T2) and (T3) hold with

M

�

n

= M

�

n

(�) = [K(�;C

1

; C

2

)n

2�=(2�+1)

], for some constant K(�;C

1

; C

2

). This yields the following

corollary.

Corollary 1 Let p be a positive integer, � 2 [0; p + 1=2), � 2 (0; 1=2), � > 0, C

1

> 1, C

2

> 0 and

� 2 (0; �]. There exists a constant

�

C :=

�

C(�

�

; �

�

; �;�; �) suxh that

lim sup

n

sup

�

�

����

�

n

2�=(2�+1)

log(n)

sup

���d��

sup

f

�

2F

�

(�;C

1

;C

2

;�)

E

d;f

�

[(

^

d

GPH

m;p

(

^

M)� d)

2

] �

�

C;
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where E

d;f

�

denotes here the expectation with respect to the distribution of a Gaussian process with spectral

density e

dg

f

�

.

In Giraitis, Robinson and Samarov (2000) [16], another adaptive version of the GPH estimator has been

proposed, speci�cally adapted to this family of functional classes. Instead of comparing the estimators

based on arbitrary values of m, without any prior assumption on the type of functional class to which f

�

belongs as done here, it is assumed that f

�

does belong to some F

�

(�;C

1

; C

2

; �). Estimators based on

values M() = n

2=(2+1)

where  belongs to a grid of width 1= log(n) are compared to obtain a value

^

�

which can be interpreted as an estimator of the true smoothness. This adaptive estimator achieves the rate

(log

2

(n)=n)

2�=(2�+1)

if f

�

actually belongs to the class F

�

(�;C

1

; C

2

; �). Thus the estimator of Giraitis,

Robinson and Samarov (2000) [16] is better than the one presented here when � < 1=2, but worse when

� > 1=2. The advantage of one construction over the other for this speci�c family of functional classes is

thus not decisive. What could be considered as a decisive advantage of the construction presented here

is that it is intrinsic and is independent of any prior knowledge about the smoothness of f

�

, and even

if it is assumed that f

�

belongs to some class F

�

(�;C

1

; C

2

; �), then the estimator does not depend on

prior bounds �

�

and �

�

for �, whereas the construction in Giraitis, Robinson and Samarov (2000) [16]

explicitly depends on �

�

and �

�

. For instance, if the true f

�

belongs to F

�

(�;C

1

; C

2

; �) for some � > �

�

,

the estimator presented here will achieve the rate log(n)=n

2�=(2�+1)

, whereas the rate of convergence of

the GRS estimator would be limited at (log

2

(n)=n)

2�

�

=(2�

�

+1)

. However, both estimators fail to achieve

the following lower bound, proved in Giraitis, Robinson and Samarov (2000) [16].

Theorem 13 (Giraitis, Robinson and Samarov (2000), Theorem 2.1) For any � > 0, �

�

> �

�

>

0, C

1

> 1, C

2

> 0, � > 0, and � � 1=2, there exists a positive constant C := C(�

�

; �

�

; C

1

; C

2

; �;�) such

that

lim inf

n

inf

�

d

n

sup

d

sup

�

�

����

�

(n= log(n))

2�=(2�+1)

sup

f

�

2F

�

(�;C

1

;C

2

;�)

E

d;f

�

[(

�

d

n

� d)

2

] � C;

where the in�mum inf

�

d

n

is taken over all possible estimators

�

d

n

of d based on n observations fX

1

; � � � ; X

n

g

of a covariance stationary process (X

t

)

t2Z

with spectral density f = e

dg

f

�

with �� � d � � and

f

�

2 F

�

(�;C

1

; C

2

; �).

Thus the conjecture remains open to prove that this bound is actually the adaptive minimax rate of

convergence. To prove that this conjecture holds true, one should exhibit an adaptive estimator that

achieves the rate (log(n)=n)

2�=(2�+1)

when f

�

actually belongs to the class F

�

(�;C

1

; C

2

; �).

It seems plausible that the rate (log(n)=n)

2�=(2�+1)

is the exact adaptive rate of convergence, but

Lepski's method, as it is implemented here, cannot yield an adaptive estimator that attains this rate for

the following heuristic reason. As mentioned earlier, the choice of

^

M by Lepski's method does not result

in the balance of the variance and squared bias, since the bias is allowed to exceed the variance by a

logarithmic factor. The problem here is that the covariance bounds for the noise sequence �

n;k

obtained

uniformly over the class F

�

(�;C

1

; C

2

; �) (which seems di�cult to improve) include a term which is of the

same order of magnitude as the bias term. This means that any increase in the bias results in the same

increase in the variance, and thus the goal of Lepski's method cannot be achieved for this class. From

a technical point of view, the rate (log(n)=n)

2�=(2�+1)

could be achieved if the exponential inequality

(T3) did hold with m

�

n

� n

2�=(2�+1)

(log(n))

1=(2�+1)

. For the same technical reasons mentioned above,

that can be clearly understood by looking at the proof of Lemma 3.2 in Giraitis, Robinson and Samarov

(2000) [16], this cannot be achieved uniformly over the class F

�

(�;C

1

; C

2

; �).
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We now introduce a restricted functional class on which the rate (log(n)=n)

2�=(2�+1)

can be achieved.

For � > 0, C

1

> 1 and C

2

> 0, de�ne

H

�

(�;C

1

; C

2

; �) =

�

f

�

: C

�1

1

� f

�

(0) � C

1

;8x; y 2 [��; �]; j

f

�

(x)� f

�

(y)

f

�

(0)

j � C

2

jx� yj

�

	

:

This Lipschitz condition of order � allows to improve on Lemma 3.1 of Giraitis, Robinson and Samarov

(2000) [16] so that (75), (T1), (T2) and (T3), hold for H

�

and m

�

n

= n

2�=(2�+1)

(log(n))

1=(2�+1)

. Thus

we have the following upper bound.

