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Abstract. Periodogram ordinates of a Gaussian white noise computed at Fourier frequencies are well

known to form an i.i.d. sequence. This is no longer true in the non Gaussian case. In this paper,

we developp a full theory for weighted sums of non linear functionals of the periodogram of an i.i.d.

sequence. We prove that these sums are asymptotically Gaussian under conditions very close to those

which are su�cient in the Gaussian case, and that the asymptotic variance di�ers from the Gaussian

case by a factor proportional to the fourth cumulant of the white noise. An important consequence is a

fonctional central limit theorem for the spectral empirical measure.
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1. Introduction

Let (Z

t

)

t2Z

be a white noise with unit variance, i.e. an i.i.d sequence such that E [Z

0

] = 0 and

E [Z

2

0

] = 1. De�ne the discrete Fourier transform and the periodogram as

rd

Z

n

(x) = (2�n)

�1=2

n

X

t=1

Z

t

e

itx

and I

Z

n

(x) = jd

Z

n

(x)j

2

:

The Fourier frequencies are usually de�ned as x

k

= 2�k=n, 1 � k � ~n where ~n = [(n � 1)=2] (the

dependency with respect to n will be omitted). It is a well known fact that if the variables Z

t

are

moreover Gaussian, then the periodogram ordinates computed at Fourier frequencies are independent

and 2�I

Z

n

(x

k

) has a �(1; 1) distribution. The �(a; �) distribution is the distribution with density func-

tion �(a)

�1

�

a

x

a�1

e

��x

with respect to Lebesgues measure on R

+

(where � is the Gamma function).

Gaussianity and the speci�c choice of the Fourier frequencies are the fundamental reasons for this inde-

pendence. Let 0 � k < j < ~n.

E [d

Z

n

(x

k

)d

Z

n

(�x

j

)] =

1

2�n

n

X

t=1

e

it(x

k

�x

j

)

= 0:

The last sum vanishes because of the speci�c choice of the Fourier frequencies. This implies uncorre-

latedness of the variables d

Z

n

(x

k

), hence independence in the Gaussian case. This latter property no

longer holds in the non Gaussian case. For instance, let �

4

denote the fourth cumulant of Z

0

. An easy

computation yields, for 0 � k < j < ~n,

cov(I

Z

n

(x

k

); I

Z

n

(x

j

)) =

�

4

4�

2

n

:

The fourth cumulant of a standard Gaussian variable is 0, but it is not necessarily so for an arbitrary

distribution. Nevertheless, the central limit theorem implies that for any �xed u, d

Z

n

(x

k

1

); � � � ; d

Z

n

(x

k

1

) are

asymptotically independent, in the sense that the asymptotic distribution of the 2u-dimensional vector

(Refd

Z

n

(x

k

1

)g; Imfd

Z

n

(x

k

1

)g; � � � ; Refd

Z

n

(x

k

u

)g; Imfd

Z

n

(x

k

u

)g)

is the 2u-dimensional standard Gaussian distribution, i.e. the distribution of 2u i.i.d. N (0; 1) random

variables. This implies that 2�I

n

(x

k

1

); � � � ; 2�I

n

(x

k

u

) are asymptotically independent exponentials. Any-

how, statistics of interest seldom involve a �xed �nite number number of periodogram ordinates. Among

important problems, we can mention the following.
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Asymptotic distribution of the maximum. In the Gaussian case, M

n

= 2�max

1�k�~n

I

n

(x

k

) has

a �(~n; 1) distribution. Thus lim

n!1

P(M

n

� log(~n) � x) = e

�e

�x

(the standard Gumbel distribution).

Davis and Mikosch (1999) [6] have shown that this asymptotic property still holds true in the non Gaussian

case.

Weighted sums of functionals of the periodogramConsider real numbers �

n;k

such that

P

~n

k=1

�

2

n;k

1

and a function � and de�ne

S

Z

n

(�) =

~n

X

k=1

�

n;k

�(I

n

(x

k

)):

In the Gaussian case, such a sum is asymptotically Gaussian under the necessary assumption that

E [�

2

(I

n

(x

k

))] <1 and under the Lindeberg condition

lim

n!1

max

1�k�~n

j�

n;k

j = 0:

The considerations above make one expect that this result still holds in the non Gaussian case. However,

no general result of this kind is known. We recall now some previous results. In the case of a linear

functional i.e. �(x) = x, if the weights �

n;k

are the value of a function g at Fourier frequencies, it is

known that S

Z

n

(�) is asymptotically Gaussian, with an asymptotic variance that depends on �

4

. For

instance, if �

n;k

= ~n

�1=2

, ~n

�1=2

P

~n

k=1

(2�I

n

(x

k

)� 1) is asymptotically Gaussian with variance 1 + �

4

=2.

This can be proved by the method of cumulants, see Brillinger (1981) [4]. In the case of non linear

functionals, very little is known. The �rst attempt to derive an asymptotice theory for such sums in the

non-linear case is due to Chen and Hannan (1980) [5] in the case �(x) = log(x). They used the technique

of Edgeworth expansions for triangular arrays of indepen dent random variables to compute the variance

of ~n

�1=2

P

~n

k=1

log(2�I

n;k

) � log(2) � , where  is Euler's constant. If q

n

denotes the joint density

of Refd

Z

n

(x

k

)g; Imfd

Z

n

(x

k

)g; Refd

Z

n

(x

j

)g; Imfd

Z

n

(x

j

)g), for 0 < k < j � ~n, a second order Edgeworth

expansion of q

n

yields (with the weights �

n;k

set equal to ~n

�1=2

)

var(S

Z

n

(log)) =

�

2

6

+ �

4

=2 +O(n

�1=2

):

Note that �

2

=6 is exactly the variance in the Gaussian case. The main drawback of this method is that the

computation of higher moments is extremely involved, (but this may be overcome), and that the existence

of the joint density q

n

and the validity of its Edgeworth expansion require a regularity assumption on the

distribution of Z

0

, which nearly amounts to the existence of a density with respect to Lebesgue measure,
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and the necessity of which is not obvious. Let it be said, nevertheless, that in the case of non regular

functionals, some regularity is needed since if the distribution of Z

0

has, say, a positive mass at zero, then

the log-periodogram cannot be computed. Recently, Velasco (1999) [13] using the same method, proved

a central limit theorem in the case of the function log and in the particular case where the number of

non vanishing coe�cients �

n;k

is negligible with respect to n. The asymptotic variance is then �

2

=6, the

same as in the Gaussian case. The central limit theorem is proved using the method of moments, and

Velasco assumes that E [jZ

0

j

s

] is �nite for all s. This is obviously a strong assumption that one would

like to omit.

Empirical spectral distribution function. Another important and unsolved problem was to prove a

functional central limit theorem for the empirical spectral measure, de�ned as

^

F

n

(x) = ~n

�1

~n

X

k=1

1

[0;x]

(2�I

n

(x

k

)); x � 0:

Freedman and Lane (1980) [7] and Kokoszka and Mikosch (1998) [11] proved that under the only assump-

tion that E(Z

2

t

) <1, sup

x�0

j

^

F

n

(x)� F

1

(x)j converges in probability to zero, where F

1

(x) = 1� e

�x

is

the standard exponential cumulative distribution function. Kokoszka and Mikosch (1998) strengthened

this result and proved convergence of the �rst three moments of ~n

�1=2

(

^

F

n

(x)�F

1

(x)) under the natural

assumptions of �niteness of the six �rst moments of Z

0

(but on the not so natural assumption that they

all coincide with those of a N (0; 1) distribution) and under the regularity assumption on the distribution

of Z

0

mentioned above.

In this paper, using the ideas of Chen and Hannan (1980) and generalizing (and making more formal)

the deep ideas of Velasco (1999), we present a full theory for weighted sums of (possibly) non linear

functionals of the periodogram of an i.i.d. sequence, and we solve the abovementioned problems. We

also bring a new tool to the study of this problem. While the cited authors used Edgeworth expansion

of the joint density of a �nite number of discrete Fourier transforms, which necessitates the regularity

assumption, we use the results of G�otze and Hipp (1978) [9] on Edgeworth expansions for moments of

smooth functions. This allows, in the case of smooth functionals, to get rid of the regularity assumption

on the distribution of Z

0

. This, in its turn, allows to use truncation arguments to get also rid of the

assumption of �nite moments of all order to obtain a central limit theorem by means of the method of

moments.
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Before concluding this already long introduction, let us mention that in statistical applications, the

quantity of interest is never S

Z

n

(�), but more likely S

X

n

(�), where X is a process which admits a linear

representation with the i.i.d. sequence Z, i.e. X writes

X

t

=

X

j2Z

a

j

Z

t�j

; t 2 Z;

where (a

t

)

t2Z

is a sequence of real numbers such that

P

t2Z

a

2

t

<1. The spectral density of the process

X is then

f

X

= (2�)

�1

�

�

X

j2Z

a

j

e

j

�

�

2

;

where e

j

(x) = e

ijx

. If the coe�cients a

j

are absolutely summable, then f

X

is continuous and the process

X is said weakly dependent. If the coe�cients a

j

are not absolutely summable, then f

X

may not be

continuous and even have singularities, in which case the process X is usually said strongly dependent.

