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Abstract

The aim of these notes is to provide a relatively concise - but
still self-contained - overview of mathematical notions and results
which underpin the valuation of defaultable claims. Though the
default risk modelling was extensively studied in numerous recent
papers, it seems nonetheless that some of these papers lack a
sound theoretical background. Our goal is to furnish results which
cover both the classic value-of-the-firm (or structural) approach,
as well as the more recent intensity-based methodology.

The notes are organized as follows. In Section 1, we provide
a brief introduction to the default risk modelling, and to the as-
sociated mathematical concepts. Section 2 in entirely devoted to
an exposition of various structural models, in which the default
event is related to a hitting time to a constant or variable barrier.
In Section 3, we give a brief overview of various models which are
derived within the so-called intensity-based approach.

Subsequently, in Section 4, we provide a detailed analysis of
the relatively simple case when the flow of informations available
to an agent reduces to the observations of the random time which
models the default event. The focus is on the evaluation of con-
ditional expectations with respect to the filtration generated by a
default time with the use of the intensity function.
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Results of Section 4 are then generalized in Section 5 to the
case when an additional information flow - formally represented
by some filtration F - is present. At the intuitive level, F is
generated by prices of some assets, or by other economic factors
(e.g., interest rates). Though in typical examples F is chosen
to be the Brownian filtration, most theoretical results obtained
in Section 5 do not rely on such a specification of the filtration
F. Special attention is paid here to the hypothesis (H), which
postulates the invariance of the martingale property with respect
to the enlargement of F by the observations of a default time.

In Section 6, we examine several non-trivial examples of the
calculation of the stochastic intensity of a default time (or rather
of the dual predictable projection of the associated first jump pro-
cess). Since in this section the underlying filtration F is assumed
to be generated by a Brownian motion, and it is well known that
all stopping time with respect to the Brownian filtration are pre-
dictable (so that they do not admit intensity with respect to F),
it is natural to examine random times which are not F-stopping
times. To be more specific, we study last passage times of a Brow-
nian motion (with or without drift), and more general, of a diffu-
sion process.

Finally, in Section 7, we continue the general study of the prop-
erties of stochastic intensity, focusing on the case the minimum of
several random times. The problem of finding the intensity of the
minimum of several random times appears in a natural way, for
instance, in the so-called first-to-default valuation of defaultable
debt.
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1 Introduction

In an arbitrage-free complete financial market, the ¢-time price X; of a
promised payofl X paid at a terminal time 7" is

T
X, = E(Xexp<—/ ru du) ‘]—}),
t

where (r;,s > 0) is the spot interest rate. In the formula above, the ex-
pectation is computed under the so-called equivalent martingale measure
(e.m.m.) which, under some technical hypotheses, is unique, and F; is
the information available at time ¢t. The proof of this result relies on a
replication tool: with an initial investment equal to x = Xj, a financial
agent is able to buy a self-financing portfolio with terminal value equal
to X, i.e., a hedging portfolio, and the #-time value of this portfolio is
X;. If the market is not complete, there exist contingent claims that
cannot be hedged. Let us stress that it is important to explicitly specify
the information available to the agent.

In the default risk framework, a default appears at some random time
7. Let us denote by ll;7r,y the indicator function of the set {T" < 7},
equal to 1 if the default occurs after 7" and equal to 0 otherwise. A
default free contingent claim consists of a nonnegative random variable
which represent the amount of cash paid at a prespecified time 7" to the
owner of the claim. For a defaultable contingent claim, the promised
payment is actually done only if the default did not occur before matu-
rity. If the default occurs before maturity, the payment is not done, and
the defaultable claim is worthless after default time. More generally, the
payment of a defaultable claim consists of two parts:
1) Given a maturity date 7" > 0, a random variable X, which does not
depend on T represents the promised payoff — that is, the amount of cash
the owner of the claim will receive at time 7', provided that the default
has not occured before the maturity date 7.
2) A predictable process h, prespecified in the default-free world, mod-
els the payoff which is received if default occurs before maturity. This
process is called the recovery process or the rebate.

The value of the defaultable claim is, provided that the default has
not occured before time ¢,

T T
X = E(XH{T<T} exp (—/ Ty du)—l—hT]l{TgT} exp (—/ Ty du) ‘ gt),
¢ ¢
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where G; is the information at time ¢. We assume that the agent knows
when the default appears. At time ¢, the agent knows if the default has
occured before; if the default has not yet occured, he has no information
on the time when it will happen.

The problem of modelling a default time is well represented in the
literature. There are two main approaches: either the default time 7
is a stopping time in the asset’s filtration, or it is a stopping time in a
larger filtration. The papers of Cooper and Martin [11] and Rogers [49]
contain a comparative study of these approaches. The main diflerence
between the two methods is that in the first approach the default time
is “announced,” whereas it is not the case in the second case.

In the first approach, the so-called structural approach, pioneered by
Merton [44], the default time 7 is a stopping time in the filtration of
the prices. Therefore the valuing of the defaultable claim reduces to the
problem of the pricing of the claim X1l ;7.,, which is measurable with
respect to the filtration of the prices at time 7". This is a standard,
though difficult, problem, which reduces - in a complete market case - to
the computation of the expectation of the discounted payoff under the
risk-neutral probability measure.

In the second method, known as the intensity-based approach, the
aim is also to compute the value of the defaultable claim X 7. y;
however it may happen that this claim is not measurable with respect to
the o-algebra generated by prices up to time 7. In this case, it is gener-
ally assumed that the market is complete for the large filtration, which
means that the defaultable claim is hedgeable. In order to compute the
expectation of X1 p .1 under the risk-neutral probability, it is conve-
nient to introduce the notion of intensity of the default. Then, under
some assumptions, the intensity of the default time acts as a change of
the spot interest rate in the pricing formula.

We proceed somewhat differently, namely, our goal is to examine the
connection between the default-free world and the defaultable one. We
recall some well known - though perhaps forgotten - tools to compute this
expectation, which simplify most of the proofs in existing literature on
default risk modelling. We also try to understand better the meaning of
“the information of the agent” and to make precise the relation between
the default time and the price’s filtration by means of the hazard process.

First, we recall that if the information is only the time when the
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default appears, the computation of the expectation of a defaultable
payofl involves the hazard function of 7. In this case, the compensator
of the default process IV; = ll;,<;} can be explicitly expressed in terms
of the cumulative distribution function of 7. We discuss a result of Duffie
and Lando [19] and we give a shorter proof of this result (as well as a
simpler form of the intensity of the hitting time).

Subsequently, we assume that the information of the agent at time ¢
consists of knowledge of the behaviour of the prices up to time ¢ as well as
the default time. We show that in this case the results depend strongly
on the dependence between the asset process and the default time. In
particular, we show that the intensity does not provide a sufficient in-
formation as far as this link is concerned. We use some tools from the
theory of enlargement of filtrations in order to compute the compensator
of N, provided that it exists. Finally, we give some examples where the
usual assumptions made in the literature are not satisfied and where the
value of a default claim is not obtained by a change of spot rate.

These notes are partially based on the working papers by Elliott,
Jeanblanc and Yor [22] and Rutkowski [50]. Monique Jeanblanc thanks
the participants to Aspet’s, INRIA’s and Ulm workshops for stimulating
discussions, as well as the organizers and participants to ISFMA Summer
School in Shanghai. Henri Pages made a careful reading of a first version
and corrected a lot of misprints. The remaining errors are ours.

e Some notation

We shall write F to denote a filtration (F,t > 0). A process is said to
be cadlag' (resp. caglad) if it has right continuous paths with left limits
(left continuous paths with right limits). If X is a cadlag process, we
denote by X;_ the limit of X; when s goes to ¢, and s < ¢, and by
AX; = X; — X; the jump of X at time .

The predictable o-algebra P on (IRT x Q, B X F) is the smallest o-
algebra making all adapted caglad processes measurable. This o-algebra
is generated by the processes of the form 1y, F,, where F, € F,. In
particular, any caglad adapted process is manifestly predictable.

A semi-martingale is a process X which admits the decomposition
X = M + A, where M is a martingale and A stands for a predictable
process with bounded variation.

1This is a French acronym for continu 3 droite, limites & gauche
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The indicator function of the set B is denoted by 1 5.
e Background on stopping times

We recall few basic definitions related to stopping times. The notion of
a stopping time depends on the choice of the filtration. Let (Q, F, F, P)
be a probability space with a filtration F = (F;){s>01. An Ry U {400}
valued random variable T is a F-stopping time if {T <t} € F, for any t.
Obviously, if G is a filtration larger than F, i.e., F; C G; for any ¢, and
T is a F-stopping time, then 7 is a G-stopping time. A stopping time
T is F-predictable if there exists an increasing sequence of F-stopping
times 7, such that 7, < 7 on {7 > 0} and lim7, = 7. A stopping
time 7 is F-totally inaccessible if for any F-predictable stopping time S,
P{lweQ :7(w) = S(w) < oo} =0.

In a Brownian filtration, it can be proved that any stopping time
is a predictable stopping time. The most important example of totally
inaccessible stopping time is the first time when a Poisson process jumps.

If 7 is a nonnegative random variable on some probability space
(Q,G, P) it is possible to endow ) with a filtration such that 7 is a
stopping time. This filtration is not unique, and the smallest filtration
satisfying this property is H; = o({7 < u} : w <t) =o(o(r)N{r <t}).

e Background on stochastic calculus

Let us recall few basic facts on stochastic processes, which we shall use
in what follows. A more detailed account can be found, for instance, in
Dellacherie and Meyer [16] or Protter [46].

The Doob-Meyer decomposition theorem states that, under suitable
integrability assumptions, any supermartingale Z admits a decomposi-
tion Z = M — A, where M is a local martingale and A an increasing
predictable process, with Ag = 0.

A standard Poisson process (with constant intensity A) is defined as
Ne=>", L¢7,<¢, where T; are random variables such that 7 = 0 and
(Ti —Ti_ 1,1 > 1) are 1.i.d. random variables with exponential law of
parameter Af. In this case, Ny is a random variable with Poisson law
of parameter \. It is well known that the process IV is a process with

independent and stationary increments and that M def ]\th — Al is a
martingale in its canonical filtration (see Brémaud [7] for more details).
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The stochastic integral with respect to a Poisson process is easily defined

as
/wst = > Yr.

n, T, <t

More generally, the process (]Tft,t > 0) is a Poisson process of inten-
sity (A, t > 0) if: (i) Nisa cadlag process, constant between two jumps,
with jumps of size 1, i.e. AN N NS, equals 0 or 1, (ii) the process

t
MY N, — / N, ds
0

is a martingale. Here, Nis a nonnegative process. Then, if the process
9 is bounded and predictable, the process

/wde /wst /w ds= 3 —/ ¥ Xds

n, T, <t

is a martingale. In particular,

/wst /ws)\ dS

Let X and Y be two semimartingales. The integration by parts
formula reads

XYy = XoYo + Xs-dYs + Yo dXs + [X, Y],
10,1 10,4

where [X,Y] is the quadratic covariation (the bracket) of the processes
X and Y. Let us recall that the quadratic covariation of a continuous
process and a pure jump process is equal to 0, and that the quadratic
covariation of two pure jump processes is the sum of products of their
jumps:

[N, NaJe = > A(N1)A(N2)s,

s<t

where A(]\Nfi)s = (]vi)s — (]\Nfi)s,. The bracket of a Brownian motion and
a Poisson process is equal to 0, and the bracket of N is [N, N], = N,.
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2 Structural Approach

As already mentioned, there are two basic approaches to modelling de-
fault risk. In the first approach — pioneered by Black and Scholes [4] and
Merton [44] — the default occurs when the assets of the firm are insuffi-
cient to meet payments on debt. If B is the debt value, the payment is
max (0, Vp — B), and thus we essentially deal with the same problem as
in the options pricing theory.

In another approach the firm defaults when its value falls below a
prespecifed level. In this case, the default time 7 is supposed to be a
stopping time in the asset’s filtration. The valuation of a defaultable
claim reduces here to the problem of the pricing of the claim X7,y
which is measurable with respect to the filtration of the prices at time 7.
Main papers to be quoted here are: Briys and de Varenne [8], Fricsson
and Reneby [24], Wang [56]. Some authors investigate also the conse-
quences of the renegotiation of the debt: Decamps and Faure-Grimaud
[12], Mella-Barral [43].

The valuation of the defaultable claim within the structural approach
is a standard (but difficult) problem, which needs the knowledge of the
law of the pair (7, X). We recall here some of the main mathematical
results on this subject.

2.1 Hitting Times of a Constant Barrier

Let V be a process starting at v. For any a > v we introduce the first
time where this process reaches a, i.e., 7,(V) = inf{t > 0 : V, > a}.
The probability law of 7,(V'), or at least its Laplace transform, can be
explicitly computed in some cases. The value of a defaultable claim on
h(Vr) is E(h(Vr)lLiper, vy )- Its evaluation requires the knowledge of
the probability law of the pair (Vy,7,(V)) under the e.m.m. The same
studies can be done for a < v, if we set
T,(V)=inf{t >0 : V,<a}=7_,(-V).

a

2.1.1 Standard Brownian Motion

Let V' be a standard Brownian motion starting at v, that is, V; = v +
W;. In this case, the two events {7,(V) <t} and {sup,., W, > a},
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where a@ = a — v are equal. The reflection principle implies that the r.v.
sup,<, W is equal in law to the r.v. |W;|. Therefore,

Pma(W) <) = PlwW,>a)=P(|W,| > a)

= P(W?>a?) = P{tG? > a?)

where G is a Gaussian variable, with mean 0 and variance 1. It follows

2
that 7, (W) o %, and the probability density function of 7,(V) is

The computation of

E(Lirer,wph(Ve)) = E(h(Vr)) = B(Lirs ., vy h(Vr))

can be done using Markov property:

E(Iirsrovpph(Ve) = E(lirs., oy BEQVe) | Fr )
= E(irsr, ) MWr r vy +a))

/OT du f(u)E(h(WTfu + a)) ,

where W is a Brownian motion independent of T.(V'), with Wo = 0.

2.1.2 Brownian Motion with Drift

Suppose that V; = v + ut + oW,, with ¢ > 0. Then, {7,(V) < ¢t} =
- -t

{1.(V) <t}, where V; = g + W, and @ = (@ — v)/o. From Girsanov’s
o

theorem, we can deduce the law of 7,(V). Indeed, if we denote for sim-

plicity 7, = 7,(WW), then

1t 1 p?
Pzt = B(lpmsg ew (5w, - 250))

(2
2

1
= exp (ga) E<ﬂ{7a2t} exp ( — 5%7'&) )
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and the quantity
1 p?
E<H{Ta2t} exp ( — 5?7—&))

can be computed from the density of 7,,. Indeed, tedious computations
lead to

E(]l{m<s} e~ 77)=H(y, |«a],s)

where . .

H(I/,x,s):€7UIN<V—%)+€UIN<—I/—%> (1)
and N stands for the cumulative distribution function of the standard
Gaussian law. The density of 7, (V) is

~ o o — Nt 2
Po(ro (V) € dt) = |27T|t3 exp—%

where [t = p1/0 (see Borodin and Salminen [5] p. 223, formula 2.0.2.)

2,1.3 Geometric Brownian Motion
If V' is a geometric Brownian motion such that
AV = Vi(udt + o dWy)

then for a > v > 0 we have

7a(V)

2

2
inf {tZO :Uexp( u—%)t—l—aWt) Za}
= f {t>0: (1= F)t+oW, 2 I~}

so that the problem reduces to the case of a Brownian motion with drift.

2.1.4 Deterministic Volatility

If dV, = o(t) dW;, where W is a Brownian motion and o is a determin-
istic function, a change of time will give the answer. In fact, from the
Dambis-Dubins-Schwarz theorem, the martingale V' is a time-changed
Brownian motion. More precisely, there exists a Brownian motion W
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such that V;, = WA@) where A(t) = (V,V); = fot 02(s)ds. Using this
change of time, and the equality

{ra(v) <t} = {5up Vi > a} = {sup W) > 0} = {ra(W) < A(1)}

we get the result. To the best of our knowledge, no closed-form solution
is known for the probability law of the hitting time when V satisfies
dVy = pdt +o(t) dWy.

2,1.5 Ornstein-Uhlenbeck Process

Let (r4,t > 0) be defined as

dre = (¢ — \ri) dt + \/BdWs, 10 =7,

and 7, =1inf {t > 0 : r; > p}. For any p > r, the density function of 7,
equals

_ p=T0 A\ ¢/
1) = \/ngg3<sinh)\t> e
A
L2 - o]

For the derivation of the last formula, the reader is referred to Leblanc’s
thesis [37] (where there are some misprints in the result, however).