Corollary 2 Let p be a positive integer, � 2 [0; p + 1=2), � 2 (0; 1=2), � > 0, C

1

> 1, C

2

> 0 and

� 2 (0; �]. There exists a constant

�

C :=

�

C(�

�

; �

�

; �;�; �) suxh that

lim sup

n

sup

�

�

����

�

(n= log(n))

2�=(2�+1)

sup

���d��

sup

f

�

2H

�

(�;C

1

;C

2

;�)

E

d;f

�

[(

^

d

GPH

m;p

(

^

M)� d)

2

] �

�

C;

where E

d;f

�

denotes here the expectation with respect to the distribution of a Gaussian process with spectral

density e

dg

f

�

.

Even though the strict inclusion H

�

(�;C

1

; C

2

; �) � F

�

(�;C

1

; C

2

; �) holds, the lower bound of Theorem

2.1 of Giraitis, Robinson and Samarov (2000) [16] is still valid.

Theorem 14 For all �

�

> �

�

> 0, � 2 (0; 1=2), � > 0, C

1

> 1 and C

2

> 0, there exists a constant C

such that

lim inf

n

sup

�

�

����

�

inf

�

d

(n= log(n))

2�=(2�+1)

sup

���d��

sup

f

�

2H

�

(�;C

1

;C

2

;�)

E

d;f

�

[(

�

d

n

� d)

2

] � C:

Thus the adaptive GPH estimator is adaptive rate optimal over the classes H

�

(�;C

1

; C

2

; �).

7.1.2 Adaptive FEXP estimator

For clarity, we �rst rede�ne the selection procedure using the appropriate notations. Let �

K

= log

4

(K).

An integer q < �

K

K is admissible if

for all q < r � �

K

K; j

^

d

FEXP

m;p

(r) �

^

d

FEXP

m;p

(q)j � �

p

log(K)�

r

;

where here �

2

q

= 4�m�

2

m;q

=n~

q

. Let q̂ be the smallest admissible integer. The adaptive estimator is thus

^

d

FEXP

m;p

(q̂). It has been proved in Iouditsky, Moulines and Soulier that (75), (T1), (T2) and (T3) hold

for f

�

2 L

�

(�; �) and q

�

n

(f

�

) de�ned as follows :

q

�

n

(f) = maxfq : 1 � q � K; �

q

p

log(K) � �

�

q

g+ 1; (76)

where �

�

q

is de�ned in (61). In this context, Theorem 12 yields
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Corollary 3 Let p be a positive integer, let � 2 (0; 1=2), � 2 [0; p+ 1=2) and 0 < �

�

< �

�

<1. There

exists a constant

�

C :=

�

C(�

�

; �

�

; L

�

; �;�) such that

lim sup

n

sup

���d��

sup

�

�

����

�

sup

0<L<L

�

sup

f

�

2G(w

�;L

)

(n= log(n))

2�=(2�+1)

E

d;f

�

[(

^

d

FEXP

m;p

(q̂)� d)

2

] �

�

C;

lim sup

n

sup

���d��

sup

�

�

����

�

sup

0<L<L

�

sup

f2G

�

(v

�;L

)

n

log

2

(n)

E

d;f

�

[(

^

d

FEXP

m;p

(q̂)� d)

2

] �

�

C;

where here again E

d;f

�

denotes expectation with respect to the distribution of a Gaussian process with

spectral density e

dg

f

�

.

[42])

7.2 Plug-in method for the GPH estimator

We briey present in this section the rsults of Hurvich, Deo and Brodsky (1998) [29] and Deo and Hurvich

(1999) [28]. The pooled, non tapered periodogram is considered, so the results only apply to the range

�1=2 < d < 1=2. The plug-in method is based on an expansion of the mean square error of the GPH

estimator under the assumption that f

�

is three times di�erentiable in a neighborhood of 0. Under this

assumption, if lim

n!1

(M

�1

+M log(M)n

�1

) = 0, then

E [(

^

d

GPH

m;0

(M)� d)

2

] =

4�

4

81

�

f

�

00

(0)

f

�

(0)

�

2

M

4

K

4

+

m 

0

(m)

4M

+O

�

M log

3

(M)

n

�

+O

�

M

4

n

4

�

+ o

�

1

m

�

: (77)

Neglecting the remainder term in the mean squared error, assuming that f

�

00

(0) 6= 0, and minimizing

with respect to M yields the asymptotically optimal choice for M ,

M

opt

= CK

4=5

; C :=

�

81m 

0

(m)

64�

4

�

1=5

�

f

�

00

(0)

f

�

(0)

�

2=5

(78)

Since M

opt

depends on the behavior of the unknown function f

�

at zero, the plug-in method consists in

estimating

^

C of C. Since f , hence f

�

is even, a Taylor expansion of log(f

�

) at zero yields

log f

�

(y

k

) = log f

�

(0) + (�=2)y

2

k

+ y

3

k

R(y

k

) (79)

where � := �f

�

00

(0)=f

�

(0) and R(y

k

) is uniformly bounded in the neighborhood of the origin. This

suggests to estimate � as the third coe�cient in an ordinary linear regression of Y

n;k

on a regression

matrix with columns (1; g(y

k

); y

2

k

=2), 1 � k � Lg, where L = min(AK

�

;K), for some arbitrary constant

A and 0 < � < 1. From lemma 1 in Hurvich and Deo [28], it can be infered that � should be set

equal to 6/7, yielding a consistent estimator

^

� of �. Using this value, a consistent estimator of C is

^

C =

�

81m 

0

(m)

64�

4

�

1=5

^

�. This estimator of

^

C can then be used to construct a regression estimator

^

d

GPH

^

M

,

with

^

M =

^

CK

4=5

, but there is no theoretical result (such as an evaluation of the mean square error) to

justify this choice.