The study of S

X

n

(�) is then based on the so-called Bartlett's decomposition (cf. Bartlett (1955) [1]),

which consists in relating the periodogram of X to that of Z :

I

X

n

(x) = 2�f

X

(x)I

Z

n

(x) +R

n

(x);

where the superscript indicates the process with respect to which the periodogram is computed. Then

one can write

S

X

n

(�) =

K

X

k=1

�

n;k

�(2�I

Z

n

(x)) + T

n

;

T

n

=

K

X

k=1

�

n;k

f�(2�I

Z

n

(x)) � �(2�f

X

(y

k

)I

Z

n

(x))g:

Under reasonable regularity assumptions, one can prove that T

n

tends to zero in probability, and the

remaining task is to obtain a central limit theorem for S

Z

n

(�). The problem with this decomposition is

that the remainder term R

n

is rather large, even if the coe�cients a

j

decay very rapidly or are only �nitely

many. We will not give any statistical applications in this paper, but for the problem mentioned above, we

can already say that our results yield a central limit theorem for the estimator of the estimation variance

considered in Chen and Hannan (1980), and that we improve on Velasco (1999) since we prove that his

central limit theorem holds if Z

0

has only a �nite number of �nite moments (the exact number depends

on many parameters not speci�ed here). Other applications for weak dependent linear processes are



6 GILLES FAY AND PHILIPPE SOULIER

presented in Fay, Moulines and soulier (1999) [8] and an application to the estimation of the dependence

coe�cient of a fractional process is presented in Hurvich, Moulines and Soulier (1999) [10].

The rest of the paper is organized as follows. Since the technique of Edgeworth expansion is applied to

the distribution of the discrete Fourier transforms, we �rst state a very general theorem for functionals of

the Fourier transforms. Another motivation is that it can be applied to modi�cations of the periodogram

such as tapered periodogram, not considered here for the sake of bervity, but that are very important in

statistical applications, especially for long range dependent processes. In section 3, we apply this result to

general linear functionals of the periodogram and in section 4, we state a functional central limit theorem

for the empirical spectral distribution function. The proof of the main theorem, being very involved is

split in several sections. The main technical tool, a moment expansion (Lemma 3) is stated in section

6 (Lemma 3) and proved in section 8. Even though it is just a technical lemma, we consider it as the

actual main result of this paper, since all the other results easily derive from it, and because it o�ers the

deepest insight into the dependence structure of periodogram ordinates at Fourier frequencies of a non

Gaussian i.i.d. sequence.

2. Main result

Let m be a �xed positive integer and de�ne for all n � 2m, K = [(n � m)=2m)]. For 1 � k � K,

de�ne the 2m-dimensional vector

W

n;k

= (2=n)

1=2

n

X

t=1

Z

t

(cos(tx

m(k�1)+1

); sin(tx

m(k�1)+1

); � � � ; cos(tx

mk

); sin(tx

mk

))

T

:(1)

so that 2�

�

I

n;k

= kW

n;k

k

2

=2. In this section, we give conditions on a triangular array of functions

( 

n;k

)

1�k�n

to obtain a central limit theorem for sums S

n

:=

P

n

k=1

�

n;k

 

n;k

(W

n;k

).

In the case of functions of non smooth functions, as mentioned in the introduction, a regularity

assumption on the distribution of the white noise Z

0

is necessary.

(A1) There exists some real r � 1, such that

R

+1

�1

jE(e

itZ

0

)j

r

dt <1.
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Assumption (A1) ensures that n

�1=2

P

n

t=1

Z

t

has a density q

n

for all su�ciently large n (n � p) and

that this density converges uniformly to the standardized Gaussian distribution (see, for example, Bhat-

tacharya and Rao (1976) [2], Theorem 19.1,p.189). It is a strengthening of the usual Cramer's condition

which excludes \strongly lattice" variables. We now de�ne the classes of admissible functions.

De�nition 1. H

�

is the set of measurable functions on R

2m

such that N

�

( ) <1, where

N

2

�

( ) =

Z

R

2m

 

2

(x)(1 + jxj

2

)

��

dx:

It is easily seen that H

�

, endowed with the norm N

�

is a Hilbert space and that the set of compactly

supported C

1

functions is dense in this space.

De�nition 2. For integers � and r, let S

r

�

be the space of r times di�erentiable function on R

2m

such

that for all 2m-tuples of integers � = (�

1

; � � � ; �

2m

) that satisfy �

1

+ � � �+ �

2m

� r,

M

�

(D

�

 ) <1;

where D

�

denotes the partial derivative of  of order �

i

with respect to the i-th component, and for any

function � on R

2m

,

M

�

(�) = sup

x2R

2m

j�(x)j

1 + jxj

�

:

The notation M

�

comes from G�otze and Hipp (1978) [9]. For convenience, we introduce the following

notation. For  2 S

r

�

, denote

M

�;r

( ) =

X

�

1

+���+�

2m

�r

M

�

(D

�

 ):(2)

Obviously, the space S

0

�

is included in H

�

for any � > � +m. For  2 H

�

, we can also de�ne

k k

2

= E [ 

2

(�)];(3)

C

2

( ; j) = E [(�

2

j

� 1) (�)];(4)

where � = (�

1

; � � � ; �

2m

)

T

denotes a 2m-dimensional standard Gaussian vector. If  2 H

�

for some � > 0,

then k k < 1. Moreover, there exists a constant C

�

such that for all  2 H

�

, k k � C

�

N

�

( ). Also,

for all j = 1; � � � ; 2m, jC

2

( ; j)j �

p

2k k. Recall now that the Hermite rank of a function  such that

k k <1 is the smallest integer � such that there exists a polynomial P of degree � with E [P (�) (�)] 6= 0.
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In this section, for the sake of simplicity, only functions of Hermite rank at least 2 will be considered. A

very frequently veri�ed su�cient condition for a function  to have Hermite rank at least 2 is E [ (�)] = 0

and  is componentwise even.

For a triangular array of functions ( 

n;k

)

1�k�K

such that k 

n;k

k < 1, and for a triangular array of

reals (�

n;k

)

1�k�K

, de�ne

S

n

=

K

X

k=1

�

n;k

 

n;k

(W

n;k

):

The assumptions needed to prove the asymptotic normality of S

n

are now stated.

(A2) (�

n;k

)

1�k�K

is a triangular array of real numbers such that

P

K

k=1

�

2

n;k

= 1 and

lim

n!1

max

1�k�K

j�

n;k

j = 0:

(A3) There exists a real � > 0 such that

lim

n!1

K

X

k=1

�

2

n;k

k 

n;k

k

2

= �

2

:

(A4) There exists a real � such that

lim

n!1

n

�1

X

1�k<l�K

�

n;k

�

n;l

X

i;j=1;��� ;2m

C

2

( 

n;k

; i)C

2

( 

n;l

; j) = �

and �

2

+ �

4

�=4 6= 0.

(A5)

8� > 0; max

1�k�K

j�

n;k

j = O(�

�1=2+�

n

):

where �

n

:= # fk : 1 � k � K;�

n;k

6= 0g.

Assumption (A2) implies the Lindeberg-Levy smallness condition and together with (A3) is su�cient

in the Gaussian case. Assumption (A4) is necessary in the non Gaussian case since it appears in the

expansion of var(S

n

). Assumption (A5)means that �

n

(max

1�k�K

j�

n;k

j)

2

is bounded by a slowly varying

function of �

n

. It holds when �

n;k

is de�ned as g(y

k

)=

�

P

K

k=1

g

2

(y

k

)

�

1=2

for most "reasonable" functions

g (such as continuous functions on [��; �] or g(x) = log(x)) and evenly spaced frequencies y

k

, 1 � k � K.

This assumption does not seem necessary, but we cannot prove our result without it. See the comment



THE PERIODOGRAM OF AN I.I.D SEQUENCE 9

after Theorem 1. The next assumption is necessary to replace eventually non smooth functions  

n;k

by

smooth ones.

(A6) For all real � > 0, there exists a sequence of compactly supported C

1

functions  

�

n;k

with same

support K

�

and with Hermite rank 2 such that

max

n

max

1�k�K

k 

n;k

�  

�

n;k

k � �;

8� > 0; 8r 2 N; 9C

r;�

; M

0;r

( 

�

n;k

) � C

r;�

;

and there exist a real �

2

(�) > 0 and a real �(�) such that

lim

n!1

K

X

k=1

�

2

n;k

k 

�

n;k

k

2

= �

2

(�);

lim

n!1

n

�1

X

1�k<l�

�

n;k

�

n;l

X

i;j=1;��� ;2m

C

2

( 

�

n;k

; i)C

2

( 

�

n;l

; j) = �(�):

Note that if (A3), (A4) and (A6) hold, then lim

�!0

�

2

(�) = �

2

and lim

�!0

�(�) = � .