2.1.6 Bessel Processes

A Bessel process R with index v > 0 (or with dimension § with v = o 1)
is a diffusion process which takes values in IR, and has the infinitesimal
generator

1d®  2w+41d

T2 " T2 @

For § > 1, a BES(6) satisfies E(fot R;lds) < 00, and it is the solution
of

Al/

§—1 [t 1
R; = W + —— —ds. 2
= o+ W+ 5 /ORS S ()
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In terms of the index v
R—oz+W+(1/+l) L
= ¢ 3 ), ®”

It is possible to derive a closed-form expression for the Laplace transform
of the probability law of the hitting time. For example, if V is a BES(3)
process then for any 0 < v < y (see [5])

A2 y sinh(\w)
3 _
B (exp =) =7 sinh(\y)”

For a BES with index v, the Laplace transform is given via Bessel mod-
ified functions, namely,

wrlen-5o)= (1) T

For a BFES(3), it is also possible to find the density of the hitting time.
The absolute continuity relationship

X,
P£3)|ft S I|ft7

where P, is the law of Brownian motion started at  and X the canonical
process on the Wiener space, yields the equality (see Revuz and Yor [47])

P.Z‘(S) (¢(Ta)ﬂ{ra<oo}) = %Pz(¢(7a))

which holds for a < z. Consequently (as before, G stands for the r.v.
with the standard Gaussian law under P)

Pég)(7a>t) = PHE?’)(OO>Ta>t)+P£3)(Ta:oo)
a a
= “Py(Tea>t)+(1——
= 0(To—a > 1) + ( x)

- %p(x_a>\/Z|G|)+(1—%)

5 a-a)/VE
-t _/ eV 2ay (1 2.
xV 7 x

For a > z, the density of 7, involves a series (see Borodin and Salminen
[5], p- 339, formula 2.0.2 and p. 387, formula 2.0.2.)
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2.1.7 Time-homogeneous Diffusion
Let V be a diffusion of the form
dvy = a(Vy) dt + o (Vi) dWy,

where a and ¢ are Lipschitz continuous functions. Let ¢ be a bounded
function on | — co,a[ such that Ap = Ay, where A is the infinitesimal
generator of V', that is,

1 5 d? d
Then ()
_ (v
Ey(L, cone ) =
<{a< I ) o(a)

for any v €] —o0,a]and A > 0.

2.1.8 Non-constant Barrier

Let 74(V) =1inf {t > 0 : V; = f(t)}, where f is a deterministic function
and V a diffusion process. There are only few cases for which the law of
T#(V') is explicitly known; for instance, the case when V' is a Brownian
motion and f is an afline function.

2.2 Stochastic Barrier

In this section (taken from [23]) we study a simple example which in-
troduce the main tools of all our study: the choice of filtration and the
conditional probability distribution function.

e Filtrations

Suppose that a space (Q2,G,F, P) is given, where F = (F;)s>01 is a
filtration such that Foo C G. We define the default time 7 as 7 =
inf{t > 0 : V; < H}, where H is a random variable and V an F-
adapted process, solution of a SDE driven by a Brownian motion W.
We can write

T=inf{t>0: V> 0},
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where V'* is an increasing process, namely,

Vv, D sup {~(Ve - Vo), s < 1}

and © = Vy — H. We assume that © > 0. In this section, we assume
that the random variable @ is known, and that the information available
in the market at time ¢ is G; = F; Vo (©). Then, obviously, {T <t} € G,
and 7 is a G-stopping time. Suppose that F is a Brownian filtration and
that the F-Brownian motion W remains a G-Brownian motion. Then
W is independent of Gy and thus it is independent of ©. The dynamics
of the assets remain the same for the two filtrations F and G only if H
is independent of the filtration F'.

e Conditional law

Here we assume, as in ElKaroui [23], that the barrier is independent of
F, and we introduce the distribution function of ©: F(t) = P(© < t).
We assume that F is continuous and that F(0) = 0. Let us introduce

the function K defined as 1 — F(t) = P(O > ) 4] ¢~ K(®)_ The function
K is an increasing function, such that K(0) =0 and K(o0) = o0.

The conditional law of 7 with respect to Fy is

In particular, if V} > © a.s., then 7 is finite with probability 1. Fur-
thermore, in the particular case when © has an exponential law with
parameter 1, we have P(T > t|Fy) = exp(—V,*).

If V7 is absolutely continuous with respect to the Lebesgue measure,
the process A such that V,* = fot s ds satisfies

. Pt<t<t+h|F)
Ay = lim
h—0 P(r>t|F)

Let us now focus on the converse implication. Suppose that
P(r <t|Fo) = e KA

where A is an arbitrary continuous increasing F-adapted process, and
K a continuous increasing function. Our goal is to show that there
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exists a random variable ©, which is independent of F,, and such that
w

T {t>0: A; > O}. Let us set O def A,. Then
{t<O}={t <A }={C, <1},
where C is the right inverse of A, so that A, =¢. Therefore
P(O > t| Foo) = e Klhe) = = KO,

We have thus established the required properties, namely, the probability
law of © and its independence of the o-field Fs.

2.3 Jump-diffusion

Zhou [60] studies the case when the value of the firm is modelled via a
jump-diffusion process on the form

dV, = Vi ((p— W) dt + 0 dW; + &, dN}), Vo=,

where W is a Brownian motion, N* is a Poisson process, and ® rep-
resents the jump amplitude. The processes W, N* and ® are assumed
to be mutually independent. The default time is modelled as the first
time when the process V falls below the level a. Zhou computes the
expectation of the discounted payoff under the risk neutral measure, as-
suming that the risk premium associated with the jump is equal to zero.
A closed-form expression for the probability law of the pair (Vp,T) is
not known in this case. The difficulty is that the level may be crossed
either in a continuous way or with a jump. Zhou gives an approximation
of the expectation, using a certain time discretization of the process V.

If @ is a nonnegative constant and v > a, we have V. = a, and the
Laplace transform of 7 can be easily found.

2.4 Hedging

The defaultable contingent claim H{T<T}h(VT) is an Fp-measurable ran-
dom variable. If the default-free market is complete, this remains true
for the defaultable market and it is possible to hedge any defaultable
contingent claim. This is not the case in Zhou’s model, however.
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2.5 Term Structure Models

A substantial literature proposes to model both the default free term
structure and the term structure representing the relative prices of dif-
ferent maturities of default-risky debt, using an extension of the method
developed by Heath-Jarrow-Morton. Major papers in this area include
Jarrow and Turnbull [29], Schonbucher [54, 52|, Hubner [27, 26], and
Bielecki and Rutkowski [3].

3 Intensity-based Approach

From now on, we shall focus our attention on the intensity-based valua-
tion. The default time 7 is given as a random time, i.e., a nonnegative
random variable. We associate with this random time the counting pro-
cess N defined as IV; = ll{;<;. The process N is an increasing process,
cadlag, equal to 0 before the default and equal to 1 after default. Essen-
tially, the intensity of 7 is defined as the nonnegative adapted process A
such that

def tAT
M, & Nt—/ Ay, du
0

is a martingale. 'This approach, more recent than the structural one,
is also known as the reduced-form approach, and has been introduced
by Jarrow and Turnbull [29], Jarrow, Lando and Turnbull [30], Lando
[34, 35], Duflie and Singleton [17]. More recents contributions are Hubner
[27, 26] Arvanatis, Gregory and Laurent [1], Schonbucher [51, 52, 54, 53]
and Lotz [39, 40] among others.

As we shall see in what follows, the choice of the filtration is essential.

3.1 Stochastic Intensity: Classic Approach

In this section, we adopt the standard definition of stochastic intensity
of a random time T with respect to a filtration J such that 7 is a J-
stopping time. Namely, we say that, for a given filtration J = (\725){1520},
the J-adapted nonnegative process A is the J-intensity (or briefly, the

stochastic intensity) of T if the process N; — OTM s ds is a J-martingale.

We emphasize that if such a definition of a stochastic intensity of 7 is
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adopted, then the stochastic intensity A has virtually no meaning after
time 7.

Let us consider an elementary example. If 7 is an exponentially
distributed random variable on some filtered probability space (£2,J, P),
with the parameter A > 0, then the constant A is referred to as the hazard
rate of T, and the stochastic intensity of T (with respect to any filtration
such that 7 is a J-stopping time) equals A, = All (t<7}- Such a definition
of stochastic intensity is quite sufficient in the theory of (marked) point
processes® since in this case one is interested mainly in the filtration

generated by the point process itself.

In financial applications, however, we frequently deal with some pre-
specified underlying filtration,® F say, and thus it is more appropriate to
introduce the more specific concept of a F-intensity of a random time.
The case of a F-intensity with respect to an external filtration F is exam-
ined in Section 5 below (see, in particular, Section 5.1.6). In fact, we find
it convenient to introduce two related notions: of a F-hazard process T’
and a F-martingale hazard process A of a random time 7 (see Definitions
5.1 and 5.2, respectively). One of our main goals is to study the rela-
tionships between these two concepts, under various types of hypotheses
imposed on the underlying filtrations.

Remark 3.1 Let J be a filtration larger than J, ie., J; C ftAfor every
t > 0, and X the J-intensity of N. The process N is manifestly J adapted,
and thus 7 is still a stopping time with respect to the enlarged filtration
J. However, it may happen that N does not admit an intensity in the
filtration J, and if the J-intensity exists, it may be different from J
intensity.

In the remaining part of this section, we present the main results and
examples which can be found in existing financial literature.

3.1.1 Conditional Expectation

Suppose that 7 is a random time with J-intensity A — that is, the process
M; = N; — fOtAT Asds is a J-martingale. Let F be a subfiltration of J.

2See, for instance, Last and Brandt [36].
3Typically, it is generated by the observations of price processes of primary assets.
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Definition 3.1 The pair (h, X) where & is a F-predictable process and
X a Fp-measurable nonnegative random variable is called a F-adapted
defaultable claim. It corresponds to a terminal payoff X which is paid if
the default has not appeared before or at time 7', and a rebate h which
is paid when the default appears.

Let (h, X) be a F-adapted defaultable claim with the value process
S. Let
RSy = E<R7h7ﬂ{t<T§T} + XRTH{T<T} |\7t>

be its discounted value. We assume here that the savings account B

satisfies .
B; = exp (/ Ty du)
0

for some F-adapted nonnegative process r (known as the short-term
interest rate), and the discount factor R equals R, = B;l.

Proposition 3.1 Let A\, = Ay(1 — N,). Then
T
RS, = E(/ Ry N+ X Rellipopy | 70) (3)
¢

and

T
RS, = B( / (had — S0}t + X Rl gery | 7). (1)
¢
PRrROOF: From the definition of the stochastic integral, we get

T T T
RTth{KTST}:/ RuhudNu:/ RuhudMu+/ Ruhu \udu.
t t t

Then, the martingale property of the stochastic integral with respect to
M yields

T
B eren |2) = B([ Ruba,] 20
t

T
- E(/ Ryhyhedu| Ty).
t

The formula above proves that the process R;S; + fot Ruxuhudu is a
J-martingale. This immediately yields (3). Furthermore, using Ito’s
formula we conclude that the process S; + fot (thu — 7y Sy)du is a J-
martingale and this proves (4). O
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3.1.2 Hypothesis (D)

As before, 7 is a random time with J-intensity A, i.e., the process

M, = N; — OtAT Asds is a J-martingale. In order to give the value

of a defaultable claim in a neat form, many authors (see, e.g., Duflie et
al. [19, 20]) make the following hypothesis:

Hypothesis (D). The intensity A admits at least one extension up to
infinity, say A* such that such that the (right-continuous) process V,
given by the formula

Vi=E(Ye S NAY (5)

is continuous at 7, that is, AVrar = Vrar — Vipar- =0.

Their main result is the following;:

Proposition 3.2 For a fired T' > 0, let Y be a Jp-measurable random
variable. Under hypothesis (D) we have, for anyt < T,

BE(Limn Y| 7)) = Limn E(Ye S | Jt)- (6)

Proor: We shall first check that
Ly Ve = B(AV L pcr<ry + Lirary Y | o). (7)
From the definition, V; = eAZM, where M is a J-martingale: M =

B(Ye 2| J) for t € [0,7], and A} = [ \}ds. Using Ito’s product
rule, we obtain

dVi = My_ d (M) + M dM, = Vi_e M d(ehd) + €M dM,.  (8)

Define U, = ]\AftVt, where N, = Iyr54 = 1 — Ny, and observe that (7)
may be rewritten as follows

U, = E(/ AV, dN, + Lipopy Y ‘ jt) (9)
16,7]

On the other hand, an application of It6’s product rule yields

dU, = N,_ dV; —V,_ dN, + AV,AN,.
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Combining the last formula with (8), and noticing that AN, = —AN,,
we obtain

dU; = Ne_ (Ve 8 d (€M) + €M dM,) — Vie dN, — AV; dN,.
After rearranging, we get
dU; = —AV, dN, + dM,, (10)
where M stands for a J -martingale. More precisely,
dM; = N,_e™ dM, + dM;,
where
AM; = Vo (dN; — Lispe M d (M) = —Vio d(Ny — Aear),

so that M* is a J-martingale. Since obviously Ur = Il »pY, (10)
implies (9). If V is continuous at 7 then (7) yields

E(lismY|T) = L E(Lipsn Y |J) = Lisn Vi
= Loy B(YM 27| 7).

This completes the proof. O

Remark 3.2 It should be observed that the ‘natural’ extension A} =
Aulljp ;1 does not satisfy (D). Indeed, it can be shown that the pro-

cess K (67 ft A du | 7:) is discontinuous at 7. Moreover, this hypothesis
can not be satisfied for every Y. Indeed, it would imply that every J-
martingale is continuous, but this is manifestly not true. Therefore, the
suitable choice of the extended intensity process A* should depend on Y.

3.2 Cox Processes and Extensions

Let (2, F, P) be a filtered probability space. An example of default time
with stochastic intensity is a single jump Cox process, that is, a process
N; = ll4< -y such that there exists an F-adapted process f with

t
P(T§t|]-"oo):/ f.ds ™ F,
0
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In this case
¢
P(r§t|ft):Ft:1—exp<—/ )\udu),
0

[s
1—Fj
introduce a filtration such that 7 is a stopping time; this is not the case
for F. Indeed, this would imply that F; = P(1 < ¢|F;) is equal to IV,
which is manifestly not true.

where \;, = . In order to study the intensity of 7, we have to

3.2.1 Elementary Case

In the early papers on intensity-based approach to credit risk modelling
(see, for instance, [29, 34]) the default time is modelled as the first jump
of a Poisson process, which is assumed to be independent of the assets
prices and/or of the value of the firm.

Suppose that F is the filtration of the assets prices and that N is
a Poisson process, independent of F, with stochastic intensity A. We
denote by 7 the first time when the Poisson process has a jump, i.e.,
7 =T1. By Ny = N;»r we denote the associated single jump process. The
canonical filtration of NV is H = (H,,t > 0), where H; = o(N;,s < 1),
and the intensity is clearly H-adapted. Finally, G; stands for the o-
algebra generated by F; and H;, we write briefly: G=HVF.

The H-martingale M, stopped at the H-stopping time 7

tAT
Mt = Mt/\T = Nt — / )\sds
0

is a H-martingale. We denote by A a stochastic process which is equal

to A up to time 7.

It is useful to observe that the process (M; = N, — OtAT Asds, 1> 0)

is not only a H-martingale, but also a G-martingale.* The independence
property allows us to state that any bounded F..-measurable r.v. X we
have

T
B(X1iors |G) = ]1{T>t}E<exp—/ Adu| 1) B(X| 7).
t

4Notice that a martingale in a given filtration is not necessarily a martingale in a
larger filtration.
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Indeed, it suffices to recall that, if F and H are independent filtrations
then for any bounded F.,-measurable r.v. X and any bounded Ho-
measurable r.v. Y, we have (XY | F, vV H,) = E(X | F,) E(Y | H,) for
any f. Such a model is used in the literature on credit ratings, where
the default-time is represented by the first time where a Markov-chain
reaches an absorbing state (see [35]).

3.2.2 Construction of Cox Processes

Let (Q,G, P) be a probability space, and (X;,f > 0) a continuous dif-
fusion process on this space. We denote by F its canonical filtration,
satisfying the usual conditions. A nonnegative function X is given. We
assume that there exists a random variable ©, independent of X, with
an exponential law: P(© > t) = e '. We define the random time 7 as

the first time when the process fot A(X;) ds is above the random level O,
ie.,

t
F=inf{t>0: / M(X,)ds > O},
0

The mutual independence of ©® and X will avoid us to enter in the
enlargement of filtration’s world. This will be done in a next section, in
the general case, that is, when the independence hypothesis is relaxed.

Another example is to choose 7 = inf{t > 0 : NAt = 1}, where
A= fot Ag ds and N is a Poisson process with intensity 1, independent
of the filtration F. The second method is in fact equivalent to the first.
Cox processes are used in a great number of studies (see, e.g., [35, 45]).
We shall generalize this approach in Section 7.

3.2.3 Conditional Expectations
Let us check that the above process IV is a Cox processes.

Lemma 3.1 The conditional distribution function of T given the o-field
Fiis fort> s

P(r> s|F) :exp(—/os)\(Xu)du).
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ProOOF: The proof follows from the equality {r > s} = {fos AMXy) du >
©}. From the independence assumption and the F;-measurability of

fos A(X,) du for s < t, we obtain

P(r>s|F) = P(/ A(Xy)du > © ‘ ]—"t) = exp ( —/ )\(Xu)du).
0 0
In particular, we have
P(r<t|F) =Pt <t|Fx).

Let us notice that the process F; = P(17 < t|F}) is here an increasing
process. O

We write N; = ll;,<; and H; = o(N, : s < t). We introduce
the filtration G, = F; V 'H,;, that is, the enlarged filtration generated by
the underlying filtration F and the process N. (We denote by F the
original Filtration and by G the enlarGed one.) We shall frequently
write G =F vV H.

It is easy to describe the events which belong to the o-field G; on the
set {7 > t}. Indeed, if G; € G, then G, N{T >t} = B, N{r > ¢} for
some event B; € F;.

Therefore any G;-measurable random variable Y; satisfies 1.~ Y; =
W74 ye, where y; is an Fy-measurable random variable.

We emphasize that the enlarged filtration G = F V H is here the
filtration which should be taken into account; the filtration generated by
F; and 0(0) is too large. In the latter filtration T would be a predictable
stopping time, and would not admit an intensity.