7.3 Plug-in estimator for Gaussian semi-parametric estimator

In the case of the Gaussian semiparametric estimator (and for similar reasons in the case of the FAR

estimator), there are as yet no satisfactory method of choosing the trimming numberM , the main reason

32



being that the GSE is implicitly de�ned. The only selection method presented in the litterature is

the plug-in method of Henry and Robinson (1996) [21] which mimicks the construction of the plug-in

bandwidth estimate for the GPH. We briey resume here the heuristics of this approach. It is suggested

to approximate the bias of the GSE by

16�

2

9

f

�00

(0)

f

�

(0)

M

2

n

2

and the variance by 4=M . Balancin the approximate

square bias and variance yields the following tentative value of the optimal bandwidth,

M

opt

= Cn

4=5

; C =

�

3

4�

�

4=5

�

f

�

(0)

f

�

00

(0)

�

2=5

This optimal bandwidth is similar to the one derived for the GPH estimator, and a consistent estimator

of C can be obtained along the same lines as in section 7.2.

8 Poles with unknown location

In this section, we briey describe the problem and the existing partial answers of semi-parametric

estimation of the fractional di�erencing parameter and of the G-frequency when the G-frequency is

unknown. More precisely, let X be a stationary process with spectral density f that writes

f(x) = j1� e

i(x�!

0

)

j

�d(!

0

)

j1� e

i(x+!

0

)

j

�d(!

0

)

f

�

(x); (80)

where 0 < d(!

0

) < 1 if !

0

2 (0; �) and 0 < d(!

0

) < 1=2 if !

0

2 f0; �g. and f

�

is an even positive

continuous 2�-periodic function on [��; �]. The notation d(!

0

) stresses the fact that the G-frequency !

0

is now considered as unknown. In this context, the �rst problem is to �nd a consistent estimator of the

G-frequency !

0

and preferably, to have one with the best possible rate of convergence. The second, and

perhaps less important in practice, problem is to derive the asymptotic distribution for such an estimator.

The question of the best attainable rate of convergence (in a minimax sense) for such an estimator

remains open. If the memory parameter is not bounded away from zero, then it is easily seen that it is

impossible to consistently estimate !

0

, since when d(!

0

) tends to zero, the very de�nition !

0

becomes

meaningless. If d(!

0

) is positive and bounded away from zero it has been conjectured that the best

possible rate might be n. In a semi-parametric context, Yajima (1995) and Hidalgo (1999) have proposed

estimators that attain the rate n

�

for any � < 1, for a given d(!

0

) > 0. Yajima (1995) failed to

derive an asymptotic distribution for his estimator, while Hidalgo (1999) proved asymptotic normality

of his estimator except at zero and � where it is respectively asymptotically distributed as the positive

and negative part of a zero-mean Gaussian variable. In any case, the asymptotic variance of Hidalgo's

estimator is proportional to d(!

0

)

�2

and thus blows up as d(!

0

) goes to zero, in accordance with the

remarks above.

Most of the estimators

^

d(0) of the di�erencing parameter introduced in the previous sections (for

!

0

= 0) can be more or less easily adapted to yield an estimator

^

d(!

0

) of d(!

0

) if !

0

6= 0 is assumed to

be a priori known, and the properties of these estimators will remain essentialy unchanged. When !

0

is

unknown and is estimated using !̂

0

, it is more involved to prove that

^

d(!̂

0

) yields a consistent estimator

of d(!

0

). Another challenging problem is to show that the best possible rate of convergence of such an

estimator is the same as when !

0

is known.
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8.1 Yajima (1995)

Yajima (1995) [57] has studied what might be considered as the simplest estimator of the G-frequency

!

0

, i.e. the G-frequency is the frequency at which maximizes the periodogram

!̂

n

= arg max

x2[0;�]

I

n

(x)

This estimator has long been used to estimate the frequency of a sinewave in white noise.

Theorem 15 (Yajima, 1995 [57] Theorem 1) Assume that X is a Gaussian process with spectral

density that satis�es (80) with f

�

di�erentiable on [0; �] n f!

0

g and such that

8x 2 [0; �]; jf

�

0

(x)=f

�

(x)j � Cjx� !

0

j

�1

:

Then for all positive real � < 1, n

�

(!̂

n

� !

0

) tends to zero in probability.

Remarks

� This theorem can be readily adapted to prove that the same result holds if the periodogram is

maximized over a grid of Fourier frequencies. De�ne

�

k

n

= argmax

1�k�~n

I

n

(x

k

) and �!

n

= 2�

�

k

n

.

Then under the same assumptions on f , it also holds that n

�

(!̂

n

�!

0

) tends to zero in probability

for any � < 1.

� The assumptions of Gaussianity is probably not necessary. and, using recent results on the pe-

riodogram of an i.i.d. sequence by Davis and Mikosch (1999), it is most likely that the rate of

convergence can be improved to any increasing sequence v

n

= o(n= log(n)).

� Yajima (1995) has conjectured that n(!̂

n

� !

0

) converges in distribution to a heavy-tailed non-

normal distribution, probably depending on d.

� It is possible to use this estimator to obtain a semi-parametric estimator of d in (80) by plugging the

value !̂

0

in the estimator presented in the previous section. This would probably yield consistent

estimators of d. Since the rate of convergence of this estimator is faster than the best rate of

convergence for the GPH estimator or the FEXP estimator, it can be conjectured that, these

estimators achieve the same rate of convergence when the G-frequency is known.

8.2 Hidalgo (1999)

Hidalgo (1999) has proposed a more complex method to estimate the location of the pole in (80), which

has the advantage of providing an asymptotic distribution to the estimator. We outline the method. Let

k

n

be an increasing sequence of integers. Let 1 � q � n be an integer. Let (

n;p

)

1�p�k

n

, be non negative

real numbers such that

P

k

n

p=1



n;p

= 1. For each p le now ~

p;l

, 1 � l � p be real numbers such that
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P

p

l=1

~

p;l

= 0. Let m

n

be a sequence of integers and de�ne

~

I

n;j

=

P

m

n

h=�m

n

I

n

(x

h

). De�ne

~

d

p

(x

q

) =

p

X

j=1

~

p;j

log(

~

I

n;j+q

); (81)

^

d(x

q

) =

k

n

X

p=1



n;p

~

d

p

(x

q

): (82)

This somewhat complex smoothing scheme has two motivations. The most important one is to avoid the

non Gaussianity of the averaged periodogram estimator for d > 1=2. The second one is to reduce the

asymptotic variance of the estimator. De�ne now

q̂

n

= arg max

0�q�[n=2]

^

d(x

q

); !̂

n

= 2�q̂

n

=n:

(A4) X is a causal linear process with innovation process Z, i.e.