Theorem 1. Let (Z

t

)

t2Z

be a unit variance white noise with �nite moment of order �. Let (�

n;k

)

1�k�K

be a triangular array of reals and ( 

n;k

)

1�k�K

be a triangular array of functions such that Assumptions

(A2), (A3), (A4), (A5), and (A6) hold. Assume either

� For all 1 � k � K,  

n;k

2 H

�

, assumption (A1) holds and � � 2�+ 2.

� For all 1 � k � K,  

n;k

2 S

2

�

and � � 4� _ 4.

Then the distribution of S

n

is asymptotically centered Gaussian with variance �

2

+ ��

4

=4. Moreover

assumptions (A4) and (A5) are not necessary in the following cases.

� If �

4

= 0 then Assumption (A4) is not necessary.

� If �

n

= o(n

2=3

) then Assumption (A5) is not necessary and Assumption (A4) holds with  = 0.

� If for all k � K, C

2

( 

n;k

) = 0, then Assumptions (A5) and (A4) are not necessary and thus the

central limit theorem holds under the same assumption on the weights �

n;k

and with the same limit

as in the Gaussian case.
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Comments. This result gives a better understanding of the di�erences between the Gaussian and the

non Gaussian case. Recall that in the Gaussian case only assumption (A2) is necessary. Here, we need

a stronger assumption on the functions considered, and also a restriction on the admissible weights.

Note that assuption (A1) holds in the Gaussian case, so it cannot be considered as a restriction. The

strengthened assumptions on the functions considered are not somehow necessary, since some conditions

are needed to insure integrability of  

n;k

(d

n;k

). The conditions we impose are nearly minimal, and in the

case of smooth functions, they are optimal in terms of the requirement on the moments of Z

0

. Assumption

(A5) is probably not necessary. As mentioned in the Theorem, it is indeed not necesary in some cases.

3. Non linear functionals of the periodogram

Since Theorem 1 is stated for arbitrary m, we can derive a central limit theorem for non linear

functionals of the aggregated (or averaged, or pooled) periodogram. Let m be a �xed integer and set

K = [(n�m)=2m]. De�ne

�

I

n;k

=

km

X

s=(k�1)m+1

I

n

(x

s

); 1 � k � K:

Let � be a measurable function on R such that E [�

2

(Y )] <1 where Y is a �(m; 1) random variable, or,

equivalently, Y is distributed as j�j

2

=2, where � denote a 2m-dimensional standard Gaussian vector, and

j:j denotes the Euclidean norm. The following quantities are then well de�ned.



m

(�) = E [�(j�j

2

=2)];(5)

�

2

m

(�) = var(�(j�j

2

=2)) = E [�

2

(j�j

2

=2)]� 

2

m

(�);(6)

C

m

(�) = E [(�

2

1

� 1)�(j�j

2

=2)]:(7)

Let (�

n;k

)

1�k�K

be a triangular array of real numbers such that (A2) holds. In the context of this

section, assumption (A3) will hold automatically, while (A4) will be a consequence of the following

assumption.

(A7) There exists a real  such that lim

n!

n

�1

P

k 6=l

�

n;k

�

n;l

= .
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De�ne �nally

S

n

(�) =

K

X

k=1

�

n;k

f�(2�

�

I

n;k

)� 

m

(�)g(8)

Theorem 2. Let (Z

t

)

t2Z

be a unit variance white noise with �nite moment of order �. Assume either

Smooth case � is twice di�erentiable, there exists an integer � such that

max

x2R

j�(x)j + j�

0

(x)j+ j�"(x)j

1 + jxj

�

<1

and � � 2� _ 4.

Nonsmooth case Assumption (A1) holds, there exists a positive integer � such that

Z

R

2m

�

2

(jxj

2

)(1 + jxj

2

)

��

dx <1

and � � 2�+ 2.

Let (�

n;k

)

1�k�K

be a triangular array satisfying Assumptions (A2), (A5) and (A7), and such that

�

2

m

(�) + m

2

�

4

C

2

m

(�) 6= 0. Then S

n

(�) converges in distribution to the standard Gaussian distribution

with variance �

2

m

(�) + m

2

�

4

C

2

m

(�). Assumptions (A7) and (A5) are not necessary in the following

cases.

� If �

4

= 0 then Assumption (A7) is not necessary.

� If �

n

= o(n

2=3

) then Assumption (A5) is not necessary and Assumption (A7) holds with  = 0.

� If C

m

(�) = 0, then Assumptions (A5) and (A7) are not necessary and thus the central limit

theorem holds under the same assumption on the weights �

n;k

as in the Gaussian case and with the

same limit �

2

m

(�).

Proof of Theorem 2. If � satisfy the assumptions of Theorem 2, de�ne, for x 2 R

2m

,  (x) = �(jxj

2

=2)�



m

(�) and  

n;k

=  for all 1 � k � K. As mentionned above,  has Hermite rank 2 since E [ (�)] = 0

and  is componentwise even. If the array �

n;k

satisfy Assumptions (A2) and (A7) then Assumptions

(A3) and (A4) hold with �

2

= �

2

m

(�) and � = 4m

2

C

2

m

(�). Under the assumptions of Theorem 2, �

can be approximated by a sequence of compactly supported C

1

function �

�

, i.e.

8� > 0; E [(�(j�j

2

=2)� �

�

(j�j

2

=2))

2

] � �:
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De�ne then  

�

(x) = �

�

(jxj

2

=2) and  

n;k

=  for all n and k. It can be assumed, without loss of generality,

that E [�(�)] = E [�

�

(j�j

2

=2)] = 0. Thus the functions  

n;k

and  

�

n;k

all have Hermite rank at least 2,

and assumption (A6) holds. Thus, Theorem 2 follows from Theorem 1. Since the proof of Theorem 1 is

based on the so-called method of moments, it is an immediate by-product that, under a relevant moment

assumption, convergence of moments holds.

Proposition 1. Let q be an integer. Under the assumptions of Theorem 2, if moreover E [Z

2q_4

0

] < 1

in the smooth case, or E [Z

q�+2

0

] <1 in the nonsmooth case, then

lim

n!1

E [S

2q

n

(�)] =

2q!

2

q

q!

(�

2

m

(�) + m

2

�

4

C

2

2

(�))

q

:

4. Functional central limit theorem for the empirical spectral measure

The empirical spectral distribution function is de�ned as

^

F

n

(x) = K

�1

K

X

k=1

1

[0;x]

(2�

�

I

n;k

); x � 0:

In the case m = 1, it has been shown by Freedman and Lane (1980) [7] and in Kokoszka and Mikosch

(1998) [11] that under the only assumption that E(Z

2

t

) <1, sup

x�0

j

^

F

n

(x)�F

1

(x)j converges in probabil-

ity to zero, where F

1

(x) = 1�e

�x

is the standard exponential cumulative distribution function. Kokoszka

and Mikosch (1998) [11] also proved that if the distribution of Z

0

satis�es the Cramer condition (A1),

if E(jZ

t

j

6

) < 1 and the �rst 6 moments of Z

0

coincide with those of a standard normal variable, then

lim

n!1

n

s=2

E [(

^

F

n

(x)�F

1

(x))

s

] = 0 for s = 1; 3 and lim

n!1

nE [(

^

F

n

(x)�F

1

(x))

2

] = 2F

1

(x)(1�F

1

(x)).

But these author were unable to derive convergence in distribution of

p

n(

^

F

n

(x) � F

1

(x)) and ask if a

functional central limit theorem can be proved. Applying Theorem 2, we prove here that under (A1)

and a suitable moment condition, the functional central limit theorem holds, and that n

q

E [(

^

F

n

(x) �

F

1

(x))

2q

] converges to f2F

1

(x)(1 � F

1

(x))g

q

under the only additional assumption that �

4

= 0. De�ne

F

m

(x) = ((m � 1)!)

�1

R

x

0

t

m�1

e

�x

dx, the distribution function of the �(m; 1) distribution. De�ne also

C

m

(x) = (m+ 1)F

m+1

(x) � F

m

(x).

Theorem 3. If Assumption (A1) holds and if E(jZ

0

j

8

) <1, then

p

n(

^

F

n

(x)�F

m

(x)) converges in the

space D([0;1[) of left-limited right-continuous (cadlag) functions on [0;1) to the Gaussian process G(x)
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with covariance function

E [G(x)G(y)] = 2mF

m

(x ^ y)(1� F

m

(x _ y)) +m

2

�

4

C

m

(x)C

m

(y):

If moreover E(jZ

0

j

q

) <1, then

lim

n!1

n

q=2

E [(

^

F

n

(x) � F

m

(x))

q

] =

8

<

:

0 if q is odd,

f2mF

m

(x ^ y)(1� F

m

(x _ y)) +m

2

�

4

C

m

(x)C

m

(y)g

q=2

if q is even.

Remarks.

� If �

4

= 0 then the limit process is the same as if Z

t

were Gaussian white noise, or, equivalently,

if the periodogram ordinates

�

I

n;k

were i.i.d. random variables with �(m; 1) distribution (i.i.d.

exponentials in the case m = 1). If enough moments of Z

0

are �nite, the limiting moments are also

the same as in the Gaussian case. Thus, the di�erence with the behaviour of an i.i.d. sequence

appears only through the fourth cumulant.