Proposition 3.3 Let X be an integrable r.v. Then,

E(X]l{7>t} | ft)

1 E(X =1 _—
o P9 = Ve g 17

PrOOF: From the remarks on the G; measurability, if ¥; = F(X|G;),
then there exists y;, which is F;-measurable such that

Loy B(X | Ge) = im0t
and multiplying both members by the indicator function, we deduce
E(X1irse | F)

. O
E(ﬂ{r>t} | ft)

Yy =
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We shall now compute the expectation of a predictable process at
time 7 and we shall give the intensity of 7.

Lemma 3.2 (i) If h is a F-predictable process then
E(h,) = E(/ haM(X,) exp (= Ay) du)
0

E(h,|F) = E(/ hu)\(Xu)exp(—Au)du‘ft)
0
and
E(h7|gt):E</ hu)\(Xu)eAf’A“du‘]—"t)]l{7>t}+h711{7§t}. (11)
t

where Ay = [y A(X,)ds.
(i1) The process (N, — OMT AN X)ds, t > 0) is a G-martingale.
Proor: Let hy = 1y, ,(t) B, where B, € F,. Then,

Blhe | F) = BBy (1)By | Fao) | 7)

— E(Bv(e’A“ —e*Aw)|ft)
_ E(BU /w A )e A du‘]—})

_ E(/ hu)\(Xu)e’A“du‘]-})
0

and the result follows from the monotone class theorem.

The martingale property (ii) follows from integration by parts for-
mula. Let ¢ < s. Then, on the one hand

Plt<1<s|F)
Pt <T|F)
= ﬂ{t<T}E(1 —exp(As — Ay) | F)

E(N; —N¢|G:) = Pt<7<5|G)=1rery

On the other hand, from part (i)
SAT
B( / XKD |G) = B(Aunr — Aunr |60)
t

AT
_ ﬂ{t<T}E</ Rudue” e A0du | )
t
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where h,, = A(s A u) — A(t A u). Consequently,

[ R ye= BumAddy
= [7(Au — A)Age™ B Bddu + (A, — Ay) [ Aye Be Mgy
= —(As — Ap)e B M) 4 ];S Au)e~Pu=2)dqy 4 (A, — Ay)e~(Aamhe)
=1 — e NemAe),
This ends the proof. 0

3.2.4 Conditional Expectation of F..-Measurable Random Vari-
ables

Lemma 3.3 Let X be an Foo-measurable r.v. X. Then

E(XLiap |F) = exp(-— /Ot A(X) ds) B(X | ),
E(X|G) = E(X|F). (12)
PrROOF: Let X be an F,,-measurable r.v. Then,
B(X 1oy | 5) = BE(XN oy | Foo) | 5) = P > 0] E)B(X | ).
To prove that (X |G;) = E(X | ), it suffices to check that
E(B:h(T A1) X) = E(B:h(T ADE(X | F))

for any B; € F; and any h = 1o 4. For ¢ < a, the equality is obvious.
For ¢ > a, we have

E(Bll;<oy B(X|F)) = BE(BE(X[F)E(r<ay | Foo))
E(E(B X | F)E(L <oy | 7))
E(XBE(li;<q1 | F)) = BE(B: X1jr<q})

as expected. O

Let us remark that (12) implies that every F-square integrable mar-
tingale is a G-martingale. However, equality (12) does not apply to any
G-measurable random variable; in particular P(7 < t]G;) = ;<4 is
not equal to Fy = P(T < t|F).
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3.2.5 Defaultable Zero-Coupon Bond

Similar computations to that of the preceding paragraph show that

E(lLirery | Ft)
Fllirer 19) = Mo BTG

H{T>t}E<eXp (- /tT A(X,) ds) ‘ ]—"t)

Suppose that the price at time t of a default-free bond paying 1 at
maturity ¢ is

T
B(t,T) = E<exp (- / r(X,) ds) ‘]—}).
t
The value of a defaultable zero-coupon bond is
T
E<H{T<r} eXP(—/ r(X,) ds) ‘gt)
t
T
_ ]1{7>t}E<exp(—/ [r(X2) + X, )] ds) | 7).
t

The t-time value of a corporate bond, which pays § at time 7" in case of
default and 1 otherwise, is given by

T
E<67 j:f n(Xe)ds (5H{T§T} + ]1{7—>T}) ‘ ft)
The last quantity is equal to
T
SB(,T) + Ty (1= 8B (exp (— / [r(X.) + A(X.)]ds) | 7).
¢

It can be proved that, if i is some F-predictable process,

T
B(hrllirery |Ge) = hellreyy + ]1{T>t}E</ hueAt’A“)\(Xu)duU-}).
t

The credit risk model of this kind was studied extensively by Lando [35].



30 MoODELLING oF DEFAULT RISK: AN OVERVIEW

4 Hazard Functions of a Random Time

In this section, the problem of quasi-explicit evaluation of various con-
ditional expectations is studied in a very special case when the only
filtration available in calculations is the natural filtration of a random
time. In practical terms, we consider here an individual who observes
the random time, but has no access to any other information. More
general situations are examined in the next section.

We start with some well known facts established for the first time in
Dellacherie [13] or [14] (p.122), and used again in Chou and Meyer [9],
Liptser and Shiryaev [38], Elliott [21], Dellacherie and Meyer [16] (p.237)
or more recently in Rogers and Williams [48] and Cocozza-Thivent [10]
among others.

Suppose that 7 is an R, U {oo}-valued random variable on some
probability space (Q,G, P) such that P(t = 0) = 0 and P(7 > t) >
0,Vt € IR.. As before, we denote by (IV;;f > 0) the default process,
defined as the right-continuous increasing process N; = 1., and
by H, its natural filtration H; = o(N,, v < t), completed as usual
with P-negligeable sets. This right-continuous, complete filtration H is
generated by the sets {7 < s} for s <t (that is the o-algebra o(t A T))
and the atom {7 > ¢} and is the smallest filtration satisfying the usual
hypotheses such that 7 is a H-stopping time.

Notice that any H;-measurable integrable r.v. H is of the form H =
h(T)i ;<4 + Rl 7~y where h is a Borel function defined on [0,%] and h
a constant.

Lemma 4.1 IfY is any integrable, G-measurable random variable then

E(Yi~y)
B [H) = ey BOY | Hoo) + Wimoty =555 (13)
In particular,
B 1)
BY M) lirsy = Moty —pr s (14)

T>1)
and if Y is o(7)-measurable, i.e. Y = h(T), then

E(Yﬂ >t )
E(Y |H;) = ﬂ{rgt}Y-Fﬂ{r»}ﬁ



M.JEANBLANC AND M.RUTKOWSKI 31

A AP < )

1
= Iy + ﬂ{r>t}m

PROOF: Let ¢ be fixed. Ther.v. E(Y |H,) is H;-measurable. Therefore,
it can be written in the form E(Y | H;) = A(T)l;;<y + All(;5¢) where
A is constant and h a Borel function. Multiplying both sides by 1.+,
and taking the expectation, we obtain

Bl o B(Y |Hy)] = E[E(L 70 Y [He)] = B[l oy Y] = AP(T > 1)

It is easy to check that, on the set {7 < ¢}, we have F(Y | H;) = h(1) =
E(Y|T) = E(Y | Hoo). In fact, we have given the right-continuous ver-
sion of the martingale E(Y | H,). O

4.1 Conditional Expectations w.r.t. the Natural Fil-
tration

For easy further reference, let us write down some special cases of the
formulae above. For any t < s we have

P(r>s|Hy) = lpanP(T>s]|7>1)
P(T>s) 1— F(s)
1 —t = — 15
P>y T CUHT o R@) (15)

where F(t) = P(t < t) be the right-continuous distribution function of
7. The following result is a straightforward consequence of (15).

Corollary 4.1 The process M which equals

— 1—N,

My=——L VieR 16
S I—R@y e (16)

follows a H-martingale. FEquivalently, fort < s

F(s) - F() F(s) — F(t)

E(Ns_NtlHt):(l_Nt) 1—F(t) :ﬂ{7>t} W

(17)

PRrROOF: The equality (15) can be rewritten as follows

1—F(s)

E(l—Ng|H)=(1- Nt)l——F(t)'
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This immediately yields the martingale property of M. O

Before we proceed further, let us recall the standard notion of the
hazard function of T.

Definition 4.1 The increasing function ' : R, — IR, given by the
formula

I(t)=—In(1— F(t)), VteR., (18)

is called the hazard function of 7.

It is clear that the relationship F(t) = e '® is satisfied. If the
cumulative distribution function F' is an absolutely continuous function,
that is, F(t) = fot f(u) du, for some function f : IR. — IR, then we
have .

Ft)=1—eTO=1_c Jorma  vicp,
where (t) = f(E)(1 — F(t))"!. It is clear that v : IR, — IR is a
nonnegative function and satisfies fooo v(u) du = oo, since F(o0) = 1.
The function « is called the intensity function (or hazard rate) of T.

Using the hazard function I', we may rewrite (13) as follows
E(Y |[H) =Ly BY |7) 4+ Ling "D E(10nY), (19)
and (15) takes the form

P(T > 8 | Ht) = ﬂ{7>t} el (=T(s)

Corollary 4.2 Assume that Y is Heo-measurable, so that Y = h(T) for
some Borel measurable funclion h : IR, — IR. If the hazard function T
of T is continuous then

E(Y | Hy) = Lpr<yh(7) + n{m}/ h(u)e" O~ gqr(w). (20
¢
In particular,

B(h(r)) = / " hw)e T dr(u).

0
If 7 admits the intensity funclion v then

B [H0) = Wirciyh(e) 4 sy [ buyy(e 70" du (o)
t
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In particular, for anyt < s we have

P(T> 5| Hy) = Npspye IRRIOLY (22)

and
P(t <T<S | Ht) = H{T>t} <1 —e j; y(v) dv). (23)

The following simple result appears to be useful.

Lemma 4.2 The process L given by the formula
L ™ =1 =N, Vie Ry, (24)
follows a H-martingale.

ProOOF: It suffices to observe that L coincides with the process M in-
troduced in Corollary 4.1. |

4.2 Applications to the Valuation of Defaultable Claims
Let us fix 7' > 0. We assume that the continuously compounded interest

rate r follows a nonnegative deterministic function so that the price at
time ¢ of a unit default-free zero-coupon bond of maturity 7" equals

T
BU,T)=c o "%  wieio,T].
Our goal is to find quasi-explicit expressions for “values” of certain de-

faultable claims. Let us assume that Y = 1 <py A(7) + Loy c,
where ¢ is a constant. If T' is continuous then (20) yields

T
B(Y | Hy) = Lir<pyh(7)+ n{7>t}</ h(u)eW)*F<“>dr(u)+ceF<t>*F<T>).
¢

Similarly, for a fixed ¢ < T denote by Y; the random variable (discounted
payofl at time )

T T
Y, =Mcpy M(T)e Jorey e + 1 sy ce oy (25)
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If ' is an absolutely continuous function, then we get
E(Y:|H,) = ﬂ{Tgt}h(T)eff r(v) dv
T . .
+]1{T>t}</ h(u)'y(u)e*ft #(v) dv du—l—ceift #(v) gly)7
t

where #(v) = r(v) + y(v).
(a) The case of a defaultable zero-coupon T-maturity bond with zero

recovery corresponds to h = 0 and ¢ = 1 in (25). If we denote the
“value” at time ¢ of such a bond by D°(¢,7) then we have

T
DOET) = Ngpmgpe Jo TP gy e o, 71,
(b) Assume now that » = § for some constant 0 < § <1 and ¢=1. Put
more explicitly, we consider the random variable Yt‘S which equals

T r(v) dv.

V= irepy be L% pa gy e

In this case, for D? t,T) = E(fft‘s | H,) we get
Eé(t,T) = ﬂ{Tgt}(Seﬁ r(v)dv

T . -
+ﬂ{7—>t} (5/ h(u)'y(u)e*j; #(v) dv du—l—ce*ft #(v) dv).
t

Notice that D° (t,T) represents the value at time ¢ of a T-maturity de-
faultable bond which pays a constant payoff § at time of default, if default
takes place before maturity date 7.

(c) Let us finally consider the following random variable

T
VY= Uer6+1ary)e Jorwe B(t,T)(1 <16+ 1 ooy ).
Equivalently, we have

T r(v) dv
?

T T
3/156 _ H{TST}567 fT r(v) dvef j; r(v) dv + ]1{7—>T}€7 j;
T r(v) d
and the last expression leads to h(7T) = de INLOL
(25). The above specification of Y;° corresponds to a defaultable zero-
coupon T-maturity bond with fractional recovery of par. This means

,c=1, in formula
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that the bond pays § at maturity 7" if default occurs before maturity (oth-

erwise, it pays the face value 1). For the value D’(t,T) = B(Y? |'H,)

of such a bond we get
DY (t,T) = N (,< 6B(t,T)

T r
+H{T>t}5B(t,T)<1 — 6711‘5 () dv) + H{T>t}67L 7(v) d’u.

4.3 Martingale Property of a Continuous Hazard Func-
tion

We shall first consider a very special case, when the cumulative distribu-
tion function F' is an absolutely continuous function, that is, when the
random time 7 admits the intensity function . Our goal is to provide
the martingale characterization of . To be more specific, we shall check
directly that the process

tAT

t
M, = Nt—/ () 1 ey e = Nt—/ () du= Ny—T({AT) (26)
0 0

follows a H-martingale. To this end, recall that by virtue of (17) we
have

F(s) — F(t)

E(Ns — N |He) = 1 (onpy EEON

On the other hand, if we denote

B s B SAT f(u) B 1—F(t/\7—)
Y_/t V(U)ﬂ{ugr}du—/w 1— F(u) du_lnl—F(s/\T)

then obviously Y =1l ;.4 Y. Using (13), we get

BY|Hy) = 1imy % o v(ui(i - (f;)(u))du
F(s)— F(t)

= 1 _—
>0 TR
This shows that the process M defined by (26) follows a H-martingale.

Lemma 4.3 Assume that F(t)=1—¢ Jo ) ae for some function vy :
R, — IR.. Then the process M given by (26) follows a H-martingale.
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It appears that Lemma 4.3 remains valid when F' is merely continu-
ous. More precisely, we have the following result.

Proposition 4.1 Assume that F (and thus also T') is a continuous func-
tion. Then the process My = Ny — U'(t AT) follows a H-martingale.

PROOF: For sake of brevity, we prefer to make use of Lemma 4.2, rather
than to rely on direct calculations. It is clear that M is H-adapted.
Using It6’s formula, we obtain (notice that I' can be seen as a continuous
process of bounded variation)

t
Li=(1-N)e'® =1 +/ " (1= Ny)dl'(u) —dN,).  (27)
0
This in turn yields

£ t
M;=N;—T(tAT) = / (dN, — (1 — N,) dl'(u)) = —/ e "W dr,,,
0 0

and thus M is a H-martingale. O

In the general case, that is, when F' is no longer assumed to be a
continuous function, we denote by F(t—) = P(7 < t) the left-hand side
limit of F' at ¢.

Proposition 4.2 The process (My;t > 0) where

M, N, _/ _dF(s) (28)
10,770 1 — F(s—)

is a H-martingale.

PROOF: From Lemma 4.1, for t > s
E(Nt—NS|HS) = E(ﬂ{s<7—§t} |Hs)
= H{S<T}A + H{Tgs} E(H{S<T§t} |H00) = H{S<T}A'
We have proved that the constant A is equal to
P(s<1<t) F(t)—F(s)

P(s<Tt)  1-F(s)
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On the other hand,

dF(u)
E(/ —‘Hs):ﬂsrgsv
17 A8, T AE] 1— F(u_) te<} ( )
where

9(s) = 17 ;(S)E (tio<rs /]m,m] I j?(g—))

_1-F(@) dF(w) 1 dF (u)
11— F(s) /M 1—F(u—) 1-F(s) /M dF(v )/ — Flu—)’

(
Ft) - F(s)
T1—F(s)

Applying Fubini’s theorem, we conclude that g(s) = O

Proposition 4.3 Assume that T' is a continuous function. Then for
any (bounded) Borel measurable function h: IR, — IR, the process

tAT
M= gecihtr) = [ hw)dra) (29)
0
is a H-martingale.

ProOF: Notice that the proof given belows provides an alternative proof
of Proposition 4.1. We wish to establish through the direct calculations
the martingale property of the process M M given by formula (29).

First, formula (20) in Corollary 4.2 gives

I:=FE(M7)Ltaresy | He) = n{7>t}eF<t>/ h(u)e™ " dr(w).
t

On the other hand, it is obvious that

J = E(/tA Bu) dU ()| He) = B (rercay +h(5) oy | Ho)

AT

where we set h(s) = f: h(uw) dl'(u). Consequently, again by (20)

J=lppe’® (/ h(u)e " d(u) + efF(S)B(s)).
¢
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To conclude the proof, it is enough to observe that Fubini’s theorem
yields

/t T T /t " h(v) dU () dT () + e~ TOR(s)

/: h(u) /u e T dr (v) dT (u) 4 e 1) /25 h(u) dT(w)
/t " B(w)e T dr(u),

as expected. O

Observe that the last property follows also from Proposition 4.2 com-
bined with the fact that the integral with respect to the martingale M
of any predictable process is a martingale.

Corollary 4.3 Let h: IR, — IR be a (bounded) Borel measurable func-
tion. Then the process

AT
NP = exp (1L <3 h(7)) — / (M) _ 1) dT'(u) (30)
0
is a H-martingale.

PRrROOF: In view of the preceding result applied to e” — 1, it is enough
to observe that

exp (ﬂ{Tgt}h(T» = H{Tgt}eh(T) + Lipn = H{Tgt}(eh(T) — 1) +1.