X

t

=

1

X

j=0

 

j

Z

t�j

;

1

X

j=0

 

2

j

<1; �

0

= 1:

The innovation Z is a homoscedastic martingale increment sequence, i.e.

E [Z

t

jF

t�1

] = 0; E [Z

2

t

jF

t�1

] = 1; E [Z

s

t

jF

t�1

] = �

s

; 1 � s � 2r;

where F

t

is the �-�eld generated by Z

s

, 0 � s � t, and r � 2 is an integer.

The function  (x) =

P

1

j=0

 (e

ix

) is di�erentiable except at !

0

and

j 

0

(x)j � C

j (x)j

jx� !

0

j

:

Theorem 16 Assume that Assumption (A4) holds for some r � 4. Let � < 3=(r + 1). Then for

k

n

= [n

�

], one can choose a sequence m

n

and weights 

n;p

and ~

p;j

such that

� if !

0

2 (0; �), then

n

�k

1=2

n

(!̂

n

� !

0

) is asymptotically centered Gaussian with variance �

2

=d

2

where

�

2

depends only on the weights ;

� if !

0

= 0 (resp. !

0

= �), then

n

�k

1=2

n

(!̂

n

� !

0

) is asymptotically distributed as (�=�)�

+

(resp. �

�

)

where � is a N (0; 1) r.v. ;

� k

1=2

n

(

^

d(!̂

n

)� d) is asymptotically centred Gaussian with variance �

2

independent of !

0

and d.

The interest of this method is that it yields an estimator which converges at a rate arbitrarily close to

n, (provided the innovation process Z has enough �nite moments) and which is moreover asymptotically

Gaussian, except at zero and �. Its drawback is that it cannot be used to obtain simultaneously an

estimator of the pole and of the memory parmeter since the rate of convergence of one of the estimators

can be improved only at the cost of a loss in the rate of convergence of the other estimator. The

key ingredient in the derivation of theorem 16 is an invariance principle for the estimator

^

d(x) De�ne

�

n

(�) = k

n

(

^

d(x

q

n

+[k

1=2

n

]

)�

^

d(x

q

n

), where 2�q

n

=n is the Fourier frequency closest to !

0

.
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Proposition 1 �

n

converges in the space D of left-limited right-continuous (c�adl�ag) functions endowed

with the topology of uniform convergence on compact sets to the Gaussian process � de�ned by

�(�) = c

1

d�

2

+ c

2

��;

where � is standard Gaussian.

8.3 Giraitis, Hidalgo and Robinson (1999)

Even though it was developed in a parametric framework, the method of Giraitis, Hidalgo and Robinson

(1999) [22] is worth mentioning since it might be adapted to a semi-parametric context. Assume that X

is a weakly stationary process with spectral density f(!

0

; �

0

; :) belonging to a parametric model f(!; �; :),

! 2 [0; �], � 2 �, satisfying the following regularity assumptions.

(A5) f(!; �; x) =

�

2

2�

k(!; �; x), k(!; �; x) = j4 sin((x+ !)=2) sin((x+ !)=2)j

�2d

h(�; x), where 0 < d < 1 if

0 < ! < � and 0 < d < 1=2 if ! 2 f0; 1g, h is a C

2

function and even with respect to x, and for all

! 2 [0; �] and all � 2 �,

R

�

��

log(k(!; �; x))dx = 0.

In the parametric framework considered here, an identi�ability condition is also necessary.

(A6) inf

!;�)2[0;�]��

R

�

��

k(!

0

;�

0

;x)

k(!;�;x)

dx = 2�.

R

�

��

fk(!

0

; �

0

; x)� k(!; �; x)g

2

dx > 0 for all (!; �) 6= (!

0

; �

0

).

The matrix 


0

=

1

4�

R

�

��

r

�

log k(!

0

; �

0

; x) (r

�

log k(!

0

; �

0

; x))

T

dx is positive de�nite.

The estimator of (!

0

; �

0

) is obtained by minimizing a discretized Whittle contrast over a discrete grid of

Fourier frequencies. De�ne

S(!; �) = [n=2]

�1

[n=2]

X

j=0

I

n

(x

j

)

k(x

j

; !; �)

(!̂;

^

�) = arg min

0�j�[n=2];�2�

S(x

j

; �); �̂

2

= S(!̂;

^

�):

Theorem 17 Assume that assumption (A4) holds with r = 2 and that moreover there exits a real � > 0

such that sup

t

E [jZ

t

j

4+�

] < 1. Assume also that (A5) and (A6) hold. Then n(!̂

n

� !

0

) = O

P

(1) and

p

n(

^

� � �

0

) is asymptotically zero-mean Gaussian with variance 


�1

0

.

It has not been proved even in the parametric context that the rate n is the best rate for the estimation

of !

0

.
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9 Theoretical and technical tools for the periodogram

The study of the estimators outlined above involve linear and non-linear functionals of the normalized

periodogram of the form

S

m;p;n

(X;�) :=

K(m;p;n)

X

k=1

�

n;k

�

�(

�

I

X

m;p;n;k

=f(y

k

)� 

m;p;n

(�)

�

(83)

where (�

n;k

) is a triangular array of numbers and � is a (possibly non-linear) function verifying E [j�(jW

m;p;n

j

2

=2)j

2

] <

1, where W

m;p;n

is a Gaussian vector with covariance given by (15). We will mainly focus on the follow-

ing two cases: �(x) = x (GSE and FAR estimators) and �(x) = log(x) (GPH and FEXP estimators). It

is possible to consider more general non-linear functions, at the expense of some additional technicalities.