� The proof of Theorem 3 is as usual split into two parts. The convergence of �nite distribution is

an obvious consequence of Theorem 2 and holds under �niteness of the fourth moment of Z

0

only.

Tightness is proved using the criterion for empirical processes of Shao and Yu (1996) [12] and needs

�niteness of the eighth moment of Z

0

.

5. Proof of Theorem 1

Theorem 1 is proved by means of the method of moments and Edgeworth expansions. Thus the �rst

step in its proof is to prove a central limit theorem in the case of smooth functions and when all the

moments of Z

0

are �nite.

Proposition 2. Assume that (Z

t

)

t2Z

is a unit variance white noise such that for all integers s, E(jZ

0

j

s

) <

1. Assume that for all 1 � k � K  

n;k

is compactly supported C

1

and

8r 2 N; 9C

r

;8n;8k � K; M

0;r

( 

n;k

) � C

r

:(9)

Let (�

n;k

)

1�k�K

be a triangular array of reals such that Assumptions (A2), (A5), (A3) and (A4) hold.

Then S

n

is asymptotically Gaussian with variance �

2

+ ��

4

=4.
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Wemust now relax the assumption that Z

0

has �nite moments of all orders. De�ne Z

(M)

t

= �

�1

M

Z

t

1

fjZ

t

j�Mg

and with �

2

M

= E((Z

t

1

fjZ

t

j�Mg

)

2

). Without loss of generality, we can assume that for all M , E(Z

(M)

t

) =

0, since we will compute discrete Fourier transforms at Fourier frequencies. De�ne W

(M)

n;k

in the same

way as W

n;k

, replacing Z by Z

(M)

.

Lemma 1. Let (Z

t

)

t2Z

be an i.i.d. sequence of zero-mean random variables with �nite moment of order 4.

Let (�

n;k

)

1�k�K

be a triangular array of real numbers such that

P

K

k=1

�

2

n;k

= 1. Assume that ( 

n;k

)

1�k�K

is a triangular array of compactly supported C

2

functions with same support K and that there exists a

constant C such that

8n;8k � K; M

0;2

( 

n;k

) � C:(10)

Then

lim

M!1

lim sup

n!1

E

 

K

X

k=1

�

n;k

f 

n;k

(W

n;k

)�  

n;k

(W

(M)

n;k

)g

!

2

= 0:

Proposition 3. Assume that (Z

t

)

t2Z

is a unit variance white noise such E(jZ

0

j

4

) < 1. Assume that

for all 1 � k � K  

n;k

is compactly supported C

1

and (9) holds. Let (�

n;k

)

1�k�K

be a triangular array

of reals such that Assumptions (A2), (A5), (A3) and (A4) hold. Then S

n

is asymptotically Gaussian

with variance �

2

+ ��

4

=4.

Proof of Proposition 3. De�ne S

(M)

n

=

P

K

k=1

�

n;k

 

n;k

(W

(M)

n;k

). Applying Proposition 2 and Lemma 1,

we get

8M 2 N; S

(M)

n

(d)

�! N (0; �

2

(M));(11)

lim

M!1

lim sup

n

E(S

n

(M)� S

n

)

2

= 0:(12)

where �

2

(M) = lim

n!1

s

2

n

(M) and s

2

n

(M) is de�ned as s

2

n

with the fourth cumulant �

(M)

4

of Z

(M)

0

instead of �

4

. �

2

(M) is well de�ned because of assumptions (A3) and (A4). Moreover,

js

2

n

(M)� s

2

n

j � Cj�

(M)

4

� �

4

j

K

X

k=1

�

2

n;k

k 

n;k

k

2

:

This last sum is bounded because max

1�k�K

k 

n;k

k <1 under assumption (9). Thus lim

M!1

�

2

(M) =

�

2

. Theorem 4.2 in Billingsley (1968) [3] concludes the proof of Proposition 3.
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To conclude the proof of Theorem 1, there only remains to replace the sequence  

n;k

by a sequence of

smooth functions.

Lemma 2. Assume either

� (A1) holds, there exists a positive integer � and a constant C such that for all n and 1 � k � K,

 

n;k

2 H

�

and N

�

( 

n;k

) � C, and E(jZ

t

j

2�+2

) < +1 ;

� there exists an integer � and a constant C such that for all n and 1 � k � K,  

n;k

2 S

2

�

and

M

�;2

( 

n;k

) � C, and E(jZ

t

j

2�

_ 4) < +1.

Then, for all triangular array of integers �

n;k

such that

P

K

k=1

�

2

n;k

= 1, for large enough n,

lim sup

n

E

h�

K

X

k=1

�

n;k

 

n;k

(W

n;k

)

�

2

i

�

K

X

k=1

�

2

n;k

k 

n;k

k

2

:

We can now conclude the proof of Theorem 1. Using the notations of assumption (A6), denote

S

n

(�) =

P

K

k=1

�

n;k

 

�

n;k

(W

n;k

). Applying Proposition 3 and Lemma 2, we have

8� > 0; S

n

(�)

(d)

�! N (0; �

2

(�));

lim

�!0

lim sup

n

E(S

n

(�)� S

n

)

2

= 0;

lim

�!0

�

2

(�) = �

2

:

We conclude as above by applying Theorem 4.2 in Billingsley (1968) [3].

6. Proof of Proposition 2 and of Lemmas 1 and 2

The proofs of Proposition 2 and of Lemmas 1 and 2 are based on a moment expansion for functions

of the periodogram.

Lemma 3. Let s � d be two integers. Let k = (k

1

; � � � ; k

d

) be a d-tuple of pairwise distinct integers. Let

�

1

; � � � ; �

d

be d functions de�ned on R

2m

. Assume that one of the following assumption holds.

(BR) (A1) holds and for all i = 1; � � � ; d, N

�

i

(�

i

) < 1 for some integers �

1

; � � � ; �

d

and E [jZ

0

j

�

] < 1

with � = �

1

+ � � �+ �

d

+ 2.
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(GH) Denote r = (s�2md)

+

+2. Let �

1

; � � � ; �

d

be non negative integers and denote � = (�

1

+ � � �+�

d

)_

(s+ 2). For all i = 1; � � � ; d, �

i

2 S

r

�

i

and E(jZ

0

j

�

) <1.

Let �

i

be the Hermite rank of �

i

, 1 � i � s and � = inf

1�i�s

�

i

.

� If � = 2 or 3 then

E [

d

Y

i=1

�

i

(W

n;k

i

)] = n

�s=2

s!�

s=2

4

2

3s=2

(s=2)!

X

j

1

;��� ;j

s

=1���2m

s

Y

j=1

C

2

(�

i

; j

i

)

d

Y

i=s+1

E [�

i

(�)]1

fs22Ng

+

s

X

r=[(2s+2)=3]

n

�r=2

F

r;k

(�

1

; � � � ; �

d

) + n

�s=2

r

n

(�

1

; � � � ; �

d

; k);

jF

r;k

(�

1

; � � � ; �

d

)j � C

d

Y

i=1

k�

i

k�

r

(k);

where �

r

is uniformly bounded by one and vanishes outside a �nite union of subspaces of R

d

, the

greatest dimension of which is strictly less than d+ (r � s)=2.

� If � � 4, then

E [

d

Y

i=1

�

i

(W

n;k

i

)] =

d

Y

i=1

E [�

i

(�)] + n

�s=2

r

n

(�

1

; � � � ; �

d

; k):(13)

�

n

is a sequence which depends only on d, s, �

1

; � � � ; �

d

or �

1

; � � � ; �

d

and the distribution of Z

0

and such

that lim

n

�

n

= 0. The following bounds hold for r

n

:

� if assumption (BR) holds :

jr

n

(�

1

; � � � ; �

d

; k)j �

d

Y

i=1

N

�

i

(�

i

);(14)

� if assumption (GH) holds :

jr

n

(�

1

; � � � ; �

d

; k)j =

d

Y

i=1

M

�

i

;r

(�

i

):(15)

Remarks.

� The constants involved in the above bounds are uniform wrt n and k

1

; � � � ; k

d

but depend on d.
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� In the context of Theorem 2 or 3, Lemma 3 is used with �

1

= � � � = �

s

=  for some function  

such that k k <1 and C

2

( ; 1) = � � � = C

2

( ; 2m) := C

2

( ). Then the �rst term in the expansion

of E [

Q

d

i=1

�

i

(W

n;k

i

)] becomes, if s is even and � � 2,

n

�s=2

s!(m

2

C

2

2

( )�

4

=2)

s=2

(s=2)!

d

Y

j=s+1

E [�

j

(�)]:

� In (13), the product vanishes if s > 0.

� The case � = 0 is included in the case s = 0.

� In view of Lemma 2, it is important that the bound (14) is explicit in terms of the norms N

�

i

(�

i

).