O

The natural question which arises in this context reads: does the
martingale property of the process M introduced above uniquely char-
acterize the intensity function (or, more generally, the hazard function)
of 77 To examine this problem, it is useful to notice that the process
Ay = Tt A7) satisfies: (i) A is an increasing, right-continuous, H-
adapted process, and (ii) N — A is a H-martingale. It is thus clear that
A is a dual predictable projection (or H-compensator) of the increasing,
right-continuous, H-adapted process N. We shall see that the answer
to the question above is positive when the hazard function I' is a con-
tinuous function. Otherwise, the answer appears to be negative, that
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is, the H-compensator A of IV does not specify the hazard function I"
through the relationship A; = I'(f A7), in general. Indeed, when I' has
discontinuities then (27) takes the following form

Li = L0+/ (1 —N,)del'™ —/ ") AN,
10,¢] 10,¢]

that is (we write AT'(s) =T'(s) — ['(s—)),

L = 1+/ e (1= Nu) dl (u) — AN, )
10,¢]

bY (e e Ay,
s<t,s<T

Let us stress that both A and I' exist for arbitrary random time 7, and
are unique.

4.4 Representation Theorem

The following theorem is well known (see Brémaud [7]).

Theorem 4.1 Suppose that F is differentiable. Let Hy = E(h(T)|H;)
for some bounded Borel measurable function h : IR — IR. Then

H, = Ho + / Fo(u) dM,, (31)
10,¢]
where My = Ny — L(t A T), and the function h equals
h(t) = h(t) — 'O B(A(T)1 (5 py).

Proor: Observe first that Hy = FE(h(7)). Recall also that H; admits
the representation (cf. (20))

Hy = E(W7) | He) = Licny A7) + Ly Db(t), (32)

b(t) 2 B(1h(r)) = /t " () dF () = /t " h(u) f(u) du.
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If (31) holds for some function R, then on the set {t < 7} we have

t t
e = D) ~ [ Bs)i(s)ds = BE() - [ Bs)eT O f(s)ds,
0 0
and, in view of (32), H; also equals e!'*b(¢) on this set. By differentiation
of both expressions with respect to £, we obtain

—h(t) f(£)e" D = —e"Dn() f(2) + O £ (1)b(2).

The equality ﬁ(t) = h(t) — e"®b(t) is thus straightforward on the set
{t < 7}. Since the process H is manifestly continuous on this set, we
also have %(t) = h(t) — H, = h(t) — H,— on {t < 7}. In view of the last
equality, it is clear that on the set {r < t} the right-hand side in (31)
gives h(T), as expected. O

Notice that representation (31) can also be rewritten as follows (cf.
formula (58))

H = Ho+ /] () = H ) AM, (33)

4.5 Martingale Characterization of the Hazard Func-
tion

We shall now examine the general case, that is, we no longer assume
that 7 admits the intensity function 7y, that is, the probability law of 7
is not necessarily absolutely continuous. Let us notice that Ny = Nyar
(i.e., process N is stopped at time 7) and F(N;) = P(7 <t) = F(%).
Consider a function A : IR, — IR with A(0) =0.

Definition 4.2 A function A : IR, — IR is called a martingale hazard
function of a random time 7 with respect to the natural filtration H if
and only if the process N; — A(t A T) is a H-martingale.

The function A can also be seen as a F9-adapted right-continuous
stochastic process, where F is the trivial filtration, 70 = {0, Q} for
every t € IR, . We shall sometimes find it useful to refer to the martingale
hazard function as the F-martingale hazard process of a random time
7. The reason for this convention will become clear in Section 5.3, where
the notion of a F-martingale hazard process with respect to a non-trivial
filtration F is examined.
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Proposition 4.4 (i) The (unique) martingale hazard function of T with
respect to H is the right-continuous increasing function A given by the
formula

B dF(u) dP(T < u)
AY) = /M s = /M ey VieR. ()

(ii) The martingale hazard function A is continuous if and only if the
c.d.f. F is continuous. In this case, A satisfies A(t) = —In(1 — F(%))
(equivalently, F(t) =1 — e AD),

(i) The martingale hazard function A coincides with the hazard function
T if and only if F' is a continuous function. In general

et = =A%) H (1 — AA(w)), (35)

0<u<t

where A°(t) = A(t) — D ogcn<: AN (1), and AA(u) = A(u) — Alu—).
(iv) If F is absolutely continuous then

A =T = [ f(1 = Fu) (36)
PRrROOF: The definition of A implies that E(N;) = E(A(t A T)), L.e.,
Flt) = A) | M)+ A0 = F(0) (37)

and thus A follows a right-continuous function. Moreover, if A; and Ao
are right-continuous functions which satisfy (37) then for every ¢ € R

/]0 . (A1 () = Ag(w)) dF (u) + (A1 (1) — A2(2)) (1 = F(2)) = 0.

This shows that the martingale hazard function A, if it exists, is unique.

To establish (i), it is enough to check that for any ¢ < s we have® (cf.
(17))
F(s) - F(t)

E(NS_Nt|Ht):]1{T>t} 1_F(t)

= E(Y|Ht)7

5This property was already proved in Proposition 4.2. The proof provided here is
based on slightly different arguments, however.
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where we have set

dF(u)
JEAT,SAT] 1- F(u_) .
It is clear that ¥ = 1l {;~, Y. Therefore, using (13), we obtain

Y =

EY
B |H)=E(L Y[ He) = 1y 1—(—F()t)

Furthermore

B dF(u) dF(v)
EY)=P(T>s) 473] T Fiay Flu) —0—475] A&u] T Foo) dF(u)

and thus

BY) = (Als) = A@0)(1 = F(s)) +/ (A(w) = A@R)) dF (u)

Jt,s]

= (A(s) = A@®)(1 = F(s)) = AO)(F(s) — F(1)) + / A(w) dF (w).

Jt,s]

The integration by parts formula yields

/]t A () = A F(s) = AOF(0) - / Fu—) dA(u).

Jt,s]

Finally, it is clear from (34) that
/ Fu—) dA(u) = A(s) — A(t) — F(s) + F(2).
J¢,s]

Combining the equalities above, we find that FE(Y) = F(s) — F(t) for
every ¢ < s. This completes the proof of (i). Statements (ii)-(iv) are
almost immediate consequences of (i) and the definition of a hazard
function. Let us only observe that at any point of discontinuity of ' we

have

def

AAE) Y A — A(—) = LW = FU2)

1—F(t—)
On the other hand, for the hazard function I" we obtain

earm — ~ro-re-n = L2 PO gy @y
=7 (i)
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This shows that the martingale hazard function A and the hazard func-
tion I' cannot coincide when F is discontinuous. In view of (38), relation-
ship (35) is also easy to establish. As was already mentioned, the notion
of a martingale hazard function is closely related to the H-compensator
of 7 (or rather, the H-compensator of the associated jump process N).
Let us first recall the definition of a compensator of an increasing process.
In our context, it can be stated as follows.

Definition 4.3 A process A is called a H-compensator of the jump pro-
cess N if and only if the following hold:

(i) A is an H-predictable right-continuous increasing process, 49 = 0,
(ii) the process N — A is a H-martingale.

Using the well-known result on the existence and uniqueness of the
Doob-Meyer decomposition with respect to the filtration H which sat-
isfies the ‘usual conditions,” it is easy to check that a process A is a
H-compensator of the jump process N if and only if A, = A(t A7),
where A is the martingale hazard function of 7. Therefore, we have the
following result.

Lemma 4.4 The unique H-compensator A of a random time T is given
by the formula

dF(u)
A:/ _MW  _AuAT), Yie R, 39
"7 Joinr L= Flu—) EA) i (39)

PrOOF: In view of the definition of the martingale hazard function and
Proposition 4.4, it is enough to check that the process A; = A(t A7),
is H-predictable. But this is obvious, since { — ¢ A 7 is a continuous
H-adapted process, so that it is H-predictable. O

Combining part (ii) in Proposition 4.4 with Lemma 4.4 we get im-
mediately the following corollary.

Corollary 4.4 The hazard functionI' of T is related to the H-compensator
A of the jump process N through the formula A, = T'(t A7) if and only
if the cumulative distribution function F' of T is continuous.
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4.6 Duffie and Lando’s Result

We shall examine a model studied in Duffie and Lando [19]. They assume
that 7 =7 =inf {t > 0 : V;, = 0}, where the process V satisfies

dVy = u(t, Vy) dt +o(t,V;) dWy, Vo=1v> 0, (40)

where W is a Brownian motion. Suppose there is a risky asset and a
riskless one with zero rate, such that there exists a unique equivalent
martingale measure on Fp. Then, any Fp-measurable square-integrable
r.v. is the terminal value of a self financing strategy, and we shall say
that the market is Fp-complete. The price of the defaultable zero-coupon
bond would be Eq(ll;r<r,) in this Fr-complete market, () being the
risk neutral probability, and the hedging strategy would be similar to the
case of barrier option. The time 7y is a stopping time with respect to
the Brownian filtration F;, = o(W, s < t). Therefore, it is predictable
in that filtration and admits no intensity. We shall discuss this point
later.

Here, we suppose, as in [19], that the agent will observe default when
it happens but will have no knowledge of V' before default has occured.
In this case, when the default has not yet appeared, the value of a zero-
coupon is given in terms of the hazard function of NV as exp (I‘(T) -

dF(s)
I‘(t)), where dI'(s) = T—F(s)
continuous). The next result is a general fact and remains true for any
default time, without any additional hypothesis.

and F(s) = P(t < s) (assumed to be

Proposition 4.5 Let V be a diffusion whose dynamics are given by (40)
and T a stopping time which models the default time. The hazard function
of T in the filtration H is T'(t) = —1In(1 — F(t)), and the value of a
defaultable zero-coupon bond is

T
Ht) _ ]1{7—>t} e j; (r(s) ds+dF(s)>

?

T
E(eiﬁ r(s)ds H{T<7—}

where r is the deterministic interest rate.

Duffie and Lando [19] have shown that the intensity function of 7
equals

A\t = 502(15,0)2—5(15,0),
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where ¢(t,z) is the conditional density of V; when ¢ < 7, ie., the
PV, <zt <m)

P(t < 7'0)
tween Duffie-Lando’s and our result is obvious. In fact, Duffie and Lando
represent A(f) in the following way

derivative with respect to z of . The equivalence be-

1 oo}
Alt) = lim ———— PV, edx,t P, h 41
()= Jim s | P dnt<mPim<n) ()

1 0
and they establish that this limit is equal to 502(15,0)6—('0(15,0). The
4
right-hand side of (41) can be written as

1 (e 0]
—_— P(V; € dzx,i 1— Py(h
hP(t<To)/0 (Vi € di,t < 70)(1— Po(h < 7))

- m<P(t<To)—/OOOP(Vt ed:c,t+h<70))
/)

P(t<7'0)—P(15—|—h<7'0)):1_—F(t)7

hP(t < To)(

1 0
which is our result. The proof that the limit in (41) is 502(15,0)6—('0(15,0)
x
is quite complicated, however. Duffie and Lando prove first this result
for a Brownian motion, then for the Ornstein-Uhlenbeck process, and
finally for more general diffusion processes. See also [22] for another

proof.

4.7 Generalizations

We give here some ideas how to extend the previous model.

4.7.1 Successive default times

First, the previous results can easily be generalized to the case of suc-
cessive default times. We reproduce here the result of [9]. Let 7 be
successive times of default, Ny = >, (7, <;; and H the canonical filtra-
tion of IV. Let us introduce T} = 7, — 7%_1. Then, the process N; — A;
is an H-martingale, where

Ar=o(T)+. o4+ (Ths . T2 Toot) + O (Th, ., T3 t = T,)



46 MoODELLING oF DEFAULT RISK: AN OVERVIEW

on 7, <t < Tpe1, and

dFy(s1,...,5%-1;5)
tr,....te13t) =
gbk( 1 k—1 ) /]0725] 1_Fk(817...78k71;‘9—)

Fk(tl,...,tkfl;t) = P(Tk S tlTl :tl,... 7jjnfl :tnfl).

4,7.2 Partial observations

Let us assume that the agent observes H,; as well as the prices (or the
value of the firm) at some discrete times, say for each time t; < t3 <
... < tg. The information of the agent is G, = H, V o(5,,tr < t). Let
G be a G-adapted process. Then,

Glljiery = Npery Z -1l <ret)s
k

where gy, is (S, ,j < k)-measurable. The G-intensity of default is de-

tAT

fined as the G-adapted process A such that N;— [, dA, is a martingale.

dF
The same method as in the previous section leads to dA, = (5)

11— F(s—)’
where F(s) = P(T < 5| 0(S;,,t; < 5)).

5 Hazard Processes of a Random Time

In this section, previously introduced concepts are extended to the case
when a larger flow of information — formally represented by a filtration
F —is available. Generally speaking, our goal is to examine formulae for
the conditional expectation of the form F(Y |G;), where G, = F, V H,
(at least for certain classes of G-measurable random variables Y).

5.1 Conditional Expectations w.r.t. an Arbitrary
Filtration

As before, we denote by 7 a nonnegative random variable on a probability
space (§,G, P), such that P(t = 0) = 0 and P(r > t) > 0 for any
t € IR, . As usual, we introduce a right-continuous process N by setting
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N; = ll{-<¢;, and we denote by H the associated filtration: H; = o(IV,, :
u<t).

We assume that we are given a natural filtration of a certain Brownian
motion F and we define G = HVF, that is, G, = H;V F; for every t.% For
each t, the o-field G; is assumed to represent all observations available
at time .

The process N is obviously G-adapted, but not necessarily F-adapted.
In other words, 7 is a G-stopping time, but not necessarily a F-stopping
time (see [50] for a more general case).

Proposition 5.1 F;, C G: =H: VvV F: C G/, for every t € IR, , where

G: Y {aeg|aBeF An{r>1}=Bn{r>1}).

Foranyt € IR, and for any event A € HooVF; we have AN{T <1t} € G;.

Proor: Observe that G, C H, vV Fy = o(Hy, Fi) = o({7 < u}l,u <
t, 7). Also, it is easily seen that the class G; is a sub-o-field of G.
Therefore, it is enough to check that if either A = {7 < u} for some
u<tor A€ F, then there exists an event B € F; such that AN {7 >
t} = BN {7 >t}. Indeed, in the former case we may take B = {}, in the
latter B = A. |

5.1.1 Hazard Process I'

For any ¢t € IR, , we write F; = P(1 <t¢|F;), so that 1 — F, = P(1 >
t|F). Tt is easily seen that the process F' (1 — F, resp.) is a bounded,
nonnegative F-submartingale (F-supermartingale, resp.) We may thus
deal with the right-continuous modification of F. The next definition is
a straightforward generalization of Definition 4.1.

Definition 5.1 Assume that F;, < 1 for every ¢ € IR,. The F-hazard
process of 7, denoted by T, is defined through the formula 1 —F;, = e T'¢,
or equivalently, I'y = —In (1 — F}) for every t € IR..

SRecall that all filtrations are assumed to be (P, G)-completed. We assume also
that the enlarged filtration G satisfies the ‘usual conditions.’
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In Section 5.1, we assume throughout that the inequality F; < 1 holds
for every t, so that the F-hazard process I' is well defined. It should be
stressed that the case when 7 is a F-stopping time, is not examined in
this section.

5.1.2 Conditional Expectation F(l;,~,Y |G;)

We start with the following result, which is a generalization of Lemma
4.1.

Lemma 5.1 For any G-measurable bounded random variableY we have,
for anyt € IR,
E(l;>nY | F)

E(lir>pY|G) = Ly P(r >t] Fy)

= sy B(llirspy Y| F), (42)
foranyt <s
Plt<1<s|F)
P(t < = 1
( <T_S|gt) {T>t} P(T>t|ﬂ)
= Dy B(1—€" T | 7). (43)
Bl s Y[G) = Nirsy B(YT oo™ | F). (44)
and for any F,-measurable random variable X we have
B ag X |Ge) = Lpngy B(Xe" M | F). (45)

PROOF: The proof follows from the remark that the restriction to the
set {7 > t} of any G;-measurable random variable represents a F-
measurable random variable. Formula (45) follows from

B(Lisg € X | F) = EB(e"" X E(L ;54 | Fs) | ). O

5.1.3 Applications to Defaultable Bonds

The following formula, which is a simple consequence of (44), will prove
useful is some applications. Let § be a constant. Then for arbitrary
G-measurable random variable Y we have,

Bl i<y 8411550 Y [G) =0 P(T < 8[G)+ Lirng B(L (7245, Y[ G),
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so that

E(Ml;<p 6+ 156 Y|Gy)
=6(1— Loy B(1—e" T

F)) + Loy B(L (rsgy €7V | F).
If Y is F;-measurable then we may rewrite the last formula as follows

EB(Liresp 6+ Lirnsy Y |Ge)
=0l fres + 6y B(1—€* e

F) + Lprsy Ble" DY | ).

5.1.4 Conditional Expectation E(Y |G,)
It is easily seen that
Lir<n B(Y |G) = E(lir<pY | Hoo V F2). (46)

First, G: = H; V F; C Hoo V F;. Furthermore, for any A € Ho V F; we
have

/E(HDY|HOO\/]-})CZP = /llDYdP
A A

de:/ B(Y | G) dP
AND AND

_ / Lo B(Y | G,) dP,
A

where we write D = {7 < ¢}. Notice that the random variable 1p E(Y|G;)
is manifestly G;-measurable, and thus it is also H, V Fi-measurable. We
conclude that (46) holds.

By combining (46) with (42), we obtain the following result (notice
that formula (47) is a straightforward generalization of equality (13)).