The purpose of this section is to give a sketch of the techniques involved to study such triangular

arrays, which will in turn justify some of the technical assumptions introduced to prove the consistency

and the asymptotic normality of the estimators.

9.1 Methodology

The usual technique to prove a CLT for a functional of the periodogram of a non-Gaussian linear process

makes use of the so-called Bartlett's decomposition. This decomposition amounts to decompose the

periodogram as follows

I

X

m;p;n;k

= (2�)f(y

k

)I

Z

m;p;n;k

+ R

m;p;n;k

; (84)

where f is the spectral density of the process X and R

m;p;n;k

is a remainder term. This decomposition

of the periodogram was suggested in Bartlett (1955) and later thoroughly investigated by many authors

(see, e.g. Walker (1965) [56], Chen and Hannan (1980) [10], Brockwell and Davis (1991) [9] for short

range dependent processes; see Robinson (1995b) [46] for long-range dependent processes).

The leading term in the decomposition (84), 2�f(y

k

)I

Z

m;p;n;k

, is sometimes referred to as the pseudo-

periodogram. The Bartlett's decomposition suggests to prove a central limit theorem for S

m;p;n

(X;�) in

two steps

� Prove a CLT for S

m;p;n

(Z; �),

� Show that S

m;p;n

(X;�)�S

m;p;n

(Z; �) is asymptotically negligible (i.e. converges to zero in proba-

bility).

For linear functionals of the periodogram, the proof for these two steps are easily carried out and lead to

a very satisfactory result, see Theorem 19 below. In the case of non linear functionals of the periodogram,

these steps are both technically involved and lead to partial results under rather stringent assumptions on

the innovation sequence Z and the function �. Some of these assumptions can be weakened by assuming

that X is a Gaussian process: the technique of proof in such case does not make use of the Bartlett's

decomposition, and stronger results can be obtained.
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9.2 Linear functionals

As already mentioned, for linear functionals, pooling is irrelevant, thus we assume in this section that

m = 1. The Bartlett's decomposition then reads

S

p;n

(X) =

K

X

k=1

�

n;k

(I

X

p;n

(x

k

)=f(x

k

)� 1) =

X

�

n;k

(2�I

Z

p;n

(x

k

)� 1)

+

K

X

k=1

�

n;k

(I

X

p;n

(x

k

)=f(x

k

)� 2�I

Z

n

(x

k

)) =: S

p;n

(Z) +R

p;n

and it must be proved that S

p;n

(Z) is asymptotically Gaussian and that R

p;n

is asymptotically negligible.

The proof of the central limit theorem for S

p;n

(Z) makes use of standard arguments on martingale

increments sequences. The weight sequence must satisfy a strengthened Lindeberg-Lyapunov assumption.

(A7) (�

n;k

)

1�k�K

is a triangular array of real numbers such that

K

X

k=1

�

2

n;k

= 1; (85)

lim

n!1

max

1�k�K

j�

n;k

j = 0; (86)

lim

n!1

n

�1

K

X

j 6=k=1

�

n;j

�

n;k

= �: (87)

where &

p;n

is de�ned in (14).

(A8) (�

n;k

)

1�k�K

is a triangular array of real numbers such that

lim

n!1

K

X

j;k=1

�

n;k

�

n;j

j&

p;n

(j � k)j

2

= L

2;p

: (88)

(85) and (86) are the usual smallness assumptions to prove a CLT for a triangular array of i.i.d. r.v.'s. To

see that (87) and (88) is necessary if Z is a non Gaussian white noise, note that, for 1 � j; k � K(m; p; n)

4�

2

E [(I

Z

p;n

(x

k

)� 1)(I

Z

p;n

(x

j

)� 1)] = j&

p;n

(j � k)j

2

+ �

4

n

�1

a

�2

p

n

�1

n

X

t=1

jh

t;n

j

4

:

and that n

�1

P

n

t=1

jh

t;n

j

4

= a

2p

exists and is �nite. Hence

E

(

K

X

k=1

�

n;k

(2�I

p;n

(x

k

)� 1)

)

2

= (2�)

2

X

1�k;j�K

�

n;k

�

n;j

j�

p;n

(j � l)j

2

+ �

4

(a

2p

=a

2

p

)

8

<

:

n

�1

K

X

k 6=j=1

�

n;k

�

n;j

9

=

;

Thus it is necessary that the limits (87) and (88) hold to prove the convergence of the variance of S

p;n

(Z).

In this section and the following, the assumptions on the spectral density will be given in terms of the

function a

�

de�ned in(47).
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Theorem 18 Let � > 1, � 2 (0; �] and p 2 N. Assume that X is a process such that (A3) holds and

such that �p � 1=2 < d < 1=2 and a

�

2 L

�

(�; �). Assume moreover that (A7) and (A8) hold. Then

S

p;n

(Z) converges in distribution to a centred Gaussian law with variance L

2;p

+ �

4

(a

2p

=a

2

p

)� .

Note that (85) and (87) imply that � = lim

n

�

n

�1=2

P

k=1

�

n;k

	

2

. Hence, � = 0 when

P

n

k=1

�

n;k

= 0.

This condition holds for the GSE estimate, explaining why the fourth-order cumulant does not appear

in the expression of the asymptotic variance of this estimator.

Lemma 2 Under the assumptions of theorem 18, R

p;n

= o

P

(1). If in addition lim

n!1

�

�

n

log

2

(n) = 0,

with �

�

n

:= max

1�k�K

j�

n;k

j, then E [R

2

p;n

] = o(1).

From this Lemma and Theorem 18, the asymptotic normality of S

p;n

(X) follows.