6.1. Proof of Proposition 2. The proof is based on the method of moments. Denote Y

n;k

=  (

�

I

n;k

)

and �

2

n;k

= E [ 

2

n;k

(�)]. Recall that

P

K

k=1

�

2

n;k

= 1. Let q 2 N, q � 2.

E(S

q

n

) =

q

X

v=1

X

0

v;q

q!

q

1

! � � � q

v

!

1

v!

A

n

(q

1

; � � � ; q

v

);

A

n

(q

1

; � � � ; q

v

) =

X

00

v;n

v

Y

i=1

�

q

i

n;k

i

E

 

v

Y

i=1

Y

q

i

n;k

i

!

;

P

0

v;q

extends on all v-tuples of positive integers (q

1

; � � � ; q

v

) such that q

1

+ � � �+ q

v

= q and

P

00

v;n

extends

on all v-uplets (k

1

; � � � ; k

v

) of pairwise distinct integers in the range f1; � � � ;Kg.

For any v-tuple (q

1

; � � � ; q

v

) such that q

1

+ � � � q

v

= q, let s be the number of indices i such that q

i

= 1

and u be the number of indices i such that q

i

= 2. Denote w = v � s� u. If w > 0, we easily get that

A

n

(q

1

; � � � ; q

v

) = o(1). Indeed, Assumption (A6) and Lemma 3 yield, with b

n

= max

1�k�K

j�

n;k

j,

jA

n

(q

1

; � � � ; q

v

)j � Cb

q

n

�

v�s=2

n

:

Now, w > 0 implies that v � s=2 = s=2 + u+ w � q=2� 1=2. Thus, under assumption (A5),

jA

n

(q

1

; � � � ; q

v

)j � C(b

2

n

�

n

)

q=2

�

�1=2

n

= o(1):

Consider now (q

1

; � � � ; q

v

) a v-tuple such that w = 0, i.e. s+ u = v and s+ 2u = q.
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� If s is even, Lemma 3 yields

A

n

(q

1

; � � � ; q

v

) = A

n

(1; � � � ; 1; 2; � � � ; 2)

= n

�s=2

s!�

s=2

4

2

3s=2

(s=2)!

X

00

v;n

s

Y

i=1

8

<

:

�

n;k

i

2m

X

j

i

=1

C

2

( 

n;k

i

; j

i

)

9

=

;

v

Y

i=s+1

�

2

n;k

i

�

2

n;k

i

+ �

n

j�

n

j � C(b

2

n

�

n

)

q=2

�

�1

n

:

� If s is odd (when w = 0 and q is odd), Lemma 3 yields

jA

n

(q

1

; � � � ; q

v

)j � C(b

2

n

�

n

)

q=2

�

�1

n

:

The leading term in the expansion of E(S

q

n

) for any even q is thus, (note that v = (q + s)=2 and denote

t = s=2),

~s

n;q

=

q!

(q=2)!2

q=2

q=2

X

t=0

�

q=2

t

��

�

4

4n

�

t

n

�t

X

00

t+q=2;n

2t

Y

i=1

�

n;k

i

2m

X

j

i

=1

C

2

( 

n;k

i

; j

i

)

v

Y

i=2t+1

�

2

n;k

i

�

2

n;k

i

:

Denote

s

2

n

=

K

X

k=1

�

2

n;k

k 

n;k

k

2

+

�

4

4n

X

1�k 6=l�K

�

n;k

�

n;l

X

i;j=1;��� ;2m

C

2

( 

n;k

; i)C

2

( 

n;l

; j):

s

2

n

is the leading term of E [S

2

n

] and assumptions (A3) and (A4) imply that lim

n!1

s

2

n

= �

2

+ ��

4

=4.

Since b

n

= o(1) (Assumption (A2)), it also holds that

s

q

n

=

q=2

X

t=0

0

@

q

2

t

1

A

 

K

X

k=1

�

2

n;k

�

2

n;k

!

q

2

�t

0

@

�

4

4n

X

1�k

1

6=k

2

��

n

�

n;k

1

�

n;k

2

X

j

1

;j

2

=1���2m

C

2

( 

n;k

1

; j

1

)C

2

( 

n;k

2

; j

2

)

1

A

t

=

�

q!

2

q=2

(q=2)!

�

�1

~s

n;q

(1 +O(b

n

));

and �nally

lim

n!1

E(S

q

n

) =

q!

2

q=2

(q=2)!)

(� + ��

4

=4)

q

;

which concludes the proof of Proposition 2.
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Proof of Proposition 2 in the case �

n

= o(n

2=3

). Let q

1

; � � � ; q

u

be such that #fi; q

i

= 1g = s. Then

P

fi;q

i

�2g

(q

i

�2) = q�2u+s. Since

P

K

k=1

�

2

n;k

= 1, we have, by de�nition of �

n

,

P

K

k=1

j�

n;k

j = O(�

1=2

n

).

Thus,

X

00

j�

q

1

n;k

1

� � ��

q

u

n;k

u

j � C�

s=2

n

b

q�2u+s

n

:

Since all terms involved in the expansion of E(

Q

u

i=1

Y

q

i

n;k

i

) are of order n

�s=3

at most, we get, if s > 0,

E(

u

Y

i=1

Y

q

i

n;k

i

) = O(�

s=2

n

b

q�2u+s

n

n

�s=3

) = O((�

n

=n

2=3

)

s=2

) = o(1):

If s = 0 then either u < q=2 or u = q=2 and q

1

= � � � = q

u

= 2. In both cases, the condition b

n

= o(1)

yields the required limit.

Proof of Proposition 2 in the case � � 4. Assume that for all n and 1 � k � K, the Hermite rank

of  

n;k

is at least 4. This yields

A

n

(q

1

; � � � ; q

v

) =

X

v;n

v

Y

i=1

�

q

i

n;k

i

(

v

Y

i=1

E [ 

q

i

n;k

i

(�)] + o(

�s=2

)

)

:

The expectation term above vanishes when the number (s) of indices i such that q

i

= 1 is not zero, we

get, for such v-tuples,

jA

n

(q

1

; � � � ; q

v

)j � C�

n

n

�s=2

 

K

X

k=1

j�

n;k

j

!

s

b

v�s

n

;

where lim

n!1

�

n

= 0. Since

P

K

k=1

�

2

n;k

= 1, applying H�older inequality, we have

P

K

k=1

j�

n;k

j = O(

p

n),

thus if s 6= 0, A

n

(q

1

; � � � ; q

v

) = o(1). If s = 0 and v < q=2, then as before A

n

(q

1

; � � � ; q

v

) = o(1). If s = 0

and v = q=2, then

A

n

(2; � � � ; 2) =

X

q=2;n

q=2

Y

i=1

�

2

n;k

+ o(1):

The proof is concluded as in the general case by noting that under the Lindeberg condition b

n

= o(1),

s

q

n

=

P

q=2;n

Q

q=2

i=1

�

2

n;k

+ o(1).
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6.2. Proof of Lemma 1. De�ne ~�

2

M

= E(Z

2

t

1

fjZ

t

j>Mg

) and

~

Z

(M)

t

= ~�

�1

M

Z

t

1

fjZ

t

j>Mg

. De�ne

~

W

(M)

n;k

in

the obvious way wrt

~

Z

(M)

t

. With these notations, we have W

n;k

= �

M

W

(M)

n;k

+ ~�

M

~

W

(M)

n;k

.

E

h�

K

X

k=1

�

n;k

f 

n;k

(W

n;k

)�  

n;k

(W

(M)

n;k

)g

�

2

i

=

K

X

k=1

�

2

n;k

n

E [ 

2

n;k

(W

n;k

)] + E [ 

2

n;k

(W

(M)

n;k

)]� 2E( 

n;k

(W

n;k

) 

n;k

(W

(M)

n;k

))

o

+

X

1�k 6=l�K

�

n;k

�

n;l

E [f 

n;k

(W

n;k

)�  

n;k

(W

(M)

n;k

)gf 

n;l

(W

n;l

)�  

n;l

(W

(M)

n;l

)g] =: A

n;M

+B

n;M

:

Let �

(1)

and �

(2)

be two independent 2m-dimensional standard Gaussian vectors. As shown in section

8.1 below, we can apply Theorem 3.17 in G�otze and Hipp (1978) [9] and we get

E [ 

2

n;k

(W

n;k

)] = E [ 

2

n;k

(�

(1)

)] +O(n

�1=2

);

E [ 

2

n;k

(W

(M)

n;k

)] = E [ 

2

n;k

(�

(1)

)] +O(n

�1=2

);

E [ 

n;k

(W

n;k

) 

n;k

(W

(M)

n;k

)] = E [ 

n;k

(�

(1)

) 

n;k

(�

M

�

(1)

+ ~�

M

�

(2)

)] +O(n

�1=2

);

where the bounds are uniform because of (10). These expansions yield

A

n;M

=

K

X

k=1

�

2

n;k

E( 

n;k

(�

(1)

)f 

n;k

(�

M

�

(1)

+ ~�

M

�

(2)

)�  

n;k

(�

(1)

)g) +O(n

�1=2

):

Applying H�older inequality, (10) and the mean value theorem, we get, for some constant C that does not

depend on M ,

A

n;M

� CE

1=2

[(j�

M

�

(1)

+ ~�

M

�

(2)

j

2

� j�j

2

)

2

] +O(n

�1=2

):

Thus lim sup

n

A

n;M

� E

1=2

((j�

M

�

(1)

+ ~�

M

�

(2)

j

2

� j�

(1)

j

2

)

2

], and since lim

M!1

�

M

= 1, by the bounded

convergence theorem, we get lim

M!1

lim sup

n

A

n;M

= 0.
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To deal with the second term B

n;M

we need to use an Edgeworth expansion up to the order n

�1

.