Lemma 5.2 For any G-measurable random variable Y we have

E(Y|G) = Nirayy B(Y |Hoo VF) + Lirny B(Lirngy €Y | F). (47)

The following corollary is useful in calculations related to defaultable
claims.



50 MoODELLING oF DEFAULT RISK: AN OVERVIEW

Corollary 5.1 Assume that F (and thus also T') follows a continuous
process of bounded variation. Let Y = h(T) for a (bounded) Borel mea-
surable function h : IR, — IR. Then

B(Y |G) = reyy h(r) + ]1{7>t}E</ A()e"s Tl | 7). (48)
t

Let Z be a F-predictable process. Then for anyt < s

) . (49)

E(Z 1 f1er<sy |Gt) = H{T>t}E</ Zye et dr,
t

Proor: Equality (48) follows from (47). Indeed, in view of (47), it is
enough to check that the following equality holds

B(lp h(7) | F) = E(/tooh(u)epudl“u

E(/tooh(u)dF )

where the second equality is a consequence of the equality dF, = e = dT',
which holds when T' is a continuous process of bounded variation. We
consider first a stepwise function h(u) = 7 o hillp, ., ,j(u), where,
wlog,fo=1<--- <ty =00.

Then we have (we use here, in particular, formula (45))

E(lgsnh(M|F) = D B(E(sghily, 00 F) | F)
=0
= B(Y hF, - F)|R)
=0
n 7-+1
_ E(Z/ (u) dF, t)
=0

8

:E( h(w) dF, )

The proof of (49) is similar. We start by assuming that Z is a stepwise
process, so that (we are interested only in Z, for « > )

n

Zy = Z Zti n[ti7ti+1] (u)7
=0
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where 9o =1 < -+ < {41 = 00. Using Lemma 5.1, we obtain

E<I{ti§7<ti+1}ZT |gt> = H{T>t}eptE<I{ti§7<ti+1}zti ft)'

Then we proceed along the similar lines as in the first part of the proof.
O

5.1.5 Martingales Associated with the Hazard Process I

Lemma 5.3 The process Ly = l;se" = (1 — Np)elt follows a G-
martingale.

PrOOF: It is enough to check that for any ¢ < s
E(l 556 [Ge) = Lppnppe e
In view of (44) this can be rewritten as follows
Lirngp € B(Lagp e | Fr) = Lpngel.
To complete the proof, it is enough to observe that

E(1ag € | F)=E(E(L fas | Fo) | F) = 1. O

In the next result, we deal with the continuous case, that is, we as-
sume that I' is a continuous process. The following result is a counterpart
of Propositions 4.1-4.3.

Proposition 5.2 Assume that the F-hazard process I' of a random time
T follows a continuous process of bounded variation. Then the process
M, = Ny—Tynr follows a G-martingale. Furthermore, for any (bounded)
F-predictable process Z the processes

tAT
MZ =271 <y —/ Z dl, (50)
0

O/fld EAT
M = exp (Lgr<n Zr) = / (e% —1)drI, (51)
0

are G-martingales
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PROOF: The martingale property of M can be shown using the same ar-
guments as in the proof of Proposition 4.1, that is, Itd’s lemma combined
with Lemma 5.3. To show the martingale property of M?Z , we proceed
along the similar lines as in the proof of Proposition 4.3 (making use of
formula (48) in Corollary 5.1, rather than of Corollary 4.2). Finally, it
is clear that (51) is an easy consequence of (50). O

Remark 5.1 If the continuous process I' is not of bounded variation,
formula (27) becomes

¢
L,=(1- Nt)eFf =1 —l—/ el ((1 — Ny) (dly + (1/2){T)y) — dNu)
0
and it is no longer true that Mis a G-martingale.

5.1.6 F-Intensity of a Random Time

Let us consider the classic case of an absolutely continuous F-hazard
process I'. We assume that I'; = fot Yy du for some F-progressively mea-
surable process 7, referred to as the F-inlensily of a random time 7. By
virtue of Proposition 5.2, the process M given by the formula

EAT ¢
M; = N; — / Vo dts = Ny — / s Yo du (52)
0 0

follows a G-martingale. The property is frequently used in the financial
literature as a definition of a F-intensity of a random time. The intuitive
meaning of the F-intensity v as the “intensity of survival given the in-
formation flow F” becomes clear from the following corollary. However,
in this general setting, v is not necessarily a positive process.

Corollary 5.2 If the F-hazard process I' of T is absolutely continuous
then for anyt < s

P(T>8|G) = Wpapy E(e” J7 e | )

and s
Pt<T<s|G)= ﬂ{r>t}E<1_ei‘ft T |Ft>'
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Remark 5.2 Since obviously the F-hazard function I' is not well defined
when 7 is a F-stopping time (that is, when H C F so that G = F),
Corollary 5.2 cannot be directly applied in such a case. However, it
appears that for a certain class of a G-stopping times we can find an
increasing G-predictable process A such that for any £ < s

P(r>81G0) = Liragy B2 G) = Lipagy Ble 1] g),

where the second equality holds provided that the process A is absolutely
continuous. It seems natural to conjecture that the process A (formally
introduced in Section 5.3) always represents the F-hazard process of T
for some filtration F such that 7 is not a F—stopping time. From this
viewpoint, the notion of a martingale hazard process could be seen as a
purely technical tool which allows us to find the ‘natural’ hazard process
of 7.

5.2 Hypothesis (H) and Extensions
5.2.1 Hypothesis (H)
We shall now examine the hypothesis (H) which reads:

(H) Every F square-integrable martingale is a G square-integrable mar-
tingale.

This hypothesis implies that the F-Brownian motion remains a Brow-
nian motion in the enlarged filtration. It was studied by Brémaud and
Yor [6] and Mazziotto and Szpirglas [42], and for financial purpose by
Kusuoka [33]. This hypothesis is quite natural, despite its technical form.
It is equivalent to:

(H*) For any t, the o-fields F,, and G; are conditionally independent
given F;.

This can be written in any of the equivalent forms (see, e.g. Del-
lacherie and Meyer [16]) :
(H1) VF€EFu, VG €G, FE(FG,|F)=EF|F)EG,|F)
(H2) Vi>0, VG €G, FE(G|Fx)=EG|F)
(H3) Vi>0, VF € Fs, E(F|G)=EF|F).
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Lemma 5.4 In our setting, (H) s equivalent to the following condition
(H)
Vs<t, P(r<s|Fx)=Plr<s|F). (53)

Proor: If (H2) holds, then (53) holds too. If (53) holds, the fact that
H, is generated by the sets {7 < s},s < t proves that Fo, and H; are
conditionally independent given F;. The property follows. This result
can be also found in [15]. O

Remark 5.3 (i) Equality (53) appears in several papers on default risk,
typically without any reference to the (H) hypothesis. For example, in
the Madan-Unal paper [41], the main theorem follows from the fact that
(53) holds (See the proof of BY in the appendix of their paper). This is
also the case for Wong’s model [57].

(ii) If 7 is Foo-measurable, and if (53) holds, then 7 is an F-stopping time
(and does not admit intensity). If 7 is a F-stopping time, equality (53)
holds. Though condition (H) does not necessarily hold true, in general,
it is satisfied when 7 is constructed through a standard approach (see
Section 7 below).

5.2.2 Representation Theorem

For the case of the filtration F is generated by a Brownian motion
Kusuoka [33] establishes the following representation theorem.

Theorem 5.1 Any G-square integrable martingale admits a representa-
tion as a sum of a stochastic integral with respect to the Brownian motion
and a stochastic integral with respect to the discontinuous martingale M.

Proor: It suffices to prove that any r.v. of the form X = (1 — ;) Fy,
where s < t and Iy € F;, can be represented as the sum of two stochastic
integrals. From the equality X = Lie T*F;, and the representation
theorem in the filtration F, we obtain X = (1 + fos Uy Ly dM, ) (E(F) +

¢
fo YudBy). O

In this case, the defaultable market is complete as soon as there
are a riskless asset and two tradable risky assets, for instance: an asset

modelled through a geometric Brownian motion and a defaultable zero-
coupon bond.
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5.3 Martingale Hazard Process A

In view of Proposition 5.2, it is natural to adopt the following definition
of the F-martingale hazard process of a random time.

Definition 5.2 A F-predictable right-continuous increasing process A
is called a F-martingale hazard process of a random time 7 if and only
if the process N; — Ay nr follows a G-martingale, where G = F VvV H. In
addition, Ag = 0.

We shall first examine a special case when the F-martingale hazard
process A can be expressed through a straightforward counterpart of
formula (34). To this end, we introduce the following condition.

Condition (G) The process F; = P(17 < t|F;) admits a modification
with increasing sample paths.

It is clear that under the hypothesis (H) the process F admits a
modification with increasing sample paths, so that (G) holds. Notice
that F' is not necessarily a F-predictable process, however. We shall
study later the relation between the hypotheses (G) and (H). Also, we

shall give in Section 7 an example where the hypothesis (H) (and thus
also (G)) is satisfied.

Proposition 5.3 Assume that (G) holds. If the process A given by the

formula
A _/ dF, _/ dP(T <u|Fy) (54)
¢ 10,¢] 1—Fu, 10,¢] 1—P(T<u|fu)

is F-predictable, then A is the F-martingale hazard process of the random
time T.

ProOF: It suffices to check that Ny — Asx, follows a G-martingale, where
G = HVF. Using (43), we obtain for ¢ < s

Pt <T1<s|F)
P(r>t|F)

E(Ns_Ntlgt) P(t<7—§8|gt):ﬂ{7>t}

E(F,|F) — F

= Loy &
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On the other hand, for the process A given by (54) we obtain

E<As/\7 - At/\Tth) :E</

JEAT,SAT]

dF,
T ‘ gt) =Bl (754 Y| Ge),

where
def

dFy,
y R N 55
Afs/\r]l_Fu >t ( )
Furthermore, using (44), we get

E( ﬂ{r>t} Y|ft)
P(r>t]|F)

E( ﬂ{r>t} Y | gt) = ﬂ{r>t}

It is thus enough to verify that I = E(1li;54 Y| G;) satisfies

To this end, notice that

dr, dr,
E<H{T>S} / 1—F, + n{t<7’<s}/ 1—F,_ ‘ft)
I8 Jt,n7]
dr,
= I (ﬂ{7>s} / g 1 — ‘f) + ﬂ{t<7’<s}At ] 1—F, ‘ft)

(2
(0~ /s_uf I
(-

J(As — Ag) + / (Au — A)dFE,
1¢,s]

1

= F

):E(FS—FtU-})

where the last equality can be derived along the similar lines as in the
proof of part (i) in Proposition 4.4. O

The formulae established in Corollary 5.1 are still valid under the
hypothesis (G). More specifically, we have the following result, which is
a consequence of Corollary 5.1 combined with Proposition 5.3

Corollary 5.3 Suppose that (G) holds, and F, = P(t < t|F) is a
continuous process. Then T'y= A, = —1In(1 — F;) for everyt € IR,.

(i) Let Y = h(1) for some Borel measurable function h : Ry — IR.
Then

B(Y1G0) = Tgrei h(r) + Tiroes B / h(u)ee
t

]—"t). (57)
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(i) Let Z be a F-predictable process. Then for anyt < s

]—"t) ,
]—"t).

B(Z:1Ge) = Wiy Zr + ppery E(/ Zyet e da,
t

E(Z W (peresy |Gr) = H{T>t}E</ Zyett M dA,
t

5.3.1 Representation Theorem

We are in a position to extend Brémaud’s representation theorem.
Proposition 5.4 Suppose that hypothesis (G) holds and that F is con-
tinuous. Let h be a F-predictable process, and let Hy = E(h;|G,). Then,

the process H admits a decomposilion in a continuous martingale and a
discontinuous martingale as follows

tAT
H, =my +/ evdm, +/ (hy — Hy ) dM,, (58)
0 10,¢]
where m is a continuous F-martingale

m :E(/ hue*Fudru‘ft)
0

and M is a discontinuous G-martingale, namely, M; = Ny — U'ip ;.

PRrOOF: From (57) we know that

H,

E(hr |gt) - H{Tgt}hr + H{T>t}E</ hueptir‘udru ‘ Ft)
t
= Licphe + 1 Ar

From the martingale representation theorem for the Brownian filtration
it follows that m is a continuous F-martingale. Hence the It6 integration
by parts formula yields

t
Ay = eFfmt—eFf/ hye Tedl,
0

t t t
- m0+/ eF“dmu—l—/ mueF“dFu—/ hodl,,
0 0 0
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t U
- / el / hye Tedl, dT,
0 0
t t

= m0—|—/ eF“dmu—l—/(Au—hu)dFu.
0 0

Furthermore (notice that the process A is continuous)

tAT

tAT
H{T>t}At == / dAu — H{Tgt}AT == / dAu — H{Tgt}H .
0 0

Then, it follows that

EAT AT
Ht:mo—F/ eFudmu+/ (Au—hu)dl“u—kllhgt}(hT—HP)
0 0
Since A, = H,, for v < 7, we conclude that (58) is valid. ]

Remark 5.4 The process fOtAT el'“dm,, is a G-martingale (see below).
If F is a Brownian filtration, m can be written as a stochastic integral
with respect to the Brownian motion W. The process m is also a G-
martingale.

5.3.2 F-compensator of F'

Assume now that either (G) is not satisfied (and thus F' is not necessarily
an increasing process), or (G) holds (but the increasing process F is
not F-predictable). Ss the next result shows, the F-martingale hazard
process A can still be found through a suitable modification of formula
(54). In fact, the foregoing results were also derived in a more general
setting (see [32, 31]).

From now on, we do not need to assume that (G) holds. We write F
to denote the F-compensator of the F-submartingale F. This means that
F' is the unique F-predictable, right-continuous, increasing process, with
Fy = 0, and such that the process M = F' — F follows a F-martingale
(the existence and uniqueness of F' is a consequence of the Doob-Meyer
decomposition theorem).
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Proposition 5.5 (i) The F-martingale hazard process of a random time
T 18 given by the formula
dF;
A= / O (59)
10,6) 1 — Fu-
(i) If Fy = Fipy for everyt € Ry (that is, the process F is stopped at

T) then A =

PRrOOF: It is clear that the process A given by (59) is predictable. There-
fore, we need only to verify that Ny — A;4» follows a G-martingale. We
proceed along the same lines as in the proof of Proposition 5.3. In the
present case, it is enough to show that for any s > ¢

_ dF’ ~
I::E(/ —|R) = B(F, - £ | F) = E(F, - Fi| 7),
1t,8AT) 1—Fu-

where the second equality is obvious. Notice that for any F-predictable
process X we have

E(ﬂ{t<7§s} X |ft) = E( e Xu dﬁu
t,s

Consequently,
- dF, dF;
I = E<H{T>S}/ —+ﬂ{t<7’<s}/ —u‘ft)
I, ]1—F, 1esnr L= Fu-
dF;
- B(E(ten [ TfE) / )
{>}/]1_ + lpcr<sy snel L= Fu ¢
R A
t,s] 1_ u— t,s] J1t,u] 1_ v—
= (8 - A )+/ (Au — M) dF | 7).
J,s]

Since A is F-predictable and Mis a F-martingale, we have

):0.

E(/ (Ay — Ay) dD,
1t,s]
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Consequently, we obtain

—
I

)
(A= 8= R+ [ (A= A)d(F.— L)

Jt,5]
]—"t).

Our goal is to show that I= E(}NWS - F | 7). To this end, we observe
that

E((As—At)(l—Fs)+/ (A — Ay)dF,

J¢,s]

#)

E((As—At)(l—Fs)+/ (A — Ay dF,

J¢,s]

(Aw— Ay)dFy = —Ay(F, — Fy) + / Ay dF,.

1t,s] 1¢,8]

The Ito’s integration by parts formula yields

/ A dF, = AFy — A F, — / F,_dA, (60)
1¢,5] 1¢,5]

since A is a process of bounded variation, so that its continuous martin-
gale part vanishes. Finally, using (59) we get

/ FydAy=Ay — A — F, + F,.
Jt,s]
Combining the formulae above, we conclude that

(A — A)(1— F)) +/ (Au—A)dF = F— B (61)

J¢,8]
This completes the proof of part (i) of the proposition. Assume now that
Fipr = Fy for every t € IR, . This means that the process F; — Fy o is

a F-martingale. We wish to show t~hat if the process l\ft — F,, Tollows
a G-martingale, that is, E(N; — Fiar |G) = Ny — Fiar for ¢ < s, or
equivalently, £(Ns — N;|G) = E(}NWS/\T — Fynr |Gi). By virtue of (43),
we have

E(Ns — N, | F)

BN, = Ne| Go) = (1 = N =

(62)
On the other hand,

E(ﬁsAT — Fynr |G:) = E( ﬂ{7>t}(f~7's/\7- — ﬁt/\-r) | gt)
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E(ﬁs/\T _ﬁtArlft)

= (1-N) E(1—N.|F)
E(F, — F | F)

= (1-N) E(— N, | Ty
E(Ns; — N | F)

= (1—Nt)m7

where the second equality follows from (42), and the third is a conse-

quence of our assumption that the process F; — Fy, is a F-martingale.
O

Remark 5.5 Under assumption (H), the process F is never stopped at
7, unless 7 is a F-stopping time. To show this assume, on the contrary,
that F;, = Fyar. Under (H), the process F; — Fiar is not only a F-
martingale, but also a G-martingale. Since by virtue of part (ii) in

Proposition 5.5 the process Ny — Finr is a G-martingale, we conclude
that IV — F follows a G-martingale. In view of the definition of F, the
last property reads

E(Ns |Ge) — E(E(Ns | F5) |G) = Ne — E(N¢ | Fr),

for t < s, or equivalently

E(Ns — N:|G:) = E(E(N; | 7o) |Ge) — E(N¢ | Fe) =1, — . (63)
Under (H), we have (cf. (H')

Il = E(P(T§S|fs)|ft\/Ht)
= E(P(r < s8|Fo)| Ft VHy)
E(P(T < s|Fx) | Fr)

since the random variable P(7 < s|F,,) is obviously Feo-measurable,
and the o-fields F and H; are conditionally independent given F;.
Consequently, Iy = E(N,|F;). We conclude that (63) can be rewrit-
ten as follows: F(N; — Ny |G;) = E(Ns | F;) — E(N; | 7). Furthermore,
applying (62) to the right-hand side of the last equality, we obtain
E(Ns, — N, | F)
E(1— N | F)
By letting s tend to oo, we obtain N, = F(N;|F;), or more explicitly,

P(t < t|F) = ligr<q for every t € IR,. This shows that 7 is a F-
stopping time.