Theorem 19 Under the assumptions of theorem 18,

K

X

k=1

�

n;k

(I

X

n

(x

k

)=f(x

k

)� 1)!

d

N (0; L

2;p

+ �

4

(a

2p

=a

2

p

)�):

If moreover lim

n!1

(�

�

n

)

2

log

3

(n) = 0, then

lim

n!1

E

2

4

(

K

X

k=1

�

n;k

(I

X

n

(x

k

)=f(x

k

)� 1)

)

2

3

5

= L

2;p

+ �

4

(a

2p

=a

2

p

)�:

9.3 Non linear functionals, linear non-Gaussian case

The case of non linear functionals is more involved and additional technical assumptions are needed on

the distribution of the sequence Z and on the class of functions for which a CLT can be proved � is

restricted. For the sake of simplicity and since the applications presented here mainly concern the case

log(x) = �(x), and we will only present the results under this assumption. The proof for non-linear

functionals closely follows the proof for linear functionals. De�ne

U

n;k

:=

f

�1

(y

k

)

�

I

X

m;p;n;k

� 2�

�

I

Z

m;p;n;k

2�

�

I

Z

m;p;n;k

and R

n;k

= log(1 + U

n;k

). Then

K

X

k=1

�

n;k

(log(

�

I

X

m;p;n;k

)� 

m;p;n

) =

K

X

k=1

�

n;k

(log(2�

�

I

Z

m;p;n;k

)� 

m;p;n

) +

K

X

k=1

�

n;k

R

n;k

=: S

p;n

(Z; log) +R

p;n

:

The proof then amounts to prove that S

p;n

(Z; log) is asymptotically normal and that R

n

= o

P

(1). A

Central Limit Theorem for triangular arrays of non-linear functions of the periodogram of i.i.d r.v.'s has

recently been obtained by Fay and Soulier (1999) [13]. We specialize their result to the case �(x) = log(x).

An additional assumption is also needed on the weight sequence.
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(A9) (�

n;k

)

1�k�K

is a triangular array of real numbers such that for all � > 0,

max

1�k�K

j�

n;k

j = O(�

�1=2+�

n

); (89)

where �

n

:= # fk : 1 � k � K;�

n;k

6= 0g.

This assumption implies that �

n

(max

1�k�K

j�

n;k

j)

2

is bounded by a slowly varying function of �

n

, the

cardinal of the support of the weights �

n;k

. This condition obviously holds for the GPH estimator. For

the FEXP estimator, this assumption does not hold in general, because �

n

= K and max

1�k�K

j�

n;k

j �

p

q=n log(n). Nevertheless, this di�culty can be alleviated by truncating the sum S

p;n

(Z; log) (see

Hurvich, Moulines and Soulier (1999) [30]). The proof of this CLT is based on the Fr�echet-Sohat moment

technique, which amounts to show that the moments of S

p;n

(Z; �) converge to the moments of a Gaussian

r.v. This technique requires the evaluation of moments of the form

E [log

r

1

(

�

I

Z

m;p;n;k

1

) � � � log

r

u

(

�

I

Z

m;p;n;k

u

)]

which is done by using Edgeworth expansion techniques (see Battacharya and Rao, 1976). Since log(x) is

singular at zero frequency, it is required to obtain an expansion of the p.d.f of (d

(Z;h)

n

(x

n;k

1

); � � � ; d

(Z;h)

n

(x

n;k

p

)

for any p � 1 and any p-uplets of pairwise distinct integers (k

1

; � � � ; k

p

). The validity of this expansion

relies upon (43), which is a strengthening of the usual Cramer's conditions. The original idea to use

Edgeworth expansions in this context is due to Chen and Hannan (1980) [10] and Velasco (1999) [53]

obtained a central limit theorem for the GPH estimator for a non-Gaussian process.

Theorem 20 Let � > 1, p 2 N and m � 4. Assume that the process X satis�es (A2) with E jZj

2m+2

<

1, a

�

2 L

�

(�; �) and �p� 1=2 < d < 1=2. Assume moreover that (A7) and (A9) hold. Then,

K

X

k=1

�

n;k

flog(2�

�

I

Z

m;n;p;k

)� 

m;p;n

g !

d

N (0; �

2

p;m

+ �

4

�C

m;p

)

where C

m;p

is a positive constant.

A closed-form expression of C

m;p

can be found in Fay and Soulier (1999). Its expression is not relevant

here since � = 0 for the application presented here (the GPH and the FEXP estimators). The treatment

of the remainder term needs a strengthening of the assumption on f

�

.

Lemma 3 Let � > 1, � > 1, p 2 N and m � 4. Assume that the process X satis�es (A2) with

E jZj

8

< 1, a

�

2 L

�

(�; �; �) and �p � 1=2 < d < 1=2. Assume moreover that

P

K

k=1

�

2

n;k

= 1. Then

P

K

k=1

�

n;k

R

n;k

converges in probability to zero.

Remark The proof of this lemma also makes use of Edgeworth's expansions and does not even guarantee

that E j

P

K

k=1

�

n;k

R

n;k

j exists. Note also that the control of the remainder term critically depends upon

the fact that f

�

2 L

�

(�; �; �) that p � 1, making use of the "bias reduction" in the Bartlett approximation

a�orded by the taper. We can now state
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Theorem 21 Let � > 1, � > 1, p 2 N and m � 4. Assume that the process X satis�es (A2) with

E jZj

2m+2

< 1, a

�

2 L

�

(�; �; �) and �p� 1=2 < d < 1=2. Assume moreover that (A7) and (A9) hold.

Then,

K

X

k=1

�

n;k

flog(2�

�

I

Z

m;n;p;k

)� 

m;p;n

g !

d

N (0; �

2

p;m

+ �

4

�C

m;p

):

9.4 Non linear functionals, Gaussian case

As far as convergence in distribution is concerned, the Gaussian case can be viewed as a subcase of the

linear case, except for a mild restriction in Theorem 4. The assumption of Gaussianty is used at its full

strength in the derivation of the minimax and adaptive results which proved (up to now) only under the

assumption that the process X is Gaussian. In this section we present the speci�c tools that are used to

derive these results.