Applying again Theorem 3.17 in G�otze and Hipp (1978), with assumption (10), we get

X

1�k 6=l�K

�

n;k

�

n;l

E [ 

n;k

(W

n;k

) 

n;l

(W

n;l

)]

=

�

4

4n

X

1�k

1

6=k

2

�K

�

n;k

1

�

n;k

2

X

j

1

;j

2

=1���2m

C

2

( 

n;k

1

; j

1

)C

2

( 

n;k

2

; j

2

) + o(1);

X

1�k 6=l�K

�

n;k

�

n;l

E [ 

n;k

(W

n;k

) 

n;l

(W

(M)

n;l

)]

=

�

(M)

4

� �

2

M

~�

2

M

4n

X

1�k 6=l�K

�

n;k

�

n;l

X

j

1

;j

2

=1���2m

C

M

2

( 

n;k

1

; j

1

)C

2

( 

n;k

2

; j

2

) + o(1);

where �

(M)

4

is the fourth order cumulant of Z

(M)

0

and C

(M)

2

( ; j) = E [H

2

(�

(1)

j

) (�

M

�

(1)

+~�

M

�

(2)

)]. Under

(10), the coe�cients C

2

( 

n;k

; j) and C

M

2

( 

n;k

; j) are uniformly bounded and thus we get, applying H�older

inequality and the mean value theorem,

lim sup

n

B

n;M

� C

�

�

2

M

~�

2

M

+ j�

4

� �

(M)

4

j

�

:

As for A

n;M

, we conclude by applying the bounded convergence theorem.

6.3. Proof of Lemma 2. Under the assumptions of Lemma 2, using Lemma 3, it is easily seen that for

all 1 � k 6= j � K, the following expansions are valid.

E [ 

2

n;k

(W

n;k

)] = k 

n;k

k

2

+O(n

�1=2

);

E [ 

n;k

(W

n;k

) 

n;k

(W

n;k

)] =

�

4

4n

X

1�i

1

;i

2

;�2m

C

2

( 

n;k

; i

1

)C

2

( 

n;j

; i

2

) + n

�1=2

F( 

n;k

;  

n;j

) + o(n

�1

);

jF( 

n;k

;  

n;j

)j � Ck 

n;k

kk 

n;j

k�(k; j);

where � vanishes outside a subspace of N

2

of dimension at most 1, and the terms O(n

�1=2

) and o(n

�1

)

are uniform because of the assumptions of Lemma 2. Summing these expressions yields Lemma 2.

7. Proof of Theorem 3

We need only prove the tightness of the sequence �

n

(x) :=

p

Kf

^

F

n

(x)�F

m

(x)g on a compact set [0;M ].

For that we must compute the moments of �

n

(x) � �

n

(y) for some 0 � x < y � M . Denote  

x;y

(t) =
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1

fx<t�yg

� (F

m

(y)�F

m

(x)). Let q be a positive integer and let m

n;q

(x; y) = E [(�

n

(x)��

n

(y))

2q

]. Using

the same notations as in the proof of Proposition 2, we have the expansion

m

n;q

(x; y) =

q

X

v=1

X

0

v;q

q!

q

1

! � � � q

v

!

1

v!

A

n

(q

1

; � � � ; q

v

);

A

n

(q

1

; � � � ; q

v

) = n

�q=2

X

00

v;n

E

"

v

Y

i=1

 

q

i

x;y

(2�

�

I

n;k

i

)

#

:

We now use Lemma 3 to obtain an expansion of the expectation above under Assumption (A1). Denote

C

m

(x; y) Assuming Z

0

has enough �nite moments, we get

E

"

v

Y

i=1

 

q

i

x;y

(2�

�

I

n;k

i

)

#

= n

�s=2

s!(m

2

C

2

m

(x; y)�

4

=2)

s=2

(s=2)!

Y

fj;q

j

�2g

E [ 

q

j

x;y

(�)]1

fs22Ng

+

s

X

r=[(2s+2)=3]

n

�r=2

F

r;k

( 

q

1

x;y

; � � � ;  

q

v

x;y

) + n

�s=2

r

n

( 

q

1

x;y

; � � � ;  

q

v

x;y

; k);

We must now bound all these terms by powers of y � x. It is easily seen that there exists a constant

C such that jC

m

(x; y)j � C(y � x) and jE [ 

q

j

x;y

(�)]j � C(y � x). Thus the �rst term is bounded by

n

�s=2

(y � x)

v

. Since it also holds that k 

q

x;y

k

2

� C(y � x) and N

�

( 

q

x;y

) � C(y � x) for any positive

integer q, we get

s

X

r=[(2s+2)=3]

n

�r=2

F

r;k

( 

q

1

x;y

; � � � ;  

q

v

x;y

) � C

s

X

r=[(2s+2)=3]

n

�r=2

�

r

(k)(y � x)

v

� Cn

v�s=2

(y � x)

v

;

n

�s=2

r

n

( 

q

1

x;y

; � � � ;  

q

v

x;y

; k) � Cn

�(s+1)=2

(y � x)

v

:

Altogether, we get

A

n

(q

1

; � � � ; q

v

) � Cn

�q=2

n

v�s=2

(y � x)

v

= Cn

�q=2+v�s=2

(y � x)

v

:

Since for a given q, v is at least equal to one and at most equal to q, we get for jy � xj � 1=n,

m

n;q

(x; y) � C(n

�q=2+1

jx� yj+ jy � xj

q=2

):

If jy � xj � 1=n, then since v � (q + s)=2, it always holds that

m

n;q

(x; y) � Cn

�(q+s)=2

(njy � xj)

v

� Cn

�(q+s)=2

(njy � xj)

(q+s)=2

� Cjy � xj

q=2

:

Finally, we get, for q = 4, provided that E [jZ

0

j

8

] <1,

E [(�

n

(x)� �

n

(y))

4

] � C(n

�1

jx� yj+ jy � xj

2

):
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This ensures the tightness of the empirical spectral process.

8. Proof of Lemma 3

Let k = (k

1

; � � � ; k

d

) be a d-tuple of pairwise distinct integers. Let �

(1)

; � � � ; �

(d)

be d independent 2m-

dimensional standard Gaussian vectors and denote � = (�

(1)

; � � � ; �

(d)

)

T

. Denote  (�) =

Q

d

j=1

�

j

(�

(j)

). In

section 8.1, it will be proved that assumptions (BR) and (GH) imply respectively that the assumptions

of Theorem 19.4 in Bhattacharya and Rao (1976) and Theorem 3.17 in G�otze and Hipp (1978) hold.

Then

E [�

1

(W

n;k

1

) � � ��

d

(W

n;k

d

)] =

�

�

X

r=0

n

�r=2

E

r;k

(�

1

; � � � ; �

d

) + n

�s=2

�

n

R

n

(�

1

; � � � ; �

d

);(16)

where �

n

depends only on the distribution of Z

0

and �

�

and veri�es lim

n!1

�

n

= 0, and

� under assumption (BR), �

�

= �

1

+ � � �+ �

d

and

jR

n

(�

1

; � � � ; �

d

)j � �

n

d

Y

i=1

N

�

i

(�

i

);

� under assumption (GH), �

�

= � � 2 and

jR

n

(�

1

; � � � ; �

d

)j � C

d

Y

i=1

M

�

i

;r

:

If �

�

> s, then we must �rst prove that the terms E

r;k

can be conveniently bounded for s+ 1 � r � �

�

.

Let us �rst give explicit expressions for the quantities E

r;k

. They derive from the formal Edgeworth

expansion up to the order s of E [

Q

d

i=1

�

i

(W

n;k

i

)], which is the same under both sets of assumptions.

E

r;k

(�

1

; � � � ; �

d

) =

r

X

t=1

1

t!

X

�

r;t

�

�

1

(k) � � ��

�

t

(k)

�

1

! � � � �

t

!

E [H

�

1

+���+�

t

(�) (�)];(17)

�

P

�

r;t

extends over all t-tuples of multi-indices �

1

; � � � ; �

t

such that �

i

= (�

i

(1); � � � ; �

i

(2md)) 2 N

2md

,

j�

i

j = �

i

(1) + � � �+ �

i

(2md) � 3;

t

X

i=1

j�

i

j = r + 2t;

� for � 2 N

2md

, �! =

Q

2md

j=1

�(j)!