(1—2Vy) = E(Ns — N¢| 7).
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5.3.3 Value of a Rebate

The theory of dual predictable projection proves that the process F
enjoys the property that for any F-predictable bounded process h we

have -
E(hy) :E(/ hs dﬁs).
0

Indeed, working first with elementary predictable processes, one may
check that

E(h, | F) = E(/Ooohsdﬁs |]—"t) (64)

E(hr |gt) = hrn(rét) + H(T>t)E</t hueptdﬁu

]—"t). (65)

This property appears to be useful in the computation of the value of a
rebate

T
Bl <y hr) :E(/ h, dﬁs).
0

5.4 Brownian Motion Case

In all results of this section we assume that the filtration F is the natural
filtration of some Brownian motion. In this case, the decomposition of
any F-martingale in the filtration G is known up to time 7 (see Jeulin’s
and Yor’s papers [32, 31, 59]). For example, if IV is a Brownian motion
with respect to F, its decomposition in the filtration G, before the default

time 7, reads
tAT
—~ d(W, ),
T - T - 4
" " /0 1- st

where (WMT;t > 0) is a continuous G-martingale with the increasing
process £ A 7. We may thus interpret this martingale as a G-Brownian
motion stopped at time ¢. If the dynamics of a value of the firm V are
given by

d‘/t = ‘/15(7"15 dt + Tt th)

in a default-free framework, where W is a Brownian motion under the
e.m.m., the decomposition of V' with respect to the enlarged filtration
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G is AW, F)
s t Tir

—— 4+ o0, dW,

1—F, + 0 t)

provided that we restrict our attention to times before default. There-

fore, the default acts as a change of drift term in the dynamics of the

price process. Some examples will be given in Section 6.

dVy = Vi (re dt — o

In some examples, F' is a continuous increasing process. In this case,
the bracket (W, F) is equal to zero, and the F-Brownian motion W
remains a Brownian motion with respect to the filtration G up to time
7. Therefore, any F-martingale is equal to a G-martingale up to time
7. Moreover, the hazard process and the intensity process are equal.

5.4.1 Representation Theorem

The filtration F is assumed here to be the natural filtration of some
Brownian motion. On the other hand, in contrast to Proposition 5.4, we
no longer postulate that the hypothesis (G) is satisfied. On the other
hand, we still make an assumption that the process F' is continuous. Un-
der this set of assumptions, we get the following representation theorem.

Proposition 5.6 Let h be a F-predictable process, and Hy = E(h;| Gi).
Then, the process H admils a decomposilion in a conlinuous martingale
and a discontinuous martingale as follows

tAT
0 10,¢]

where B is a G-Brownian motion and M is the discontinuous G-martingale,
M= N¢ —Tipr.

PRrROOF: From (65) we know that

o, = E(hT | gt) = H{Tét}hT + H{T>t}E</ hueptdﬁu ft)
¢
= lgr<nphr + L ds.
def

The process v = F — FisaF martingale. Therefore, the process A can

be written as
A, = eFfE</ hudF, ]—"t) :eFtE</ hudF, ]—"t)
t t
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¢
= eFfmt—eFt/ h,dF,
0

where my = B( [ hudP,
formula yields

7—}) Hence the It6 integration by parts

t
Ay =mg + / e« (dmy, — hodF,)
0

¢ ¢ .
+/ AueF“(dFu+eF“d<F>u)—/ d<m—/ hydF,,e,.
0 0

0

Let us compute the bracket

d(m—/ hydF,, e, = erd<m—/ hydF,,T),
0 0

= e (d(m, F)s — hed(F)s).
It follows that

£
A, = mo +/ el (dmy, + € d(m, F)y,)
0

+ [ ) (F ),
0

The processes

¢ ¢
My = My +/ eFud<m7 Fyo, Vi=1; +/ eFud<V>u
0 0

are G-martingales, and they can be written in terms of gt/\T = Bipr +
d{B,F
fOtAT M Finally, we have
1-F;

o, = (hr - Hrf)ﬂ{q—gt} + mo
AT EAT
+ / ' (dimy + (Hy — ho)dDy,) +/ (H, — hy)e =dA,.
0 0

This completes the proof. O
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5.4.2 Relationship Between Hypotheses (G) and (H)

It appears that models in which hypothesis (G) holds are close to that
in which (H) is satisfied. More precisely, we have the following result.

Proposition 5.7 Suppose that the process F is continuous. The two
following conditions are equivalent:

(a) the process F, = P(T <t|F,) is increasing,

(b) if (Yy,t > 0) is a F-martingale, then (Yipr,t > 0) is a G-martingale.

Proor: If (G) holds, then the process Ky = E(ll;~, | F) is decreasing.
Therefore, the F-Brownian motion W remains a G-Brownian motion up
to time 7, and thus (b) holds.

If (b) holds, the bracket (W, F) is equal to zero. This implies that
the martingale part of I is equal to zero, therefore the supermartingale
F' is an increasing process. O

5.5 Uniqueness of a Martingale Hazard Process A

We shall first examine the relationship between the concept of a F-
martingale hazard process A of T and the classic notion of G-compensator
of 7 (or a dual predictable projection of the associated first jump process

N).

Definition 5.3 A process A is a G-compensator of T if and only if
the following conditions are satisfied: (i) A is a G-predictable right-
continuous increasing process, with Ag = 0, (ii) the process N — A is a
G-martingale.

It is well known that for any random time 7 and any filtration G such
that 7 is a G-stopping time there exists a unique G-compensator A of
T. Moreover, A; = A; -, that is, A is stopped at 7. In the next auxiliary
result, we deal with an arbitrary filtration F which, when combined with
the natural filtration H of a G-stopping time 7, generates the enlarged
filtration G.

Lemma 5.5 Let F be an arbitrary filtration” such that G = HV F.
(1) Let A be a G-predictable right-continuous increasing process satisfy-

7 As usual, we assume that F satisfies the ‘usual conditions.’
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ing Ay = Ainr. Then there exists a F-predictable right-continuous in-
creasing process A such that Ay = Ayar. (ii) Let A be a F-predictable
right-continuous increasing process. Then A; = Aipr 18 a G-predictable
righl-continuous increasing process.

The next proposition summarizes the relationships between the G-
compensator of 7 and the F-martingale hazard process A of 7. Once
again, F is an arbitrary filtration such that G=H V F.

Proposition 5.8 (i) Let A be a F-martingale hazard process of T. Then
the process Ay = Aipr is the G-compensator of 7. (ii) Let A be the G-
compensator of T. Then there exists a F-martingale hazard process A
such that A; = Appr.

Let us recapitulate the results above. First, for any random time 7
on some probability space (£,G, P), and an arbitrary filtration F there
exists a F-martingale hazard process A of 7. Furtheremore, it is unique
up to time 7, in the following sense: if A" and A? are two F-martingale
hazard processes of T, then A}, = A2, _. To ensure the uniqueness af-
ter 7 of a F-martingale hazard processes we need to impose additional
restrictions on A.

Assume now that we are given a G-stopping time 7 for some filtration
G. Then there exist several distinct filtrations F such that G = HV F.
Assume that G = HVF! = HV F2, and denote by A? a Fi-martingale
hazard process of 7. Then A}, = A, = A?AT. It seems reasonable
to search for the f‘—martingale hazard process where F is a ‘minimal’
filtration such that G = HV F.

5.6 Relationship Between Hazard Processes I' and A

Let us assume that I' is well defined (in particular, 7 is not a F-stopping
time). Under assumption (G), if the F-hazard process I' and the F-
martingale hazard process A are continuous processes then obviously
I'y = A, = —In(1 — F}). More precisely, under (G), the continuity of
I' implies the continuity of A and the validity of (54). On the other
hand, if the F-martingale hazard process A is given by (54), and A is a
discontinuous process, then necessarily A # T'.
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Recall that, if the F-hazard process I' is well defined, then for any
Fs-measurable random variable Y we have (cf. (45))

E(1 g Y |Ge) = g E(Ye

Fi). (67)

The natural question which arises is this context is whether we may
substitute I" with the F-martingale hazard function A in the formula
above. Of course, the answer is trivial (and positive) when it is known
that equality A =T is valid. For instance, this holds if condition (G) is
satisfied and I is a continuous process (recall that in this case A; =1y =
—1In(1—F})). If, in addition, the process A = I is absolutely continuous
then for any F;-measurable random variable Y

BE(Lrs0Y |G) = Ly E(Ye Joret 7). (68)

If the F-hazard process I' exists, but follows a discontinuous process
then the equality A = T' is never satisfied. More precisely, under (G), we

have
efe=e ] (1—AA), (69)

0<u<t

where A¢ is the continuous component of A, that is,

AZ=Ar— > AA,

0<u<t

The next result covers also the case when the F-hazard process I'
does not exist (for instance, when 7 is a F-stopping time). We shall work
directly with the F-martingale hazard process A. It appears that equality
(67) remains valid with I' replaced by A, provided that an additional
continuity condition is satisfied. Notice that for the process V' in formula
(70) below to be well defined, we need to specify the F-martingale hazard
process A not only up to 7, but also after 7. The proof of the next result
is almost identical to that of Proposition 3.2.

Proposition 5.9 Assume that the hypothesis (H) is valid and the F-
martingale hazard process A of T is a continuous process. For a fixed s >
0, let Y be a G;-measurable random variable. If the (right-continuous)
process V, given by the formula

Vi = E(YeAFAS

F), Ytelo,s], (70)
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is continuous at T, that is, AViar = Vspr — Vigary— = 0, then for any
t < s we have

Bl Y|G) = Ly B(YeM 2| G)). (71)
Remark 5.6 Let us restrict our attention to the case where F is a
Brownian filtration, as it is the case in these notes. Then

Byl e | 7)) =eMBE(Ye M | F).

The martingale F/ (Ye’AS ft) is continuous as any Brownian martingale
and e is continuous by hypothesis. Therefore V is a continuous process.

The following corollary provides a sufficient condition for the martin-
gale hazard process A to determine the conditional survival probability
of 7 given the o-field G;.

Corollary 5.4 Assume that the hypothesis (H) is valid. Let the F-
martingale hazard process A of T be a continuous process. For a fixed
s > 0, if the process V' given by the formula

V=B F), Yielo,s), (72)

is continuous at T, that is, AVsnr = Vipr — Vigar— = 0, then for any
t < s we have

P(r>s|G)= ]1{7>t}E(eAf’AS

Fr). (73)

6 Case where T is a F-measurable variable

Our aim is to study some particular examples, in which the hypothesis
(G) is not satisfied. Another example can be found in Kusuoka [33]. As
in Section 5.4, we assume throughout that F is the Brownian filtration.
We shall mainly study the last passage times.

6.1 Notation and Basic Results

Suppose that the dynamics of the value of a firm are

AV, = p(Vy) dt + o(Vy) dWy, Vo=v>0 (74)



M.JEANBLANC AND M.RUTKOWSKI 69

where 0 > 0 and that the interest rate r is equal to 0. In what follows, a
level a is considered. We denote by 7,(V) the first time when V is equal
to a:

T,(V)=inf{t >0 :V, =a}

with inf {#} = +co. When V is a transient diffusion, we introduce v,(V)
the last time where V is equal to a, that is,

Y (V) =sup{t>0:V,=a}.

If there is no ambiguity, we shall write briefly 7, = 7,(V), 7. = v(V).
For a fixed £, we shall also use the following random times

g: (V)
d; (V)

sup{s <t :V;=ua},
inf{u>t:V,=a}

The random time g} is the left extremity of the excursion which straddles
over t, or the last passage at the level a before time f. The random time
d? is the first passage at the level a after time . The random times
gf and 7, are obviously F.c-measurable; they are not stopping times,
however. On the other hand, the random times 7, and d¢ are F-stopping
times. Let u < {. The equality of events

{gf (V) <up ={7a(V) Supn{d; >t}

will be of constant use.

In the case ¢ = 0 and 0 = 1, the process V is equal to v + W, where
W is a Brownian motion and using results of Section 2.1.1 we get

(V) = t+inf{u>0: W, — W, =a—W;}
(Oé—Wt)2

~ l
= t+7—a7Wt a:wt+ G2

(75)

Here c = a—v and 7, = inf {u >0 : Wu = b}, where W is a Brownian
motion independent of F;, and G is a Gaussian variable, with mean 0
and variance 1, independent of .

Similar studies can be done for the process

dV, = V,(udt + o dW,), Vo =v,
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thanks to the following relationships

2
¢"(V) = swp{t<1:(u—)+oWi=In=}
= sup{t<1:vt+W,=a}

= sup{t<1: Wt:a}:go‘(W),

'ya(XN/) = sup{t: Wt =a},
where
1/—1( 0—2) a—llg<0 W, =vt+ W,
_au 27 o v ’ £ £

6.1.1 Valuation of Defaultable Claims

For simplicity, we assume that » = 0. Our aim is to compute the value
of a contingent claim with payoff G(Vr), where T is a fixed time, if the
default has not appeared before time T'. This payofl is made either at
time T or later (see below for details). The case where a payment of
h; is made at time 7 if the default has appeared before T', and where h
is some given F-predictable process is also taken into account. In this
setting, the value of the defaultable claim is the expectation of

G(VT)H{T<T} + th{TST} .

The value of the defaultable claim for a G-informed agent consists of
two components:

e Terminal payoff

The value of the terminal payoff is

E(G(Vp)llipery | Fe)
E(G(VT)H{T<T}|gt) = Iy E(1; >{t}T-;t)

— H{T>t}E(G(VT)€Ft7FT |f;g)

where e 1t =1 — F, = P(t > t|F;). In the special case when e 't =
¥(V;), we obtain, due to Markov property of V'

B(G(Vp)e "1 | F) =W(V;, T —t)
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with W(z,u) = E(G(VF)Y(VF)), where V® is the solution of (74) with
the initial value . In order to evaluate this part, the computation of
the intensity is not sufficient.

¢ Rebate

As we mentioned earlier, if 7 is a (bounded) F-predictable process then
T o~
E(hliecr<ry|Gr) = ﬂ{t<7}eFfE(/ hs dF|Fy).
¢

As we shall see in what follows, in many examples the process F evolves
as a local time ¢*(V'). In the particular case when ks = h(V;), the com-
putation of the rebate part can be done using the well known property

of the local time: fo V) d2(V) = h(a)l% (V).

6.1.2 Scale Function

Recall that a scale function for a diffusion V is a function s : IR — IR such
that the process s(V') follows a local martingale. In our se‘cting7 the scale
function for V' is known to satisfly s'(z) = cexp ( 2f0 dy)
where ¢ is a constant. In the case of constant coefﬁments /L and o, with
< 0and o >0, we may choose $(x) = exp ( — 2#0’23:), so that s is a
strictly increasing function and s(—o0) = 0.

Let (V) stand for the local time of V at the level a and L¥(Y) the
local time of Y = s(V) at the level y (of course, both V' and (V) are
continuous semimartingales). The density of occupation time formula
for Y leads to

[ s = /tf(Ys)d<Y>s= /Otf<s<vs>>[s'<xs>12d<x>s
— / f(s(a)) [5'(@)262(V) da

- /JR f(y)s'(s*(y))éi”(”<v>dy.

This shows that Ls(a)( ) S’(S(Cb)) gta(v)~
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6.2 Last Passage Time of a Transient Diffusion

Let V be a transient diffusion and s a scale function such that s(—oo) =0

and s(z) > 0. Let v, def sup{t > 0 : V; = a} be the last passage time
of V' at the level a. The value of the firm will never be at a after time
Ya-

6.2.1 F-compensator of N
We shall now focus on the explicit evaluation of the F-compensator of

the first jump process associated with the last passage time of a transient
diffusion.

Lemma 6.1 We have

e =Pl >t F) ==

LRI
L
2s(a) b 7

where L is the local time of the continuous semimartingale s(V).

The F-compensator of the process Ny = 1y, <4 148 ﬁt =

PRrROOF: These results are well known (see, for example, Yor [59], p.48).
We reproduce here the proof. Observe that

P(ra>t|1F) = P(infve<a|®)

Py (sup(=s(12)) > —s(a) | )

u>t

P (sup(-s() > —s(a) = SS((f)) AL

where the two equalities follow from the Markov property of V, and the
fact that if M is a continuous local martingale with My = 1, M; > 0,
and lim M; =0, then

t— o0

law 1
sup My = —,
>0 U
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where U has a uniform law on [0, 1] (see Revuz and Yor [47], Chap.2,
Ex.3.12). Tanaka’s formula implies that
Vi 1 s
s(Ve) A= M, — — @
s(a) 2s(a)
where M is a martingale and the needed result is then easily obtained.
O

6.2.2 Application to the Valuation of Defaultable Claims

In this section, we shall explicitly compute the value of a defaultable
claim in the particular case where V; = v + ut + oWy, with ¢ < 0. In
this case, the scale function is s(z) = exp(—2uo~2r). Recall that we

consider here the default time 7 = ~, def sup{t > 0 : V;, = a}. Note
that 2 A1 =1— (1 —2)T. Therefore, E(h(Vy)Zr | F) = O (V;, T — 1),
where

?