Recall that the periodogram, wether raw or tapered or pooled can always be expressed as the square

modulus of a Gaussian vector, and the the log-periodogram for instance can be viewed as a function of

a Gaussian vector. When computing the variance of a weighted sum of log-periodogram ordinates, it is

thus necessary to obtain bounds for quantities such as cov(�(�

1

); �(�

2

)) where �

1

, �

2

are Gaussian vetors.

It is well known that these bounds can be expressed in terms of the covariances between the components

of �

1

and �

2

and of the Hermite rank of the function �. Such bounds were �rst established by Taqqu

(1977) [51] in the case of Gaussian variables and a covariance bound for functions of Gaussian vectors

was �rst proved by Arcones (1994) [1]. In order to derive central limit theorems for weighted sum of

log-periodogram ordinates, it is necessary to resort to the so-called method of moments. This method

requires computation of moments of product of functions of Gaussian vectors such as E [�

1

(�

1

) � � ��

u

(�

u

)].

The needed bounds were obtained in Taqqu (1977) for Gaussian variables and generalized by Soulier

(1998) [48] for functions of Gaussian vectors. Finally, as described in section 7.1, the key tool to prove

the adaptivity properties of estimators is an exponetial inequality. We now introduce some notations

and de�nitions. Let � denote a standard a dimensional Gaussian vector. For a measurable function

� : R

a

! R, denote k�k =

�

E [�

2

(�)]

	

1=2

=

n

(2�)

�a=2

R

R

a

�

2

(x)e

�

1

2

x

T

x

dx

o

1=2

. Let H

k

denote the k-th

Hermite polynomial. Any function � such that k�k <1 can be expanded as

� =

X

k

1

;��� ;k

a

�0

c(k

1

; � � � ; k

a

)

k

1

! � � � k

a

!

H

k

1

� � �H

k

a

;

where c(k

1

; � � � ; k

a

) = E

0

[(�(X)H

k

1

(X

1

) � � �H

k

a

(X

a

)] is well de�ned if k�k < 1. The Hermite rank

of � is the smallest integer � such that there exist integers k

1

; � � � ; k

a

which satisfy k

1

+ � � � + k

a

= �

and c(k

1

; � � � ; k

a

) 6= 0. The Hermite rank of � can be de�ned equivalently as the smallest integer �

such that there exists a polynomial P of degree � with E [P (�)�(�)] 6= 0. � has Hermite rank 0 if and

only if E

0

[�(�)] 6= 0. The Hermite rank of a function is de�ned here only with respect to the standard

a-dimensional Gaussian distribution.

Let u; d

1

; � � � ; d

u

be positive integers and let d = d

1

+ � � � + d

u

. Let X be a d-dimensional centered

Gaussian vector with covariance matrix �. Assume that X can be written as X = (X

T

1

; � � � ; X

T

u

)

T

2 R

d

,

where X

i

2 R

d

i

is a d

i

dimensional standard Gaussian vector. Consider functions �

i

: R

d

i

! R with

Hermite rank �

i

, 1 � i � u.
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Theorem 22 Let � denote the spectral radius of the matrix �� I

d

and let �

�

= �

1

+ � � � �

u

. For all real

� > 0, there exists a constant c

1

(�; d; �

�

) which depends only on �, d and �

�

such that

�

�

�

�

�

E

 

u

Y

i=1

�

i

(X

i

)

!

�

�

�

�

�

� c

1

(�; d; �

�

)

u

Y

i=1

k�

i

k

2

�

�

�

=2

: (90)

Remarks

� The condition 1�� � 1�� ensures that � ise invertible. this is obviously not superuous. Consider

for instance the case X

1

= X

2

= X

3

= X and let � be a function such that E [�

2

(X)] < 1 and

E [j�(X)j

3

] = 1. Then (90) does not hold. It is however not clear wether the condition that the

spectral radius of �� I

d

is strictly less than one, which implies the invertibility of �, is necessary.

� Let �

�

be the maximum correlation between coordinates of any two vectors X

i

and X

j

for i 6= j,

i.e. �

�

= max

1�i<j�u

max

1�k�d

i

;1�l�d

j

jE [X

(k)

i

X

(l)

j

]j. A su�cient condition for � < 1 � � is

�

�

� (1 � �)=(d � 1). In the case of one-dimensional Gaussian variables, (90) can be obtained by

combining Lemma 3.1, 3.2, 3.3 and Proposition 4.2 of Taqqu (1977), under the assumption �

�

� �

for some � < 1=(u� 1). Thus theorem 22 is a bit more general.

� In order to prove a central limit theorem, the following weaker form of Theorem 22 is su�cient. If

it is only assumed that s among the functions �

i

have Hermite rank �

i

� � for some integers s � u

and � , if �

�

� (1� �)=(d� 1) for some � > 0, then there exists a constant c

2

(�; d; �)

�

�

�

�

�

E

"

u

Y

i=1

�

i

(X

i

)

#

�

�

�

�

�

� c

2

(�; d; �)

u

Y

i=1

k�

i

k

2

�

�

s�=2

: (91)

� For s = u = 2, (90) is Lemma 1 in Arcones (1993), and the constant is actually 1, i.e., it can be

written as

jcov(�

1

(X

1

); �

2

(X

2

))j � k�

1

k

2

k�

2

k

2

�

�

: (92)

� Theorem 22 is based on an expansion in powers, rather than in Hermite polynomials as in Taqqu

(1977) or Arcones (1994), of the density of the multivariate Gaussian distribution. This technique

has been used by Robinson (1995) [47] to prove the asymptotic normality of the GPH estimator.

This theorem can be used to prove a central limit theorem by means of the method of moments, since it

allows an evaluation of moments of a sum of functions of jointly Gaussian vectors. Combined with the

bounds in Lemma 6 it yields central limit theorem for weighted sums of log-periodogram ordinates (cf.

Moulines and Soulier (1999) [41] Theorem in the non tapered case).

Another important consequence of the Gaussian assumption is the expoenential inequality used to

prove the adaptive properties of the GPH and FEXP estimators (see section 7.1). It is a consequence of

the following simple inequality.