� H

�

is a multidimensional Hermite polynomial, i.e. H

�

(�) = H

�(1)

(�

1

) � � �H

�(2md)

(�

2md

),
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� for k 2 f1; � � � ;Kg

md

and � 2 N

2md

, �

�

(k) is the following cumulant

�

�

(k) = 2

j�j=2

�

j�j

A

�

(k);(18)

A

�

(k) = n

�1

n

X

t=1

d

Y

j=1

m

Y

i=1

cos(tx

m(k

j

�1)+i

)

�

2m(j�1)+2i�1

sin(tx

m(k

j

�1)+i

)

�

2m(j�1)+2i

;(19)

where �

j�j

is the cumulant of order j�j of Z

0

.

Clearly, jA

�

j � 1, thus, for 0 � r � �

�

, there exists a constant C

d

, uniform wrt n and k = (k

1

; � � � ; k

d

)

such that

jE

r;k

(�

1

; � � � ; �

d

)j � C

d

d

Y

i=1

k�

i

k:

Thus, under both assumptions, if �

�

> s, we have

�

�

�

�

�

�

�

�

X

r=s+1

n

�r=2

E

r;k

(�

1

; � � � ; �

d

)

�

�

�

�

�

�

� Cn

�(s+1)=2

d

Y

i=1

k�

i

k;

for some constant which depends only on the distribution of Z

0

and �

�

. Since k�k � C

�

N

�

(�) and

k�k � C

�;r

M

�;r

(�), we �nally get

�

�

�

�

�

E [�

1

(W

n;k

1

) � � ��

d

(W

n;k

d

)]�

s

X

r=

n

�r=2

E

r;k

(�

1

; � � � ; �

d

)

�

�

�

�

�

� n

�s=2

�

n

r

n

(�

1

; � � � ; �

d

);

where r

n

satis�es either (14) or (15). We can now consider the terms E

r;k

(�

1

; � � � ; �

d

) for 1 � r � s. The

desired properties of these terms derive from considerations on moments and on cumulants.

Moments.We need only consider the t-tuples of multi-indices � = (�

1

; � � � ; �

t

) such that

E [H

�

1

+���+�

t

(�) (�)] 6= 0:(20)

Let �

i

be the Hermite rank of �

i

1 � i � s, and recall that � = inff�

i

; i = 1; � � � ; sg. By de�nition of the

Hermite rank, we get

If j�

1

+ � � �+ �

t

j < s�; E [H

�

1

+���+�

t

(�) (�)] = 0:(21)

The de�nition of

P

�

r;t

, implies that t � r and j�

1

+ � � �+ �

t

j = r+2t � 3r, thus, 3r must be greater than

or equal to s� for the term E

r;k

(�

1

; � � � ; �

d

) not to vanish. If � � 4, this implies that all terms E

r;k

are
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vanishing for r � s and (13) is proved. If � = 2, we must study all terms 2s=3 � r � s. Since the �

i

's are

i.i.d. standard Gaussian, the expectation in (21) writes

E [H

�

1

+����

t

(�) (�)] =

d

Y

i=1

E [

2m

Y

j=1

H

�

1

(2m(i�1)+j)+���+�

t

(2m(i�1)+j)

(�

2m(i�1)+j

)�

i

(�

(i)

)]:

Since �

i

� 2 for all 1 � i � s, (20) implies the following condition

2m

X

j=1

t

X

l=1

�

l

(2m(i� 1) + j) � 2; 1 � i � s;(22)

Cumulants. The well known orthogonality properties of the functions sine and cosine computed at the

Fourier frequencies imply that A

�

writes

A

�

(k) = 2

�j�j=2

+ �

�

(k);(23)

if all the components of � are even, (� 2 (2N)

2md

), and

A

�

(k) = �

�

(k);(24)

if at least one of the component of � is odd, �

�

having following properties

1. �

�

depends only on � ;

2. �

�

identically vanishes outside a �nite union of strict hyperplanes of R

d

;

3. 8k 2 N

d

; j�

�

(k)j � 1 ;

Thus, for each �, A

�

(:) is constant outside a �nite union of strict hyperplanes of f1; � � � ;Kg

d

. To illustrate

these properties, we give two examples in the case m = 1, d = 2. Assume n is even and let � = (2; 0; 1; 1).

Then j�j = 4 and

A

�

(k) = n

�1

n

X

t=1

cos

2

(txk

1

) cos(txk

3

) sin(txk

4

) =

1

8n

n

X

t=1

(2 sin t(x

k

3

+ x

k

4

)� 2 sin t(x

k

3

� x

k

4

)

+ sin t(2x

k

1

+ x

k

3

+ x

k

4

) + sin t(2x

k

1

� x

k

3

+ x

k

4

) + sin t(�2x

k

1

+ x

k

3

+ x

k

4

) + sin t(�2x

k

1

� x

k

3

+ x

k

4

)):

Thus A

�

(k) = 1=4 + �

�

(k), where �

�

vanishes outside the sets 2k

1

+ k

3

+ k

4

= 0, 2k

1

� k

3

+ k

4

= 0,

�2k

1

+ k

3

+ k

4

= 0, �2k

1

� k

3

+ k

4

= 0, k

3

+ k

4

= 0 and k

3

� k

4

= 0, where the equalities must hold

modulo n.
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Let � = (2; 0; 2; 0), then j�j = 4 and

A

�

(k) = n

�1

n

X

t=1

cos

2

(tx

k

1

) cos

2

(tx

k

3

) =

1

4

+

1

8n

n

X

t=1

(2 cos(2tx

k

1

) + 2 cos(2tx

k

3

) + cos(2t(x

k

1

+ x

k

3

)) + cos(2t(x

k

1

� x

k

3

))) :

Thus A

�

(k) = 1=4 + �

�

(k), where �

�

vanishes outside the sets 2k

1

= 0; (mod n), k

3

= 0; (mod n),

2k

3

= n; (mod n), k

1

� k

3

= 0; (mod n).

We return to the general case. For each �, the multi-indices k such that

t

Y

i=1

�

�

i

(k) 6= 0(25)

belong to a �nite union of subspaces of R

d

, and denote d(�) the greatest dimension of these subspaces.

Lemma 3 will be proved as a consequence of the following fact

for all � such that (20) holds, d(�) < d+ (r � s)=2:(26)

We now prove (26), �rst in the case r = s.

Case r = s. First note that

9i = 1; � � � ; t; 9j = 1; � � � ; 2md; �

i

(j) =2 2N ) d(�) < d:

Consider now the t-tuples of multi-indices �

1

; � � � ; �

t

without any odd component. Since j�

i

j must be

greater than or equal to 3 for all i = 1; � � � ; t, j�

i

j � 4 necessarily holds. This implies that r + 2t =

j�

1

+ � � � + �

t

j � 4t, and thus 2t � r and 2s � r + 2t � 2r � 2s. Finally, we conclude that r = s and

4t = 2s which implies that s must be even, and for all i = 1; � � � ; s=2, j�

i

j = 4. Notice now that no single

component of any of the �

i

can be equal to 4, otherwise (22) would not hold. Thus, if � is such that (20)

holds, the following conditions must hold

8j 2 f1; � � � ; sg; 9!l

j

2 f2m(j � 1) + 1; � � � ; 2mjg; �

1

+ � � �+ �

s=2

(l

j

) = 2;(27)

8j 2 f1; � � � ; sg;8l 2 f2m(j � 1) + 1; � � � ; 2mjg n fl

j

g; �

1

+ � � �+ �

s=2

(l) = 0;(28)

8j 2 fs+ 1; � � � ; dg;8l 2 f2m(j � 1) + 1; � � � ; 2mjg; �

1

+ � � �+ �

s=2

(l) = 0:(29)
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For such a �, there exist integers j

1

; � � � ; j

s

in f1; � � � ; 2mg such that

E [H

�

1

+���+�

t

(�) (�)] =

s

Y

j=1

C

2

(�

i

; j

i

)

d

Y

j=s+1

E [�

j

(�

(j)

)]:

Conversely, each s-tuple j

1

; � � � ; j

s

is obtained by exactly 2

�s=2

s! �'s. Thus if s is even, we get

E

s;k

(�

1

; � � � ; �

d

) =

s!�

s=2

4

(s=2)!2

3s=2

2

4

X

j

1

;��� ;j

s

=1���2m

s

Y

i=1

C

2

(�

i

; j

i

)

3

5

d

Y

i=s+1

E [�

j

(�

(i)

)] + F

s;k

(�

1

; � � ��

d

);

and if s is odd, E

s;k

(�

1

; � � � ; �

d

) = F

s;k

(�

1

; � � ��

d

) where, in both cases, F

s;k

has the claimed properties.