V(w,u)=E [h(x + pu+ oW, <1 _ (1 sz +Mu+0Wu))+>

s(a)

or equivalently,

U(z,u) = E[R(VE)]—E

u

.
h(VF) <1 - ?Z)exp—%(x—l—/LU-l-UWu)) ] )

where V.7 = x + pu + oW,,. In the case of a defaultable zero-coupon
bond with zero recovery, the computation reduces to the classic case of
a European option. Indeed, from the above computations

s(a) — E((s(a) — s(Vr))*™ | )
s(Vi) A s(a)

E(Lirory|Ge) = Lirsny
and the calculation of
B((s(a) (V)" | 7) = B (s(0) —exp [~ i—Z(v+uT+aWT)])+ %)
is the same as in the case of a put option in the Black-Scholes model.

In the other cases, even though the computations are sometimes heavy,
they only involve the Gaussian law.
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6.3 Last Passage Time Before Bankruptcy
We now assume that 7= g2 (V) =sup {t < 70 : V; = a}, where
T0 :To(V) :inf{tZO : Vt :0}

is the bankruptcy date, and v > a. Let ¢t = 0 and let 0 be a nonnegative
constant. Then

P(g5,(V) <t Fp) = P(d7 (W) > 7o(W) | F7)
on the set {t < 19(W)}, where we set a = Y79 his easy to prove that
o

P(dz(W) <10(W)| Fe) = 2(0Wirm(w)),
where the function ® : IR — IR equals

D(z) = Pt (W) <0(W)) = z/a for 0<z<a,
=1 for a<ux,
= 0 for x<O.

Consequently, on the set {79(V) > £} we have

— W, - + —WAT
E(gioétlft):(a a“") _la at) .

We deduce that the F-compensator of the process N; = ﬂ{ggogt} is
1 (07
At - %Lt (W)

6.4 Last Passage Time Before Maturity

In this section, we assume that a firm operates until time T+ ¢ = 0,
where T is a fixed time, and it promises to pay to the investors at date
6 the amount H (V). If the value of the firm remains between 7" and 6
above a level a, for some a < v, then the firm defaults and the payment of
H(Vr) at time 6 is not made. In this setting, the value of the defaultable
claim with a rebate given by the process h; is the expectation of

HVp)lipery + HV) L pvpsay Uir<ry +hellpvp<ay i<y
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where
T=sup{t<0:V,=a}=gf(V).

If Vi > a for every t < 0, we set 7 = 0. If the time ¢, which acts as a
delay, is equal to 0, the problem is easier, at least at time O, since in this
case the payoff is a Fj-measurable claim H(V1)1iy,5q1 + Rglliv, <a),
and we are reduced to a “digital” computation for the first part (we
shall explain later how to evaluate the rebate part). For simplicity, we
set 0 =1 in what follows.

6.4.1 Brownian Motion Case

We present here the case of a Brownian motion. If V' is a Brownian
motion with constant drift, the calculations can also be done, but they
are more involved.

e Computation of the intensity function

Working in the H-filtration is easy, since we need only to know the
probability law of the random variable g =sup {t < 1 : W; =0}, where
the Brownian motion W starts from 0. It is well known that g follows a
arcsine law, i.e.,

F(t)y=Plg<t)= %Arcsin\/f

Therefore, the intensity function of the random time ¢ is

NN 1
L—F@) (1 —Arcsin(vVE)/t(1 —t)

e Computation of the F-compensator

Lemma 6.2 The F-hazard process of N is

E:P(gﬁﬂ]—}):@(\'/%) (76)

B(z) = \/g /0 ’ exp(_“;) du.

where
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The F-compensator of Ny = o<, equals

7 / 2 dL
t — 0 T /_1 — 87
where L is the local time at level 0 of the Brownian motion W.

PROOF: This result is well known and can be found in Yor [59]. We
reproduce the proof. For ¢ < 1, the set {g <t} is equal to {d; > 1}. The
result follows from (75) and the following equality®

PG >1-1) = o(4L)

G? 1—¢/

Then, the Ito-Tanaka formula combined with the identity x®'(z) +
®"(x) =0 lead to

Plg<ti|F) = ('Wt )

:/q>’<\|/?/_>d<\|/%>+% : =5 (%)

sgn(Ws)

L) e e ()

o | W] \ sgn(W, dW /2 / dLs
Vv1—s 1—3

It follows that the F-compensator of NV is

i s

Therefore, since F,= Ft/\g the F-martingale hazard process of g is dA; =
2 dlL;

TVI—t

Remark 6.1 (i) In this particular case, it is possible to give the decom-
position of the Brownian motion in the enlarged filtration, namely,

—~ t (I), |Ws | Sgn(WS)
We=W, — 1 s ds
t t /0 [ng]( ) 1_(1) < /1_S> /1_8

8As usual, G stands for a standard Gaussian r.v.

Il
S~

O
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t (I)/ |Ws |
4+ Iy« sgn(Wl)/ —<—> ds.
{g<t} , @ i

(ii) It is interesting to notice that the continuous F-submartingale F;, =
P(g < t|F;) does not follow an increasing process, so that F; # 1 —
exp(—A;), and we have an example when the equality I' = A does not
hold. In order to ensure that the conditional expectation follows an in-
creasing process, it is necessary to work with the filtration F generated
by the G-Brownian motion B (See Azéma et al. [2] or Yor [59], Prop.
14.5). No financial interpretation of this new filtration is available, how-
ever.

Notice that condition (G) is not satisfied in the present setting (thus
(H) does not hold neither). Furthermore, both ' and A are continuous
processes, but I’ is not an increasing process,” and clearly I' # A. To
conclude, if (G) fails to hold, the continuity of I' and A is not sufficient
for the equality I' = A to be satisfied. Let us finally observe that F-
intensity A is also the F-intensity of 7, where F stands for the filtration
generated by the process |W;| (of course, F is a strict subfiltration of
F). We have I', = P(g <t|F,) = Plg <t| ﬁt) for every t.

o Defaultable claims

We present here the computation of E(H(Wr)lipegy | Gr), for t <T <
1. We know that

P(g>t|]—}):1—<1><\|/%>.

In order to evaluate E(H(Wr)l g, | F), we first condition with re-
spect to Fr:

BV 2y | 5:) = B V) | )~ B (0vn)0( 20 | 7).

The computation can be done using the Markov property: E(H(Wy)|F;) =
H(W,), where H(a) = E(H(Wp_; +a)) and

[Wr |
V=T

9Thus formula (59) rather than (54) should be used to evaluate A.

E(H(WT)<I>< ) ‘ ft) = HB(W,),
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where in turn

|WT,t+a|))

¥(a) = B(H(Wr - +a)0( N

or more explicitly,

Td(a) = ﬁ/ﬂH(u)@(%) exp (- %) du.

The computation for the rebate part, in the particular case hy =
h(Vs) follows from

B[ R 7) = M@)B(Fr = FiIF) = Ma)p(e" | 7) = )

which can be done with Markov property.
e Generalisation

These results can be extended to the last time before 1 where the Brow-
nian motion reaches the level . Let g® =sup{t <1 : W; = a}, where
sup(f) = 1. In the filtration H, the intensity function of ¢ is given
through the probability law of g%, as given in Yor [58] (see formula (3.b)
therein)

P(g® € du) :eXp(— 2(1a—u))7r\/%'

Note that the right-hand side is a sub-probability, and that the missing
mass is

Plg® =1)= P(ra > 1) = P(|C] < a).

where GG is the standard Gaussion variable. The computation in the
enlarged filtration follows from the remark that

P(ga<t|ft):¢<%>.

The dual predictable projection of N; = ILjacyy is

/2 /t dL®
At: - s
T Jo V1I—35

where L® is the local time of W at the level .
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6.4.2 Brownian Motion with Drift

We return to the general case (74) with constant coefficients: dV; =
pdt +odWy.

e Computation of the intensity function

In this section, we compute the intensity of the default time in the fil-
tration H. In order to simplify the proof, we set 8 = 1, and we write
g*(V) for ¢%(V). Of course, we need only to know the probability law
P(¢*(V) < t). The default time can be written in terms of Brownian
motion as follows

g (V) = suwp{t<1l: t+oW,=a—v}
= sup{t<1:vi+W,=qa}
= sup{t<1:W;=a}=g*W)

where v = pi/0 and o = (¢ —v)/0 < 0. Using Girsanov’s theorem, we

obtain
2

P(g(V) £1) = BT ggeco exp (W1 = Z) ) (77)

where
¢ =gr(W)=sup{t<1: W, =a}.
Then
2

124
Plg"(V) < 1) = exp (var = 5 ) (1 geqycap exp (vem T=g°) )

where ¢ is a Bernoulli random variable, m4 is the value at time 1 of the
Brownian meander, with the probability law

2

P(mi € da) = xexp(—%) Liz>op da.

Furthermore, the random variables g%, €, and m, are mutually indepen-
dent. Therefore,
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where

1 (o0} (o0}
T(l/, u) — 5(/ el/;r\/lfuxef;rz/Q d.’IJ—F/ e*l/;r\/lfuxef;rz/Q d.’IJ),
0 0
that is,

T(v,u) = / cosh(—vzv/1 — u)gc’e’mQ/2 dx.
0

Of course, for v = 0 we obtain the same result as in the previous para-
graph.

Proposition 6.1 When the agent has only the information of default

time, the value of a defaultable zero-coupon bond is exp(— ftT As dS),
where (W is defined by (78))

Wi(v,a,t)

A= —t2 B
' T 1 W(v,a,t)

e Computation of the F-hazard process
Following the above computations, we obtain
P(g*(V) <t|F) = Dy E(Dillggeqwy<ey | 1),

112
where D; = exp (I/Wt - %) Therefore, from the equality

{oo(W) <t} ={ra(W) <t} n{d} > 1}
we obtain

E(Dy1gacey | Fy)
2
14
= exp (VWt — ?> ﬂ{-ra(W)gt}E<eXP[V(Wl - Wt)]ﬂ{df‘(W)>1} |ft)

Using the independence properties of the Brownian motion and equality
(75), we get

E(explv(Wy — W)l tae (wys1y | Fr)
= B(expbWi-dllz |y |Fi) =O(a— Wi, 1—1)
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where

O(w,s) = E(e”WS]l{TwZS}) — /2 E(e”W5ﬂ{7w<s}).

e Computation of ©
By conditioning with respect to F;, we obtain
E(e"™ 1r, <s})
ll2 ll2
— equ<H{Tw<S}67(sf7'w)E<el/(W5*W7w — Y (5—Tw) |F7—w>)
ll2 Sll2
= e”wE<]1{Tw<s}eT(S’Tw)) =TT H(y, |w], s)
where H is defined in (1). Therefore,

u—1)2
P(g*(V) <t|F) = Lz (w)<e) exp (%

— H{TQ(W)St} <1 — el/(0471/[/t)]¥(1/7 |Oé — Wt | 5 1-— t))

yxa—wgl—w

Lemma 6.3 We have

P(g*(V) > t| F) = L)<’ W H(, |a — Wi |, 1 —t).

e Value of a defaultable zero-coupon bond

We can express the above result in terms of the value of the firm, using
that the Brownian motion that we are using is equal to (V; —v)/o. We
have

-V —a)/ o 1
P(g*(V) £ t1F) = Timyen (1= e 1w, ~ | Vi—a] 1-1)).

The computation of P(¢g*(V) > T'|F;) = E(Zr|F;) can be done as in
he previous case, with the help of Markov property.

e Decomposition of P(¢*(V) < t|F)
Using the decomposition P(¢*(V) <t|F;) = Yill(r (w)<s . where

Y,=1—e"“"WIH@, |a—W,|,1—1t),
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we are able to determine the F-martingale hazard process of g%(V). Us-
ing Ito’s lemma, we obtain the decomposition of Y; as a semimartingale
Y: = My + K;. More precisely dM; = m;dW; and dK; = k;dt + x.dLy,
where

my = e’ WI(WH —sgn(a — Wi) HD) (v, |a— Wi |, 1 —1),
k= e’ Wo(H! + vH.sgn(a — W)
— (2)(H, +v2H))(v, |o = Wi |, 1 —1),
ke = —e’CWOH (v |a—W;]|,1—1).
dK;
1-Y;

Therefore, the F-compensator of g*(V') is L, (w)<s

6.5 Absolutely Continuous Intensity

We give here a purely mathematical example,'® in which the default
time is F,o-measurable random variable, and the F-martingale hazard
process is absolutely continuous with respect to Lebesgue’s measure.

Let W be a Brownian motion and let 7 =sup {t <1 : W, = W;/2}.
Then,

{r<t}={ inf 2W, > W; >0} U{ sup 2W, < W; <0}.
t<s<1 t<s<1

The quantity P(7 < ¢, Wy > 0| F;) can be evaluated using the equalities

. Wl . W1
{,inf Wi > >0} {,dnf (Ws = W) = 5 = Wy >~}
_ . o Wlft Wt
N {ogigfkt(wu) =y T3 2 —Wik

where W is a Brownian motion independent of F;. More precisely, P(T <
t, Wy > 0| F) =¥(t, W,), where

~— Wi, 1
W(t,x) = P( inf W, > —L_—
0<u<1—¢ 2 2
Wi_ 1
= P( sup W, < lt—l——xgx)
0<u<li—t 2 2

= P25 ;Wi <z, Wi_<zx).

T > )

10We are indebted to Michel Emery for this example.
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Then Z, = P(T > t|F,) = 2¥(t,W,), and the F-martingale hazard
process of the first jump process IV; = Il ;< satisfies

or  9?V
+ —) (t, W) dt.

dF, = (2 it
t at | o2

6.6 Information

Suppose that the value of the firm is an asset, or that there is an asset
such that the market is Fpr-complete, i.e. any Fp-measurable r.v. is
hedgeable. Suppose that, as in the last example, the default time is Fp-
measurable. In this case, if the information of an agent is the filtration
G;, this agent will be an inside trader. In an obvious way, if the agent
observes the last passage time at a fixed level, as soon as this time is
revealed, he will know that the price will stay below (or above) this level.
Investigating this kind of information is work in progress. If there is no
inside trader, the price of a defaultable claim will be hedgeable.

6.7 Representation Theorem

In the present setting, under some extra hypothesis on 7 (i.e. 7 is honest),
a representation theorem can be established (see the paper by Azéma,
Jeulin, Knight and Yor [2]). The basic martingales are here the Brownian
motion in the enlarged filtration, the discontinuous martingale M, and
the martingales vl <y, where v € FF, E(v|F,) = 0.

Here F; stands for 0{h, : h any F-progressively measurable process},
and F; stands for o{h, : h any F-optional process}. In a more explicit
form, any G-martingale Z can be written as (cf. Theorem 3 in [2])

Z =72 + 2 + 77,
where the Z() are orthogonal G-martingales of the form

t t
70 = / w{VaB,, 7 = / WMy, 2 = vl
0 0

It seems that the space v1l,<;, where v € Ff, E(v|Fr) =0 is a one-
dimensional space. This result seems difficult to extend to the general
case where 7 is not F,,-measurable.
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7 Standard Constructions of Random Times

We shall describe a standard construction of a random time 7, in which
this property is valid. Subsequently, we shall examine the properties of
the minimum of several random times.

7.1 Random Time with a Given Hazard Process

In this section, we shall examine the commonly used construction of a
random time for a given hazard process ¥. The F-adapted continuous
hazard process ¥ can be equally well considered as the F-hazard pro-
cess I', or the F-martingale hazard process A. Indeed, in the standard
construction of 7 the following properties hold:

(i) ¥ coincides with the F-hazard process I' of a random time 7,

(ii) W is also the F-martingale hazard process of a random time 7, and
(iii) W is G-martingale hazard process of a G-stopping time 7.

It should be noticed that 7 constructed below is merely a random time
(but not a stopping time) with respect to the filtration F, and it is a
totally inaccessible stopping time with respect to the enlarged filtration

G.

Let ¥ be a F-adapted, continuous, increasing process given on a

probability space (2, (Ft)teﬂ%+7]5) such that W¥,, = +oo. For instance,
¥ can be given by the formula

i
q/t:/ Vodu, Vie R, (79)
0

where % is a nonnegative F-predictable process. Our goal is to construct
a random time 7, on an enlarged probability space (£, G, P), in such
a way that W is a F-(martingale) hazard process of 7. To this end, we
assume that £ is a random variable on some probability space! (Q, F , ]5)7
with the uniform probability law on [0,1]. We take Q = Q x ), G =
Foo @F and P = P © P. We introduce the random time T through the
formula

r=inf{tc R, eVt <&}=inf{tc R, : ¥, >—1né}. (R0

110f course, it is enough to assume that we may define on (9,36, P) a random
variable £ which is uniformly distributed on [0, 1], and is independent of the process

U (we then set F = g (£)).
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Also, we set G, = HyVF; for every £,. We shall now check that properties
(1)-(ii1) also hold.

Proor OF (i): Let us first check that (i) holds. To this end, we shall
find the process F; = P(1 < t|F;). Since clearly {7 >t} = {e ¥+ > ¢},
we get P(T > t|Fs) = e Yt. Consequently,

1—F=Pr>t|F)=EPT>t|F)| F)=¢ ",
and thus F'is a F-adapted continuous increasing process. Notice that
Fi=1—e V=Pt <t|Fy)=P(Tr<t|F). (81)

We conclude that W coincides with the F-hazard process I'.