Proposition 2 Let X be a d-dimensional centered Gaussian vector with covariance matrix �. Let  :

R

d

! R be a function such that k k < 1. Let 0 < � < 1. There exists a constant c

3

(�) (which depends

only on �) such that if trf(�� I

d

)

2

g � 1� �,

jE [ (X)]j � c

3

(�)k k

2

: (93)
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The bound (93) is obviously weakest than (90), but its interest is that it is independent of the dimension

of the Gaussian vector X . The main ingredient of its proof is simply H�older inequality. It can be used

to prove an exponential inequality for sums of functions of jointly Gaussian vectors. Let X

1

; � � � ; X

n

be

jointly d-dimensional Gaussian vectors such that the covariance matrix �

n

of X = (X

1

; � � � ; X

n

) satis�es

the assumption of Proposition 2, i.e. trf(�� I

d

)

2

g � 1� � for some � > 0 independent of n. Let now �

be a function and �

1

; �

2

2 [�1;+1 such that for all � 2 (�

1

; �

2

),

E [e

��(X

i

)

] � C

1

e

C

�

�

2

=2

:

Let now �

k

, 1 � k � n, be real numbers and de�ne �

�

n

= max

1�k�n

j�

k

j. Then, for all � � inffj�

1

j; j�

2

jg=�

�

n

and all � > 0,

E [expf�

n

X

k=1

�

n;k

�(X

i

)] � C(�; �)e

C

�

�

2

=2(1+�)

:

This inequality can be applied when the vectors X

i

are the tapered DFT's of a Gaussian process with

some adaptation (see Giraitis, Robinson and Samarov (2000) [16] and Iouditsky, Moulines and Soulier

(1999) [32]). It can be understood from the bounds in lemma 6 that the use of taper is (technically)

necessary to obtain this exponential inequality. Without a taper, the assumption of proposition 2 cannot

be ful�lled.

9.5 Moment bounds for the tapered DFT's

The theorems in the previous sections are based on the probability tools already mentioned and on

technical tools which are mainly bounds for moments of the approximation errors d

X

p;n

(x

k

)=a(~x

p;k

) �

d

Z

p;n

(x

k

) where ~x

p;k

:= (p+1)

�1

(x

k

+ � � �+x

k+p

). The derivation of these bounds usually involve lengthy

and tedious computations. The �rst such bounds were obtained by Robinson (1994,1995) [44, 46, 47] and

later di�erent bounds were obtained using the same basic ideas but di�erent assumptions by Giraitis,

Robinson and Samarov (1997) [15], Hurvich Deo and Brodsky (1998) [29] and Moulines and Soulier

(1999). Similar bounds for the tapered DFT's were then investigated by Velasco (1999) [52, 53, 54],

Giraitis, Robinson and Samarov (2000) [16], Hurviuch and Chen (1999) [27] and Hurvich, Moulines and

Soulier (2000) [30]. From these bounds, bounds for the moments of the approximation errors of the

pooled tapered periodogram by the pseudo-periodogram, i.e.

�

I

X

m;p;n;k

=f(y

k

) � (2�)

�

I

Z

m;p;n;k

are derived.

We present here some of the bounds needed to prove the results of the previous sections and for a reference

for future research in this �eld. It must be noted that all of the following bounds are valid under the

rather weak assumption (A3), with some strenghtening of the moment conditions when moments higher

than 2 are computed. De�ne

u

p;n;k

=

1

p

2�na

p
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General assumptions In all the following lemmas, unless otherwise stated, p is a nonnegative integer,

0 � � < p+ 1=2, 0 < � < 1=2, � > 1, � > 1, � 2 (0; �] and C denotes a generic constant that depends

only on these parameters. The bounds presented in these lemmas hold uniformly for any process X such

that (A3) holds with spectral density j1� e

ix

j

�2d

ja

�

(x)j

2

, where �� � d � � and a

�

2 L

�

(�; �).
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Lemma 4 For all n � 1, for all 1 � k � j � p � [(n� 2p� 1)=2]�=�,

jE [ju
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j

2

]� 1j � r
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(j); (94)
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(j) (95)

where

r

p

(j) =

�

log(1 + j)=j p = 0

1=j p � 1

and

r

0

p

(j) =

�

log(1 + j)=j p = 0

1=j

p

p � 1

If in addition p � 1 and a

�

2 L

�

(�; �; �), then
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j
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]� 1j+ jE [u
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]� 1]j � Cj

��

: (96)

Lemma 5 Assume that all the moments of the sequence Z are the same as in the case of an i.i.d.

sequence with �nite moments up to the order 2s for some positive integer. For all n � 2p and for all

1 � k � [(n� 2p� 1)=2]�=�,
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If moreover a

�

2 L

�

(�; �; �), then
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Lemma 6 Assume that � = �, n � 2p and 0 � k � j � p � [(n� 2p� 1)=2]. Then

jE [u

p;n;k

u

p;n;j

]j+ jE [u

p;n;k

u

p;n;j

]j � Cr

p

(d; k; j); (99)
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where,

r

p

(k; j) :=

8

<

:

log(j)k

�jdj

j

1�jdj

(p = 0)

k

�p

(j � k)

�p

(k(j=k)

d

+ j(k=j)

d

) + (j � k)

1�p

(k

�1

(j=k)

d

+ j

�1

(k=j)

d

+ j

1�2p

(k=j)

d

) (p � 1)

(101)

If n � 2p and 0 � j � k � p, then

jE [u
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1

2�a

p

(�1)

j�k

e

i(j�k)�=n

�
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Remark As shown by the previous results, tapering, which is necessry to study non-invertible (or non-

stationary) processes, has also the very important e�ect decrease the correlation between DFT's and

bias of the approximation of the periodogram by the pseudo-periodogram (in the latter case, only if the

spectral density is su�ciently smooth). Similar e�ect had been observed long ago for short-memory time

series (see, e.g. Brillinger (1981) [8] for early references).
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