Case r < s. If r < s, then there is at least one index i such that j�

i

j = 3. Let l(�) be the number of

indices i such that �

i

has at least one odd component. Since r+2t � 2s, let r+2t = 2s+q. By de�nition

of l(�), we have r + 2t � 3l(�) + 4(t� l(�)), whence r + l(�) � 2t. Since r + 2t = 2s+ q and r < s, we

get for any d � s,

r + l(�) � 2t = 2s+ q � r > s+ q;

l(�)� q > s� r;

d� (l(�)� q)=2 < d+ (r � s)=2:(30)

The proof of Lemma 3 will be concluded if we prove the following bound :

d(�) � d� [(l(�)� q)=2 _ 1]:(31)

Proof of (31). To prove (31), we momentarily forget any reference to moments conditions. Denote

m(�) = d � d(�). m(�) is the minimum codimension of any subspace of N

md

on which A

�

(:) does

not identically vanish. Following Velasco (1997) [13], m(�) will be called the NRES, i.e. the minimum

number of linear restrictions necessary to make the cumulants considered di�erent from zero. The NRES

m(�) is obviously a non decreasing function of the number of indices i such that �

i

has at least one odd

component, as can be seen from (24) and the properties of �

�

.

(i). Our �rst argument is that if there are at most two odd component in any single column of the array

�, then m(�) is at least equal to l(�)=2, since each line of the array (i.e. each �

i

) with at least one odd

component yields one restriction, and di�erent lines will yield di�erent restrictions, except if their odd

components are in the same columns. Thus (31) holds in this case.
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(ii). If there exists at least one column with at least three odd components, let z(�) denote the number

of such columns and let y(�) denote the total number of odd components in these columns. We now

prove by induction on y(�) that the following inequality holds :

m(�) � (l(�)� (y(�)� 2z(�)))=2 _ 1:(32)

We have proved this property for y(�) = 0, but we cannot start the induction at 0 since if y(�) 6= 0, then

y(�) � 3. Thus we prove the property for y(�) = 3, which implies z(�) = 1. Let us �rst precisely de�ne

the induction assumption.

Induction assumption. Let � be an array of t lines and 2d columns. Let l be the number of lines

which have at least one odd component. Let z denote the number of columns which have at least

three odd components and y denote the number of odd components in these columns. Then m(�) �

((l � (y � 2z))=2) _ 1.

Proof for y = 3. In that case, z = 1 and we can cancel one line of the array in such a way as to obtain

a new array �

0

with l

0

= l � 1 and y = z = 0. For that array, we have m

0

� l

0

=2. So we have

m � m

0

� l

0

=2 = (l � 1)=2 = (l � (y � 2z))=2:

Induction. Assume that the induction assumption is true for some y � 1 � 3. As above we cancel one

of the line of the array and we obtain a new array �

0

with l

0

= l � 1, y

0

< y and z

0

� z. If y

0

= 0, then

m � m

0

� l

0

=2 = (l � 1)=2 � (l � (y � 2z))=2 since by de�nition y � 3z and thus y � 2z � 1 as soon as

z � 1. If y

0

6= 0, then y

0

� 3 and we can apply the induction assumption. Thus we get

m � m

0

� (l

0

� (y

0

� 2z

0

))=2 = (l � (y

0

� 2z

0

+ 1))=2:

Thus we must prove that y

0

� 2z

0

+1 � y� 2z, i.e. 2(z� z

0

) + 1 � y� y

0

. If z = z

0

, this is obvious since

y

0

< y. If z

0

< z, then y�y

0

� 3(z� z

0

) � 2(z� z

0

)+1. This proves that the induction assumption holds

for y.

Conclusion. We now prove that for an array which satis�es the moment conditions , we have y(�) �

2z(�) � q. Denote w the the number of indices j 2 f1; � � � ; dg such that the sum of all the entries of the

columns 2m(j � 1) + 1; � � � ; 2mj is exactly 1. Since the Hermite rank of �

1

; � � � ; �

s

is at least 2, then it
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is necessary that w � d� s, i.e. d� w � s. Thus, we have

2s+ q = y + w + 2(d� z(�)� w) = 2d� w + y � 2z(�) � 2s+ y � 2z(�);

and thus y � 2z(�) � q. This, together with (32) yields m(�) � (l(�) � q)=2 _ 1 and, by de�nition of

m(�), applying (30),

d(�) � d� ((l(�)� q)=2) _ 1 < d+ (r � s)=2:

This concludes the proof of Lemma 3.

8.1. Validity of Edgeworth expansions. In this section, we prove that the Edgeworth expansions

used in the previous sections are valid. Chen and Hannan (1980) [5] (Lemma 2) have adapted Theorem

19.3 of Bhattacharya and Rao (1976) [2] to prove that under assumption (A1), the Edgeworth expansion

of the joint density of an arbitrary number of discrete Fourier transform is valid up to the order 2. That

was all they needed since they considered the function log and were only proving consistency of their

estimator. To consider more genral functions, we should check the validity of the expansion up to an

arbitrary order. We will omit this proof since the arguments of Chen and Hannan (1980) are easily

generalized. We will only check the validity of Edgeworth expansions of moments using the result of

G�otze and Hipp (1978) [9]. We �rst state a version of Theorem 3.17 in G�otze and Hipp (1978) [9] with

stronger assumptions than in G�otze and Hipp (1978), but which are easy to check in our context. Let

(�

n;k

)

1�k�n

be a sequence of independent a-dimensional vectors. De�ne S

n

= n

�1

P

n

k=1

�

n;k

and let Q

s

be the formal Edgeworth expansion of S

n

up to the order s. Denote juj the Euclidean norm of a vector

and de�ne, whenever possible,

�

n;3

= n

�1

n

X

k=1

E(j�

n;k

j

3

);(33)

�

n;s

= n

�1

n

X

k=1

E

�

j�

n;k

j

s

�

n

�1=2

j�

n;k

j1

fj�

n;k

j�n

1=2

g

+ 1

fj�

n;k

j>n

1=2

g

	�

:(34)

Theorem 4. Let  be a C

r+2

function on R

a

and p be an integer such that for all � 2 N

a

with

P

a

i=1

�

i

=

r + 2, it holds that

Z

+1

�1

jD

�

 (x)j

1 + jxj

p

dx � C( );
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for some �nite constant C( ). Assume that the variables �

n;k

have �nite moment of order s + 2. If

lim

n!1

�

n;s+2

= 0, then there exists a constant C which depends only on a and the distribution of Z

0

such that, for large enough n,

�

�

E( (S

n

))�Q

s

( )

�

�

� C(M

s

( ) + C( ))�

n;s+2

n

�s=2

+ C�

r+k+1

n;3

n

�(r+a+1)=2

):

In particular, if �

n;3

is uniformly bounded, then E( (S

n

))�Q

s

( ) = o(n

�s=2

) as soon as  is C

(s�a)

+

+2

and the constants involved in the term o(n

�s=2

) depend only on the derivative of order (s� a)

+

+2. We

now check that �

n;3

is bounded and lim

n!1

�

n;s+2

= 0 in our context. For k = (k

1

; � � � ; k

u

), de�ne

�

n;t

=

p

2Z

t

(cos(tx

m(k

1

�1)+1

); sin(tx

m(k

1

�1)+1

); � � � ; cos(tx

mk

u

); sin(tx

mk

u

))

T

:

Then j�

n;t

j

2

= 2umjZ

t

j

2

. In the context of Lemma 1, we must also consider

�

(M)

n;t

=

p

2(Z

(M)

t

cos(tx

m(k

1

�1)+1

); Z

(M)

t

sin(tx

m(k

1

�1)+1

); � � � ; Z

(M)

t

cos(tx

mk

1

); Z

(M)

t

sin(tx

mk

1

);

~

Z

(M)

t

cos(tx

m(k

2

�1)+1

);

~

Z

(M)

t

sin(tx

m(k

2

�1)+1

); � � � ;

~

Z

(M)

t

cos(tx

mk

2

);

~

Z

(M)

t

sin(tx

mk

2

))

T

:

In that case we have

j�

(M)

n;t

j

2

= m(jZ

(M)

t

j

2

+ j

~

Z

(M)

t

j

2

= mjZ

t

j

2

(�

�2

M

1

fjZ

t

j�Mg

+ ~�

�2

M

1

fjZ

t

j>Mg

):

Thus, in both cases, �

n;3

is bounded, and lim

n!1

�

n;s+2

= 0 as soon as

lim

n!1

n

�1

n

X

t=1

E [jY

t

j

s

1

fjY

t

j>n

1=2

g

] = 0 and lim

n!1

n

�3=2

n

X

t=1

E [jY

t

j

s+1

1

fjY

t

j�n

1=2

g

] = 0

for an i.i.d. sequence (Y

t

) with �nite moment of order s. This is obvious since the variables Y

t

are identi-

cally distributed, thus these sums are equal respectively to E [jY

1

j

s

1

fjY

1

j>n

1=2

g

] and n

�1=2

E [jY

1

j

s+1

1

fjY

1

j�n

1=2

g

].

Since jY

1

j

s

1

fjY

1

j>n

1=2

g

and n

�1=2

E [jY

1

j

s+1

1

fjY

1

j�n

1=2

g

] converge almost surely to 0 and both sequences

are bounded for all n by jY

1

j

s

, their expectations tend to 0 as n tends to in�nity by the bounded conver-

gence theorem.
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