Proor oF (ii): The next step is to check that ¥ is the F-martingale
hazard process A. This can be done either directly, or through equality
A =T. Since ¥ is a continuous process, to show that A =T, it is enough
to check that condition (H') (or equivalently, condition (H)) holds, and
to apply Corollary 5.3.

Let us first check that (H') is valid (cf (53)). We fix ¢ and we consider
an arbitrary « < ¢. Since for any v € IR

P(r<u|Fs)=1—e"Yx, (82)

we indeed obtain for u < ¢

P(T§u|ft):E(P(T§u|foo)|ft) =1—e Y= = P(1 < u|Foo)-

Alternatively, we may also check directly that (H) holds. Since {T <
st =A{¥, > —In&} € FV F,, it is clear that F; C H; VF, C FV F;.

Therefore, for any F.,-measurable bounded random variable £, we have
B(¢|H vV F) = E(E|FVF)=E&|F), (83)
where the second equality is a consequence of the independence of F and

Foo- This shows that (H) holds.

We conclude that the F-martingale hazard process A of 7 coincides
with I'. To be more specific, we have ¥, = A; = T'; = —In(1 — F}).
Furthermore, any F-martingale is also a G-martingale.

Proor oF (iil). Let us now check directly that W is a F-martingale
hazard process of a random time 7. Since ¥ is a F-predictable process
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(and thus a G-predictable process), we shall simultaneously show that
¥ is also the G-martingale hazard process of a G-stopping time 7. We
need to verify that the process Ny— W, follows a G-martingale. First,
by virtue of Lemma 5.1 we have for £ < s

E(Ns = Ni|Gi) = B(L (r<r<53 | Go)

Pit<1<s|F)
=lirp E(H{KTSS} |G) =1 {r>t} P(r > t|Fp)

Using (81), we get P(t <7 < s|F;) = E(F, | F;) — F;. Therefore
E(Ns - N |gt) =1 {r>t} (84)

On the other hand, if we set Y = Wy, — W;a,, then in view of (i) we
get (cf. (55))

1_FS/\T dFu
Y =1, Y:1n<—):/ .
tr>th 1= Firr 1t,8AT) 1-F,

Using again (42), we obtain (for the last equality in the formula below,
see (56))

By | %)
E<Y | gt) =1y m
oy B BRI R) L BB F) < B
= L {r>t} 1—F, = L {r>t} 1 ——Ft .

We conclude that the process Ny — Wyn, is indeed a (G-martingale.

Notice that the role played by the ‘hazard process’ ¥ in (i) and (iii) is
slightly different. If we consider ¥ as a F-hazard process of 7, then using
Corollary 4.2 we deduce that for any F,-measurable random variable Y

Bl Y[G) = Loy E(Ye

Fi). (85)

On the other hand, if ¥ is considered as the G-martingale hazard
process then, for any G,-measurable random variable Y such that the
associated process V is continuous at 7 we obtain

BN (o5 Y| Gy) = Nipuyy B(Yeh A

Gy). (86)
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If Y is actually Fy-measurable then we have (see (83))

B(yet TV H) = B(Yel i

Gi) = B(YehiA:

Fr)

so that the associated process V' is necessarily continuous at 7, and for-
mulae (85) and (86) coincide.

Remark 7.1 Assume that W satisfies (79). Then (84) can be rewritten
as follows

P(r>t§s|gt):n{7>t}E(1—e*ﬁ¢“d“|ft). (87)

Using (82), we find that the cumulative distribution function of a random
time 7 under P equals

P(Tgt) = 1_Ep<efﬁwudu) — 1—67‘/‘0 ’yo(u)ulu7

where we write 70 to denote the unique intensity function (ie., FO-
intensity) of T.

7.2 Ordered Random Times

Consider now two F-adapted continuous processes, ¥' and W2, which
satisfy W2 > W} for every t € IR.. For i = 1,2 we set

m=inf{teRy e Ve <¢}=inf{te Ry : ¥ >_In}. (88)

so that obviously 7y < 7 with probability 1.

We shall write G' = H'VF, fori =1,2, and G=H'VH2VF. An
individual analysis of each random time 7; in its respective filtration G
can be done along the same lines as in the previous section. It is thus
clear that the process U represents: the F-hazard process I'V of 7;, the F-
martingale hazard process A’ of 7;, and finally the G'-martingale hazard
process of 7; when 7; is considered as a Gi-stopping time. Therefore,
we shall focus on the study of hazard processes of 7;’s with respect to
enlarged filtrations. We find it convenient to introduce the following
auxiliary notation:'? F* = H*VF, sothat G = H'"VF? and G = H>VF'.

12Though F* = G?, this double notation seems to be useful anyway.
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_ Let us start by an analysis of 7;. We search for the F2—hfizard process
Tt of 7, as well as for the F2-martingale hazard process A! of 7. We
shall first check that I'' # I'!. Indeed, for every ¢ € IR, we have

e T = P(ry > t| F2) = P(ry > t| F, v HE)

and ) )
e T = Plry>t|F) = e Vs,

It # T'! would thus imply
P(Tl>t|ft\/H?):P(Tl>t|ft), Vt€R+

The last equality does not hold, however. In effect, the inequality 7o < ¢
implies 7y < t, therefore on the set {73 < ¢}, which clearly belongs to
HZ, we have P(ry > t|F; V H?) = 0. We conclude that the F2-hazard

process I'! is well defined only strictly before 75. Furthermore, it can be
checked that the stopped process F%/\Tl coincides with F%ATI.

On the other hand, since G = G' v H?, it is clear that the process
N} — \II%/\T1 is not only a G'-martingale, but also a G-martingale. This

shows that W' coincides with the F2-martingale hazard process Al of
71, Finally, W' plays also the role the G-martingale hazard process Al
of 71

As one might easily guess, the properties of 75 with respect to the
filtration F! are quite different. We have

e T8 = P(ry > t| FL) = P(ry > t| Fo vV HD).
We claim that 12 # 12, that is, the equality
P(ra > t|F VHE) = Pl > t| F)

is not valid, in general. Indeed, the inequality 7 > ¢ implies 72 > ¢, and
thus on set {m; > t}, which belongs to H}, we have P(1p > t|F,VH]) =
1. We deduce easily that the process I'? is not well defined after time
71-

Furthermore, the process N? — \II?/\T2 is a G2-martingale; it does

not, follow a G-martingale, however (otherwise, equality 2=12=y2
would be true up to time 73, but this clearly does not hold). It seems
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rather difficult to evaluate exactly the Fl-martingale hazard process A2
of 79, it is reasonable to expect that it is discontinuous at 77.

Let us finally notice that 7; is a totally inaccessible stopping time
not only with respect to G, but also with respect to the joint filtration
G. On the other hand, 75 is a totally inaccessible stopping time with
respect to G, but it is a predictable stopping time with respect to G.
Indeed, we may find an announcing sequence of G-stopping times

p=inf{t>n : U7 >-In(§ -1
Therefore the G-martingale hazard process A2 of 75 coincides with the
G-predictable process NE =1 <ty

Let us set 7 = 71 A72. In the present setup, we have 7 = 71, and thus
the G-martingale hazard process Aof 7is equal to W', Tt is also equal
to the sum of G-martingale hazard processes At of 7, ¢ = 1,2, stopped
at 7. More precisely, we have

A 2 A A2
At/\T = lII%/\T = lII%/\T +Nt/\T = A%/\T + At/\T'

We shall see in the next section that this property is universal (though
not necessarily very useful).

7.3 Properties of the Minimum of Several Random
Times

In this section, we shall examine the following problem: given a finite
family of random times 7;, ¢ = 1,...,n, and the associated hazard pro-
cesses, {ind the hazard process of the random time 7 = min (71, ..., 7).
Of course, the problem above cannot be solved in such a generality,
that is, without the knowledge of the joint law of (7y,...,7,). Indeed,
as we shall see in what follows the solution depends heavily on specific
assumptions on random times and the choice of filtrations.

7.3.1 Hazard Function of the Minimum of Several Random
Times

Let us first consider a simple result, in which we focus on the calculation
of the hazard function of the minimum of several independent random
times.
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Lemma 7.1 Let 1;,1=1,...,n, ben random times defined on a com-
mon probability space (Q, G, P). Assume that T; admits the hazard func-
tion T°. If 75,1 = 1,...,n, are mutually independent random vari-

ables, then the hazard function I' of T is the sum of hazard functions
r,i=1,...,n

Proor: For any t € IR, we have

e ' = 1-F(t)=P(r>t)= P(min(r,...,7,) > t)
= HP(Ti >1) = H(l — Fi(t))

n

S PRI > A
i=1

O

Let us now focus on the case of continuous distribution functions
Fi,i=1,...,n. In this case, we get also A(t) = S AY(t). In particu-
lar, if 7; admit intensities v} = A} = f;(¢)(1 — Fi(¢)) !, then the process
(as usual, Ny = lrr<4})

tAT T

Ny — A Z'yi(u)du:Nt—/O Z)\i(u)du

is a H-martingale (notice that H=H! Vv ---Vv H").

Conversely, if the hazard function of 7 satisfies A =T =1 T% =
So" A%, then we obtain

P>t 1 >t)=[[P(ni>1), Vie R,
i=1

7.3.2 Martingale Hazard Process of the Minimum of Several
Stopping Times

In this section, we shall assume that 7q,...,7, are stopping times with

respect to some filtration F. Formally, H' C F for any i, and thus

H'V---VH" C F. Since in this case the enlarged filtration G =

H'v-.--VH"VF coincides with F', we shall assume in what follows that
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Ti,-.-,Tn are G-stopping times (this notational convention will prove
useful in what follows).

Our goal is to examine the relationship between the G-hazard pro-
cesses of stopping times 7; and the G-hazard process of their mini-
mum. To avoid discussion of cases of minor interest, we shall focus
on the case when the stopping time 7; are totally inaccessible, so that
7 = min (7y,...,T,) is also a totally inaccessible stopping time with re-
spect to G. We borrow from Duffie [18] the following result (see Lemma
1 in [18]).

Lemma 7.2 Letr;,i=1,...,n, be G-stopping times such that P(1;, =
7;) = 0 for i # j. Then the G-martingale hazard process A of T =
min=i, .7 @ equal to the sum of G-martingale hazard processes Al
stopped at T, more precisely, Aynr =Y oy Al for everyt € R,.

PRrOOF: By assumption, for any ¢ = 1,...,n, the process M} = N} —
Aj,;, is a G-martingale. Therefore, by the well-known properties of
martingales the stopped process'3

INT % % _ % %
(Mt) - Nt/\T - At/\T.;/\T - Nt/\T - At/\T

also follows a G-martingale for any fixed ¢. On the other hand, since
P(1; =71;) =0 for i # j, we have

> Niny =N =lgrcy.

i=1
Therefore, the process

n

Ny — ZAzit/\r = Z(MZ)T
i=1

1=1

obviously follows a G-martingale, as a sum of G-martingales. We con-
clude that the G-martingale hazard process A of 7 satisfies Ajpr =
St (Al foreveryt e Ry. m|

131 is essential to assume that 73,2 = 1...,, are stopping time with respect to G
so that 7 is also a G-stopping time. If 7 is merely a random time the stopped process
needs not to be a martingale.
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The striking feature of Lemma 7.2 is that the G-martingale hazard
process of 7 can be calculated without the knowledge the joint law of
stopping times 71,...,7,. It should thus be observed that in order to
make use of the notion of a G-martingale hazard process A we need to
show in addition that A actually possesses required probabilistic prop-
erties. For instance, it would be useful to know whether

P(t>35|G) = ]1{7>t}E(eAf’AS G) (89)

for ¢ < s. Combining Lemma 7.2 with Corollary 5.4, we get immediately
the following result which gives a partial answer to the last question.

Proposition 7.1 Let 7,1 = 1,...,n, be G-slopping times such that
P(1y=71;) =0 fori# j. Assume that each stopping time 7; admits an
absolutely continuous G-martingale hazard process Al = fot i du. If the
process V' given by the formula

Vi = B(eM 8| G) = B(e 2 ) A |G:), Vtelo,s], (90)

is continuous at T = min;—1__, 7, then for anyt < s we have

P(r>5G) = 1ian B(X 3 |G) = Ny B(e” 2 [0 gy

At the first glance Proposition 7.1 seems to be a very useful and
powerful result, since apparently it covers both the case of independent
stopping times and dependent stopping times. Notice, however, that we
face here a rather delicate issue of checking the continuity of V at 7.
As we shall show below, this condition is rarely satisfied when 7 is the
minimum of several stopping times. Furtheremore, we are dealing here
with G-martingale hazard processes of G-stopping times; this notion is
not, useful when a given stopping time is G-predictable (see example in
Section 7.2). It seems to us that the number of circumstances when
Proposition 7.1 can be effectively applied is in fact very limited. One of
them is examined in the following example, in which random times 7;
are conditionally independent, given the filtration F.

Example 7.1 Let ¥;, ¢« = 1,2, be two F-adapted increasing stochastic
processes defined on some probability space (2,G, P). We set

o= inf{te R, : ¥i>_In())}

- inf{teﬂ-z+:/tzp;duz—ln(gi)}, (91)
0
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where €1, €2 are mutually independent random variables, which are also
independent of processes ¥¢, i = 1,2, and are uniformly distributed on
the unit interval [0,1]. For each i, the enlarged filtration G* = H! V F
satisfies G = Fy VH, C Fy V o(&) for every t.

From Section 7.1 we know that the process W represents the F-
hazard process of 7;. In particular, for any Fs;-measurable random vari-
able Y we have for every t < s (cf. (87))

Bl gV |G =1 (rop E(ve Jo et 7). (92)

In terms of the martingale characterization, the process ¥* is the (F, Gi)—
martingale hazard process of a random time 7;. Also, 7; is a totally inac-
cessible stopping time with respect to G, and the continuity condition
of Corollary 5.4 is satisfied. Indeed, for any fixed s > 0, the process

Vti def E(eq’i’q’i QZ) _ E<e\1ﬂ;7\p§

F), Vtelo,s],

is obviously continuous at 7;. We conclude that for any ¢ < s

P >5|G) = sy Ble ™)
— n{7i>t}E(e*ﬁ Pt ). (93)

To examine simultaneously 7; and 75 as stopping times, we introduce
the filtration G by setting G = F v H' vV H2. Then 7, 72, as well as
7 = min (71, T2) are G-stopping times.

Let us observe that it is not quite obvious that the process W' is
the G-martingale hazard process of a G-stopping time 7;. Indeed, we
know that W' is a G-adapted continuous process such that N} — Wi AT
is a G'-martingale. It is thus enough to show that N; — \Ilf;/\n is also a
G-martingale. Let us consider, for instance, ¢ = 1. The random variable
N} — \II%/\T1 is Gi-measurable. It is thus enough to check that for any
t<s

B(N! =W, |G,) = B(N! -, |G}).

Notice that the o-fields G} and 'H? are conditionally independent given
G}. Consequently,

B(N =W |G) = B(N; =Wy, |GV HY) = B(N] =¥, |G)).
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Since we have shown that W' is the G-martingale hazard process of 7!,
we have (under mild assumption on Gs-measurable random variable Y)

E( ]1{7'1>S} Y | gt) = ]1{7'1>t} E(Ye‘l/if‘lli

Ge).-

In particular, we have for any ¢ < s (cf. (93))

P(ry>8|G) =W inany B(€¥ Y G) =1 (ory Be o F)

since the process

‘7t1 défE(eq’%*q’i gt) :E(e\p;f\p;

F), Vtelo,s],

is continuous at 7.

In view of Lemma 7.2, the G-martingale hazard process W of 7, when
stopped at 7, is the sum of G-martingale hazard processes ¥*, i = 1,2,
associated with G-stopping times 7;, ¢ = 1,2, also stopped at 7. We
have for ¢ < s

P(r>5|G) = Ly E(e¥ Ve

Ge)
N Nt 2y du
= Lirae Ee Ji @it | 7). (94)

In should be stressed that the last formula is a consequence of the as-
sumption that the underlying random variables ¢! and ¢2 are indepen-
dent. The case of dependent random variables ¢! and €2 is much more
involved; let us only observe that we cannot expect formula (94) to hold
in this case. Indeed, it seems plausible that the G-martingale hazard
process of Ty will have a jump at 72 on the set {72 < 71}, and conversely,
the G-martingale hazard process of 75 will be discontinuous at 74 on the
set {7 < T2}. Consequently, one may conjecture that the sum of these
processes will have a discontinuity at 7, and thus it will not be possible
to use the G-martingale hazard process of 7 to directly represent the
survival probability P(7 > s|G;) through a counterpart of formula (94).

At the intuitive level, if the underlying random variables £' and £2 are
not independent, the observed occurence of 75 (71, resp.) has a sudden
impact on our assessments of the likelihood of the occurence of 71 (72,
resp.) in a given time interval in the future. A very special case of such
a situation, when &' = £2, was examined in Section 7.2. The general
case remains, to our knowledge, an open problem.
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Remark 7.2 Alternatively, we may check that W! is also the (G2, G)-
martingale hazard process of 7. Since ¥' is a continuous G2-adapted
process and G = G2V H!, it is enough to verify that W' coincides with
the G2-hazard process of 71, or equivalently, that

Pin>t|6H) =Y, VieR,.

The last equality is clear, however, since the o-fields G} and H? are
conditionally independent given F;, and thus (the event {71 > £} belongs,
of course, to G})

Pr >t|G2) =P(r > t| i VHE) = P(ry > t| Fy) = e V.

Of course, a similar property holds for the G-stopping time 7o and the
filtration G'.
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